
Elimination with a MotiveConor McBrideDepartment of Computer ScienceUniversity of DurhamAbstract. I present a tactic, BasicElim, for Type Theory based proof sys-tems to apply elimination rules in a re�nement setting. Applicable rules areparametric in their conclusion, expressing the leverage hypotheses ~x yield onany � ~x we choose. � represents the motive for an elimination: BasicElim'sjob is to construct a � suited to the goal at hand.If these ~x inhabit an instance of �'s domain, I adopt a technique standardin `folklore', generalizing the ~x and expressing the restriction by equation. Anovel notion of = readily permits dependent equations, and a second tactic,Unify, simpi�es the equational hypotheses thus appearing in subgoals.Given such technology, it becomes e�ective to express properties of datatypes,relations and functions in this style. A small extension couples BasicElimwith rewriting, allowing complex techniques to be packaged in a single rule.1 IntroductionComputations on datatypes in the proof assistant Lego [6], are by `eliminationrules' playing the dual rôle of `induction principle' and `primitive recursor'. Duringmy PhD [8], I developed technology to help working with these rules in the cause ofprogramming. However, this technology soon acquired wider applications: it workswith any theorem resembling a datatype elimination rule. It thus pays to charac-terize many kinds of information in this style. My claim is that we should exploit ahypothesis not in terms of its immediate consequences, but in terms of the leverageit exerts on an arbitrary goal: we should give elimination a motive.The technical purpose of this paper is to document this elimination technology forthe bene�t of other implementers. Its more political purpose is to persuade users towork with the properties they need in the style supported by this technology.2 MotivationI shall introduce the issues with the help of some examples.2.1 Conjunction and DisjunctionUndergraduates learning natural deduction (such as myself, once upon a time) aretypically taught the following elimination rules for conjunction and disjunction:^-project-l A ^ BA ^-project-r A ^ BB _-elim A _B [A]...C [B]...CC

Students usually grasp the ^-project- rules easily, but �nds _-elim frightening.The trouble is that C appears from nowhere: students struggle to dream up C'swhich will eventually lead to their goal. But when they learn proof by re�nement,_-elim �nally makes sense: given A _ B, we can instantiate C with the our goal,splitting it into cases. The need to prove the goal is why we are eliminating A _B:the goal is the motive for the elimination. We can choose the appropriate motiveprecisely because `C appears from nowhere': _-elim is parametric in its motive.Elimination rules whose conclusion is a parameter|the motive variable|allow usto exploit a hypothesis whatever the goal, just as `left rules' in sequent calculusanalyse hypotheses regardless of what stands right of the turnstile. In this light, the`simplicity' of the ^-project- rules is less attractive: we may only exploit A ^ Bwhen we want to know A or we want to know B. I join the many advocates of the`Gentzenized' alternative, exploiting A ^ B, whatever our motive C:
^-elim A ^ B [A][B]...CC2.2 Structural Induction and Recursion`Mathematical Induction' is another common example of elimination with a motive:

N-induction � : N ! Prop� 0 � n: : : : : : :� (s n)8n :N: � nHere � stands for a family of propositions indexed by a number. Not even the mostardent `forwardist' is bold enough to suggest that we should search our collectionof established facts for a pair related by such a � in order to add 8n :N: � n to thatcollection. N-induction needs a motive not only because, like _-elim, it splits theproof into cases, but also because the abstract n being eliminated is instantiatedin each case. The point of induction is not just to decompose a hypothesis but tosimplify the goal: where constructor symbols appear, computation can happen.If we allow � to stand for a N-indexed family of types and supply the appropriatecomputational behaviour, induction becomes dependently typed primitive recursion,supporting functions on n whose return type depends on n. The explicit indexingof � by numbers makes a strong connection to pattern matching and structuralrecursion. We can expose these patterns even in simply typed examples by makinga de�nition:1de�nition Plus 7! �x; y :N: Ngoal ? : 8x; y :N: Plus x yinduction base ? : 8y :N: Plus 0 yinduction step ? : 8x :N: (8y :N: Plus x y) ! 8y :N: Plus (s x) y1 I use 7! for directed computational equalities, reserving = for propositional equality.

