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Abstract. Secure mix networks consider the presence of multiple nodes
that relay encrypted messages from one node to another in such a way
that anonymous communication can be achieved. We consider the Sphinx
mix formatting protocol by Danezis and Goldberg (IEEE Security and
Privacy 2009), and analyze its use of symmetric-key cryptographic prim-
itives. We scrutinize the reliance on multiple distinct primitives, as well
as the use of the ancient LIONESS cipher, and suggest various paths
towards improving the security and efficiency of the protocol.
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1 Introduction

With the large growth of Internet services, modern users rely more on digital
and ubiquitous communications. In this digital domain, privacy needs to be
protected against the very nature of the communications, which tend to be
easily traceable and produce massive amounts of metadata. Hiding the metadata
of communications is hard, but there are systems, called mix networks, that
provide such capabilities. One example is the Sphinx [15] mix network, that is
used in privacy protecting applications. The Sphinx mix network format provides
security against powerful adversaries and good communications possibilities such
as replies, which are not easily available in other such systems.

The Sphinx protocol (see Section 2) uses internally many symmetric-key
primitives. At first, there is the SHA-2 hash function for hashing. It also includes
a HMAC mode [6] to support message authentication. Then, Sphinx uses the
LIONESS blockcipher [1], an encryption functionality that is made out of the
SEAL stream cipher [28] and a keyed version of the SHA-1 hash function, and
evaluates these functions on the message via a Feistel structure. In addition,
Sphinx uses a pseudorandom generator to generate entropy for the key. All of
these are used in a strongly intertwined manner.

LIONESS is proven to be secure, assuming that SEAL and SHA-1 are suf-
ficiently secure [1], making it particularly useful for Sphinx because of its goal
to achieve provable security. However, LIONESS has been outpaced by reality.
Attacks on SEAL [17] and SHA-1 [29], the most recent result being a free-start
collision attack on the full SHA-1, show weaknesses in the security of LIONESS.



Contribution. We suggest to replace the encryption and authentication func-
tionalities by one authenticated encryption (AE) functionality. This optimization
allows for improved security as the payload now gets authenticated without any
efficiency cost. There are existing solutions to AE (see Section 1.1), but not all
schemes are suitable. We suggest two approaches for AE suited for Sphinx that
allow for an elimination of many symmetric-key primitive calls, or more formally,
for merging these calls into one, contributing for simplicity and efficiency of the
design.

First proposal (Section 4) is based on the keyed version of the sponge as
an adaption of the full-state SpongeWrap [11,10,25]. It internally uses a large
unkeyed permutation, the state of which is separated into a capacity and a
rate. The capacity determines the security bound, and the rate determines the
speed at which data is processed. By using a large permutation, one can make
a proper balance between the capacity and the rate, and achieve a high level
of security. Second proposal (Section 5) is blockcipher based, and is resistant
to nonce reuse with an unconventional nonce reuse resistant AE schemes such
as [3,20]: while other designs consist of a mode built on top of AES, we follow
a “tweakable tweakable blockcipher” approach. We give a powerful construction
of a tweakable blockcipher mode on top of a tweakable blockcipher, in such a
way that the scheme allows for sufficiently large message and associated data,
while still being simple and nonce reuse resistant. For a specific instantiation
of the construction, we suggest Threefish, a tweakable blockcipher with 1024-
bit state by Ferguson et al. used for the Skein hash function family [16]. (Less
suitable alternatives are discussed in the full version of the paper.) Threefish has
withstood a wide variety of cryptanalysis [5,22,23].

In Section 6, we apply our schemes of Section 4 and Section 5 to the Sphinx
format. The new Sphinx format of Figure 4 improves over the earlier one in
terms of simplicity, efficiency and security.

1.1 Related Work on Authenticated Encryption

AE enjoys a long and steady line of research, which is continued in the ongoing
CAESAR competition [13]. The classical approach to design AE schemes is to
build the generic mode of operation on top of a blockcipher in order to process
data blocks iteratively [3,8,20]. A more novel approach is to design AE based
on permutations. The most well-known approach is SpongeWrap by Bertoni et
al. [10] which got recently generalized by Jovanovic et al. [21] and Mennink et
al. [25], and many CAESAR submissions follow this idea. Different permutation
based approaches include APE [2] and PAEQ [12].

The sponge based proposal in this work follows the literature. Regarding our
blockcipher based approach, we have deviated from the state of the art. The
reason is that conventional modes often entail overhead and the security level is
then dominated by what the underlying primitive offers. For blockcipher based
modes, using AES internally delivers at most 128-bit security, and often there
exist already distinguishability attacks in complexity of about 264 (cf. Bellare et
al. [7]). Note that for messages of, say, 1024 bits, a classical AES based mode
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Fig. 1. High-level description of Sphinx [15]

still requires at least 8 AES evaluations. We remark that also AEZ [20], or more
detailed the latest version v4 in the CAESAR competition [19], is also inherently
a mode based on 4 and 10 rounds of AES, and has 64-bit security as well. Recent
cryptanalysis on AEZ [18,14] has moreover shined a negative light on its security.

2 Sphinx Mix Format

Mix networks rely on mix message formats that provide efficiency and security
properties. Sphinx [15] is the most compact mix message format, which is prov-
ably secure and efficient. Sphinx relies on the Sphinx blinding logic technique
for generating a session key with nested MAC computations over the public
pseudonyms of each predecessor mix. The private key associated to the public
key (i.e., pseudonym) is only known by the user, while the session key is used
for the encryption of the message. Figure 1 is a high-level depiction of Sphinx.

Internally, Sphinx uses many cryptographic primitives. First, there are five
hash functions, which are used to hash group elements to key bit strings. Then, it
uses a pseudorandom generator PRG and a MAC function for the computation
of the nested MAC. Finally, an encryption scheme ENC encrypts the payload
at every mix. The hash functions are instantiated using appropriately truncated
SHA256 hash functions, and SHA256-HMAC-128 is used as the MAC function.
For the encryption, Sphinx relies on the LIONESS blockcipher by Anderson and
Biham [1]. This blockcipher is made out of the SEAL stream cipher and a keyed
version of the SHA-1 hash function, and evaluates these functions on the message
via a Feistel structure. In more detail, denote the stream cipher by Sk and the
keyed hash function by Hk. Consider a LIONESS key k = (k1, k2, k3, k4), where
k1, k3 will be used to key the stream cipher and k2, k4 to key the hash function.
To encrypt a message m, LIONESS first splits it into two blocks ml‖mr ← m.



These blocks are then transformed using a 4-round Feistel structure: mr ←
mr ⊕ Sk1(ml), ml ← ml ⊕Hk2(mr), mr ← mr ⊕ Sk3(ml), ml ← ml ⊕Hk4(mr).
The updated ml‖mr constitutes the ciphertext c.

Due to the security parameter choices, the Sphinx construction needs an
encryption scheme with a state of at least 1408 bits plus the message length.
Based on this, LIONESS appears to be a good option as it has the potential
to have a large state and thus act as the permutation required by the Sphinx
system. In addition, LIONESS enjoys a security proof if the underlying hash
function SHA-1 and stream cipher SEAL are secure [1]. However, the security
of LIONESS is undermined by the results mentioned in the introduction.

Besides the doubtful use of LIONESS in the first place, it is noteworthy that
Sphinx uses different symmetric-key primitives for various purposes: i.e., SHA-1
is used in LIONESS and SHA-2 for hashing and MACing. These functions are
often intertwined, and particularly, three of the cryptographic hash functions
are used to transform a secret non-identity group element s to secret keys to the
PRG, MAC, and ENC. In other words, denoting these three hash functions as
HPRG, HMAC, and HENC, Sphinx calls the PRG, MAC, and ENC functionalities
with PRG(HPRG(s)), MAC(HMAC(s),m) and ENC(HENC(s),m), where s is the
secret group element, the secret session key, andm denotes the data to be MACed
or ENCed. The synergy between MAC and HMAC is striking, given the designers’
choice to instantiate those with SHA256-HMAC-128, and SHA256, respectively.
For the case of encryption, the situation is not much clearer, given that LIONESS
uses SHA-1 while HENC is instantiated with SHA256.