The return type of the goal reads like the left-hand side of a functional program`under construction'. Induction splits our programming problem in two: we can reado� the instantiated patterns and, in the s case, the legitimate class of recursive calls.An elimination rule with an indexed motive variable � justi�es a kind of patternanalysis, `matching' �'s arguments in the conclusion (the goal patterns) against�'s arguments in the premises (the subgoal patterns): �'s arguments in inductivehypotheses (the recursion patterns) allow the corresponding recursive calls. To equipan elimination rule with a computational behaviour is to give its associated patternmatching and structural recursion an operational semantics.2.3 Relation InductionInductively de�ned relations may also be presented with an elimination rule corre-sponding to induction on derivations. For example, � may be de�ned as follows:2m;n : Nm � n : Propn � nm � nm � s n �-induction � : N ! N ! Prop� n n m � n �m n: : : : : : : : : : : : : :� m (s n)8m;n jN: m � n ! �m nRelation induction is easy to apply if the eliminated hypothesis, m � n, ranges overthe entire domain of the relation: we can choose � by na��ve `undergraduate' textualmatching. However, if the hypothesis is instantiated, we still need a � indexed overthe whole domain, so we employ a well known goal transformation which I learnedfrom James McKinna|use a general m � n, but constrain m and n with equations :goal �? : 8m;n jN: m � n ! P [m;n] �m; n :N: P [m;n]? : 8m jN: m � 0 ! m = 0 not obvious : : :: : : so generalize and add an equation? : 8m;n jN: m � n ! n = 0 ! m = 0 �m; n :N: m � n ! n = 0 ! m = 0More generally, an elimination rule for an inductive relation, R : 8~x : ~X: Prop,typically requires some � : 8~x : ~X: Prop as motive3typical goal typical �? : 8~y : ~Y : R ~t[~y] ! P [~y] �~x : ~X: 8~y : ~Y : ~x = ~t[~y] ! P [~y]Plugging this � and the proof of R~t[~y] into the rule delivers a proof of P [~y] subjectto trivial equations ~t[~y] = ~t[~y]. This technique gives a slightly clumsier � than wechose for m � 0, which only constrains one argument, so needs only one equation.It is not hard to see how to remove the unnecessary equation.Note that our chosen �~x resembles the goal, but with some equations inserted andR~t[~y] missing. � is not indexed over the proof of R~x, so elimination tells us nothingabout it: we can safely omit it from the motive.2 I adopt Pollack's convention, using j when binding parameters I wish to keep implicit;I use subscripts when I need to make them explicit.3 ~x = ~t[~y] ! denotes the batch of equations x1 = t1[~y] ! � � �xn = tn[~y] !

2.4 Induction for Dependent DatatypesThe datatype analogue of inductively de�ned relations are dependent families ofdatatypes, such as the vectors|lists of a given length|de�ned as follows:A : Type n : NVectA n : TypeA : Typevnil : VectA 0x : A xs : VectA nvcons x xs : VectA (s n) Vect-elim
A j Type� : 8n jN: VectA n ! Type�0 vnil x : A �n xs: : : : : : : : : : : : : :�s n (vcons x xs)8n jN: 8xs :VectA n: �n xsProof terms for relations are interesting only for what they say about the indices|their structure is unimportant. The terms in dependent datatypes are the actualdata. Correspondingly, the motive � of Vect-elim is indexed not only over the lengthn, but also over the vector itself: we care if a vector is vnil or vcons. On the otherhand, � is not indexed over the element type A, which is parametric to the entireinductive de�nition.`Constraint by equation' also works for instantiated datatypes. For example:de�nition VTail 7! �A jType: �m jN: �xxs :Vect A (sm): VectAmgoal ? : 8A jType: 8m jN: 8xxs :Vect A (sm):VTail xxsmotive � 7! �n jN: �xs :Vect A n: 8m jN: 8xxs :Vect A (sm):n = sm ! xs = xxs !VTail xxsbase case ? : 8A jType: 8m jN: 8xxs :Vect A (sm):0 = sm ! vnil = xxs !VTail xxsstep case ? : 8A jType: 8n jN: 8x :A: 8xs :Vect A n: � � � !8m jN: 8xxs :VectA (sm):s n = sm ! vcons x xs = xxs !VTail xxsSolving the equations refutes the base case premises and reduces the step case to? : 8A jType: 8n jN: 8x :A: 8xs :Vect A n: � � � ! VTail (vcons x xs)The return type again shows the one pattern possible, and xs is the tail we seek.Unlike with �, our chosen � did quantify over the eliminated xxs|it is matchedto the xs in the goal patterns. Omitted this time is A, parametric to the de�nition,so kept parametric in the elimination. We must be sensitive to these distinctions inorder to deliver appropriate behaviour, whatever the elimination rule.3 Equational Constraints and Dependent TypesBy now, the eagle-eyed will have noticed that I write batched equations like ~x = ~t[~y]without worrying about type safety. Indeed, in the above example, I wrote xs = xxs

where xs : VectAn and xxs : VectA (sm). The conventional Martin-L�of de�nitionof = forbids such heterogeneous equations, relating elements of di�erent types. Youcan thus deduce that I am using an unconventional de�nition.I de�ne = as follows:
a : A b : Ba = b : Prop a : Are
 a : a = a =-elim a : A� : 8a0 :A: a = a0 ! Type� a (re
 a)8a0 :A: 8q :a = a0: � a0 qThis = can compare anything to a, even if it is not in A. Correspondingly, we mayform heterogeneous sequences ~s = ~t. However, the introduction and eliminationrules follow the conventional homogeneous de�nition: we shall only treat somethingas an equal of a if its type really is A. I call this `John Major' equality, because itwidens aspirations to equality without a�ecting the practical outcome.If ~s and ~t are vectors in the same telescope [3], then the leftmost equation s1 = t1is homogeneous and thus vulnerable to elimination. Homogeneity is a maintainableinvariant: solving s1 = t1 ipso facto uni�es the types of s2 and t2, and so on.`JohnMajor' equality is equivalent to extending Martin-L�of equality with Altenkirchand Streicher's `uniqueness of identity proofs' axiom, often referred to as `axiom K'.It is clear that the new equality subsumes the old. On the other hand, we canwrite a heterogeneous equation a = b as a homogeneous equation between pairs(A; a) = (B; b) in the type �T :Type: T . Clearly (A; a) equals itself. The eliminationrule follows if a = a0 is a consequence of (A; a) = (A; a0), and this is a well-knownvariant of axiom K. The details of this construction can be found in my thesis.4 What does an Elimination Rule Eliminate?In order to mechanize elimination, we shall need some means to determine what kindof thing a given rule eliminates: what does the rule target? The -elim rules whichcome with inductive de�nitions clearly target inhabitants of the datatype, relationor family being de�ned. However, if we wish our tactic to apply more widely, weshould perhaps think a little more carefully about this issue.Firstly, let us establish a minimum requirement. Suppose our rule needs a motive� : 8~x : ~X: Type. A basic goal and motive are given by:? : 8~y : ~Y : P [~y]� ~x 7! 8~y : ~Y : ~x = ~t[~y] ! P [~y]When we apply the rule, the equations should become re
exive. This is ensuredby instantiating enough of the rule's arguments to �ll in the goal patterns : oncethe instantiated rule delivers � ~t[~y], our choice of equations becomes clear. Hence,we must demand enough information from the user to determine the arguments onwhich the goal patterns depend.Looking back at our examples, we can see that our requirement is satis�ed for _-elimination even before we select a disjunction, although it would seem foolish toapply the rule without one in mind. For N-induction, we need to choose a number.