Finally, from Figure 1, it becomes apparent that γ is a MAC of β (using
session key s), and δ is the encryption of the payload (under session key s). By
merging these two functionalities into one authenticated encryption scheme that
authenticates β and δ and that encrypts δ, one obtains the following improve-
ments: Authentication of β and encryption of δ still persists, but authentication
of δ is for free, the session key needs to be processed only once and there is no
need to implement two distinct algorithms.

As such, our main goal in this work is to introduce an AE scheme that suits
Sphinx, which will be done in Sections 3-5. The potential employment of the
new schemes in Sphinx will be considered in Section 6 in such a way that the
remaining above-mentioned issues (such as the redundant usage of cryptographic
primitives) are resolved on the fly.

3 Authenticated Encryption

For n ∈ N, {0, 1}n is the set of n-bit strings, and {0, 1}≤n =
⋃n
i=0{0, 1}i. For

two bit strings M,N , their concatenation is denoted by M‖N and M ⊕ N de-
notes their bitwise XOR. Furthermore, if M ∈ {0, 1}≤n−1, then padn(M) =
M‖10n−1−|M |. For a string N ∈ {0, 1}n, we define by unpadn(N) the unique
string M ∈ {0, 1}≤n−1 such that padn(M) = N . For m ≤ n and N ∈ {0, 1}n, we
denote by dNem the leftmost m bits and by bNcn−m the rightmost n−m bits
of N , in such a way that N = dNem‖bNcn−m.



Authenticated Encryption (AE). Let µ, ν, α, τ, σ ∈ N be size values that satisfy
µ ≤ ν. Here, µ denotes the size of the message, ν the size of the ciphertext, τ the
size of the associated data, and σ the size of the nonce. The value α determines
the size of the authentication tag. If no authentication is needed, we have α = 0.

An authenticated encryption scheme AE is composed of three algorithms:
KeyGen, Enc, and Dec. KeyGen is a randomized algorithm that gets as input
κ ∈ N and outputs a random key key ← {0, 1}κ. The Enc and Dec algorithms
are defined as follows:

Enc : {0, 1}κ × {0, 1}≤µ × {0, 1}≤τ × {0, 1}σ → {0, 1}≤ν × {0, 1}α ,
(key ,msg ,meta,nonce) 7→ (ctxt , auth) ,

Dec : {0, 1}κ × {0, 1}≤ν × {0, 1}α × {0, 1}≤τ × {0, 1}σ → {0, 1}≤µ ∪ {⊥} ,
(key , ctxt , auth,meta,nonce) 7→ msg/⊥ .

Dec outputs the unique msg satisfying Enc(key ,msg ,meta,nonce) = (ctxt , auth),
or it returns ⊥ if no such message exists. Enc also outputs meta and nonce. We
allow for a small amount of ciphertext expansion (from µ to ν bits), as long as
the encrypted ciphertext (ctxt , auth,meta,nonce) is of size at most λmax.

Threat Model. We consider an adversary A to be any entity attempting to pas-
sively access the shared information by monitoring the communication channel,
with no incentive to tamper with the content. A is allowed to generate encryp-
tions under a secret and unknown key. In this case, A should not learn the
encrypted content, beyond that revealed in the associated data.

More technically, adversary A has query access to Enc under a secret key
key , and it tries to find irregularities among the queries, i.e., some relation that
is not likely to hold for a random function. For a function F , let Func(F ) be the
set of all functions f with the same interface as F . The advantage Advcpa

AE (A) of
an adversary A in breaking the secrecy of an authenticated encryption scheme
AE is defined as∣∣∣Pr

(
key

$←− KeyGen(κ) : AEnckey = 1
)
− Pr

(
$

$←− Func(Enckey) : A$ = 1
)∣∣∣

We denote by Advcpa
AE (Q,T ) the maximum advantage over all adversaries that

make at most Q encryption queries and operate in time T . Depending on the
scheme, the adversary A may be limited to being nonce respecting, so that every
query must be made under a different nonce.

For the authenticity of AE, we consider A to have access to the encryption
functionality Enc under a secret key key , and say that A forges an authentication
tag if it manages to output a tuple (ctxt , auth,meta,nonce) ∈ {0, 1}≤ν×{0, 1}α×
{0, 1}≤τ × {0, 1}σ such that Dec(key , ctxt , auth,meta,nonce) = msg 6= ⊥ and
(msg ,meta,nonce) was never queried to Enc before. The forgery attempt may
be made under a nonce nonce that has appeared before. The advantage of
A in breaking the authenticity of authenticated encryption scheme AE is de-

fined as Advauth
AE (A) = Pr

(
key

$←− KeyGen(κ) : AEnckey forges
)

. We denote by
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Advauth
AE (Q,R, T ) the maximum advantage over all adversaries that make at

most Q encryption queries, R forgery attempts, and operate in time T .

4 Solution 1: Sponge

The Sponge functions were introduced by Bertoni et al. [11] for cryptographic
hashing, but can also be used in a broad spectrum of keyed applications, includ-
ing message authentication [4,9,26,27] and stream encryption [10,25]. We will use
the keyed sponge in the full-state duplex mode [25], to describe an AE scheme
that is suited for the use in Sphinx. As keyed Sponges are merely stream based
encryption, a unique nonce is required for every encryption.

The realization of our AE scheme using the sponge is dubbed AEπ,`,n and
indexed by a permutation π of width b and parameters ` and n ≤ b which specify
the parsing of the message blocks: it considers at most ` message blocks of n
bits. The parameter ` can be arbitrarily large, but it is used to show how the
length affects the security bound. AEπ,`,n operates on keys of size κ ≤ b − n
bits, messages and ciphertexts can be of length at most µ = ` ·n−1 (the scheme
does not use ciphertext expansion, hence µ = ν), and the sizes of the associated
data and nonce should satisfy σ + τ ≤ n − 1. The size of the authentication
tag is α ≤ n (this is for simplicity, the scheme generalizes to α > n). AEπ,`,n is
depicted in Figure 2. The algorithms are in the full version of this paper.

Security. AEπ,`,n is a full-state duplex construction [25]. In the full version of
this paper, we prove that if π is an ideal permutation, we have security against

nonce-respecting adversaries up to bounds Advcpa
AEπ,`,n

(Q,T ) ≤ (`αQ)2

2b−n
+ `αQS

2κ

and Advauth
AEπ,`,n(Q,R, T ) ≤ (`αQ)2

2b−n
+ `αQS

2κ + R
2α , where `α as `, if α = 0, and

`+ 1 otherwise, S is the maximal number of evaluations of π that can be made
in time T .

5 Solution 2: Tweakable Blockcipher Based

The second approach is to apply a large tweakable blockcipher. A tweakable
blockcipher Ẽ : K × T ×M → M takes as input a key k ∈ K, a tweak t ∈ T ,
and a message m ∈M, and outputs a ciphertext c ∈M. It is a permutation for
every choice of (k, t).
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For our AE functionality AE, we need a tweakable blockcipher with a large
stateM. We suggest Threefish, a tweakable blockcipher by Ferguson et al. used
for the Skein hash function family [16]. Threefish supports block sizes of 256,
512, and 1024 bits. The key size equals the block size, and the tweak size is 128
bits. We focus on the largest variant, Threefish-1024, which for readability we
simply denote 3fish:

3fish : {0, 1}1024 × {0, 1}128 × {0, 1}1024 → {0, 1}1024 ,

(k, t,m) 7→ c .

3fish can be used for AE directly by placing the associated data and nonce into
the tweak and encrypting based on the key and this tweak. While the state size
of 3fish is large enough, the tag size is not. One way to resolve this is to employ
a random oracle that maps the associated data and nonce to a string of size
128 bits, but this would degrade the security of the construction as forgeries can
be found in a complexity 264. Another way to enlarge the tweak space without
adjusting the cipher itself is by using it in a tweakable mode of operation.

Liskov et al. [24] introduced two tweakable modes of operation: while these
constructions are originally designed to add a tweak input to a blockcipher,
they can equally well be applied to tweakable blockciphers themselves to enlarge
the tweak space. We will consider one of these constructions, which makes two
evaluations of the underlying cipher:

LRW[3fish] : {0, 1}1024 × {0, 1}1024 × {0, 1}128 × {0, 1}1024 → {0, 1}1024 ,

(k, t, t′,m) 7→ 3fish(k, t′, 3fish(k, t′,m)⊕ t) .

This construction can be used to realize AELRW[3fish] as illustrated in Figure 3
and a formal description is given in the full version of the paper. It operates on
keys of size κ = 1024 bits, messages can be of arbitrary length but of size at
most µ = 1023 − α, the nonce should be of size σ ≤ 127, and the associated
data should be of size at most τ ≤ 1023. The ciphertexts are of size exactly
ν = 1024 − α bits, where α is the size of the authentication tag. The latter is
required to make decryption possible.

Security. In the full version of this paper, we prove that AELRW[3fish] is secure
against nonce reusing adversaries under the assumption that 3fish is a secure



tweakable blockcipher. Formally, we prove that

Advcpa

AELRW[3fish](Q,T ) ≤ Θ
(
Q2

2n

)
+ Advs̃prp

3fish(2Q,T ′) and

Advauth
AELRW[3fish](Q,R, T ) ≤ Θ

(
(Q+R)2

2n

)
+ Advs̃prp

3fish(2(Q+R), T ′) +
R2n−α

2n −Q

where Advs̃prp

Ẽ
(Q,T ) denotes the maximum security advantage of any tweakable

blockcipher adversary that makes Q queries, runs in time T and T ′ ≈ T .

6 Improving the Sphinx

A naive solution to the state of affairs for Sphinx (Section 2) would be to replace
SEAL by a more modern stream cipher and to replace SHA-1 by SHA-3, but
there is little point in doing so: versatility of Sponges in general and SHA-3
in particular enables encryption using SHA-3 on the fly; putting a four-round
Feistel construction on top of it is overkill. Instead, it makes more sense to simply
replace LIONESS by a keyed version of the SHA-3. The construction of Section 4
is particularly suited for this purpose, as it is an AE scheme based on the SHA-3
permutation. As the construction offers AE, it can also be used to replace the
MAC. In other words, where the original Sphinx MACs β into authentication
tag γ and encrypts the payload into δ (both using secret session key s), the
construction of Section 4 neatly merges those into (δ, γ) = AE(s,payload, β)
where β now represents the associated data and the nonce. We have henceforth
obtained the security and efficiency improvement promised in Section 2.

It seems logical to also replace the remaining cryptographic functionalities
in Sphinx by SHA-3. However, a second thought reveals that there is little point
in doing so: first hashing a key through SHA-3 and then considering the keyed
version of the SHA-3 based on this key is less efficient and less secure than
considering the keyed version of the SHA-3 based on the original key. Therefore,
it suffices to have a mapping transforming the secret session key into a bit string.

The downside of the SHA-3 based approach is that the AE scheme of Section 4
does not offer security against nonce reusing adversaries, and in the solution
above, β represents the associated data as well as the nonce. In Sphinx, the
β values are generated using the PRG, and thus random, but collisions may
appear. One can also use the Threefish based mode of Section 5, and use the
Skein hash function family [16] to serve for hashing, as it uses Threefish natively.

Either approach makes the encryption functionality of Sphinx more secure
and more efficient. Figure 4 depicts our proposal of using AE in Sphinx. Our AE
solutions support associated data as input which could be used for the processing
of the header, it natively allows for authentication, and could potentially be used
as MAC function. These advantages could be used to integrate part of the nested
MAC functionality of Sphinx within the AE. Using our AE schemes in Sphinx
additionally authenticates the payload for free.
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