Induction on Vect needs both a vector and its length, but the length can be inferredfrom the type of the vector, so the user need only indicate the latter. To form themotive in a � induction, we must identify the numbers being compared, but itmakes more sense to infer these by matching with a hypothesis of form m � n.We can permit rules with several targets: the `double induction' principle for adatatype implements lexicographic recursion on two arguments with that type. Wecan also imagine rules whose application is restricted by a side-condition whose proofwe would prefer to defer. It seems unlikely that a na��ve machine strategy could divinefrom an arbitrary rule what we must point to when we say `eliminate that'. Ingeniousmachine strategies disturb me, so I propose to make the `manufacturers' responsible:we should expect elimination rules to come with `operating instructions'.We might describe how to use a rule with type 8~u : ~U:T [~u] by giving a list of targettingexpressions over the ~u for which the user is to supply the actual targets, perhapswith the aid of a mouse, such that the targets unify with the expressions, solving forsome of the ~u. With this selection complete, we may proceed with the elimination,provided the instantiated rule type reduces to something in fully targetted form:� � � 8� :8~x : ~X: Type: � � ��~t[~y]In e�ect, an explicit targetting procedure allows us to delay the appearance of themotive variable �. In the computational world of Type Theory, we may thus chooseour targets �rst and compute an appropriate rule afterwards. Later we shall seethe `constructors injective and disjoint' property of datatypes expressed by one rulewhich selects its e�ect by case analysis on the constructors involved.The `operating instructions' approach might also bene�t user interfaces. Given acatalogue of known elimination rules and what they target, we can point at a hy-pothesis and ask `which rules would eliminate that?'. The machine could even sortthe responses to give the best matching rule �rst.5 An Elimination Tactic: BasicElimBasicElim implements the ideas above. Its �rst argument is a rule, typically:elim : 8~u : ~U: T [~u]? : 8~y : ~Y : P [~y]> BasicElim elim : : : ;The remaining arguments are some ~g[~y]|the user's chosen targets. BasicElim hasthree phases:{ plug in the ~g[~y] to make the instantiated rule fully targetted{ construct the motive, by adding equations to the goal, then simplifying{ perform the re�nement step, leaving the rest of the rule's premises as subgoals5.1 TargettingBasicElim builds a re�nement by applying elim. The �rst phase constructs andmaintains a full application of elim to terms ~s[~u; ~y] over the goal's premises ~y, but

containing holes4 ~u. At the same time, it keeps the list of the user's nominatedtargets ~g[~y] so far unmatched. I write such a state as follows:elim ~s[~u; ~y] : E[~u; ~y] unknowns ?~u : ~U targets ~g[~y]By `full application', I mean that E[~u; ~y] is in weak head normal form and is not a8-type. I presume some way to annotate E[~u; ~y] with a targetting expression e[~u]:I shall denote this he[~u]iE[~u; ~y]. This phase successively �lls in the ~u by unifyingthese e[~u]'s with the user's ~g[~y].{ initialization: start in stateelim ~u : T [~u] unknowns ?~u : ~U targets ~g[~y]{ loop: while the state has form. . .elim~s[~u; ~y] : he[~u]iE[~u; ~y] unknowns ?~u : ~U targets g[~y];~g[~y]The type is marked with a targetting expression e[~u], so collect the next unusedtarget g[~y] and try to unify them. If this fails, then BasicElim fails. Otherwise,we have a uni�er � solving some of ~u, and leaving a residue ~u0 : ~U 0 unsolved.The instantiated type may reduce further to weak head normal form, perhapsrevealing more unknown arguments ~v for the rule or more targetting expressions:E[�~u; ~y] ;wh 8~v : ~V : E0[~u0;~v; ~y]Hence move to stateelim ~s[�~u; ~y] ~v : E0[~u0;~v; ~y] unknowns ?~u0;~v : ~U 0; ~V targets ~g[~y]{ postcondition: the state must have this formelim ~s[~u; ~y] : ui ~t[~y] unknowns ?~u : ~U targets nonewhere ui : 8~x : ~X [~y]: TypeThis phase, if successful, consumes all targets, matches the targetting expressionsand constructs an application of elim with some holes, one of which, ui, heads thereturn type. Rename it �: it is the motive variable. The postcondition ensures that�'s argument types ~X and arguments ~t[~y] contain no holes|the instantiated ruleis now fully targetted.55.2 Constructing the MotiveOur basic choice of motive copies the goal, inserting some equations. This phasere�nes this choice to avoid useless constraints, maximize the amount of rewritingdone by instantiation in subgoals and remove premises which are being eliminatedbut are not mentioned in the goal patterns, as found with rules like _-elim and�-induction. We start by guessing� 7! �~x : ~X: 8~y0 : ~Y : ~x = ~t[~y0] ! P [~y0]The tactic then performs the following re�nements:4 Oleg, a type theory with holes (also known as metavariables and a host of other names)adequate to support BasicElim, is a useful byproduct of my thesis [8].5 I have written Type for the universe which �~x inhabits, but any universe is acceptable.

{ �x `unhelpful' premisesOur basic motive contains local copies ~y0 of all the premises ~y in the goal.However, it is sometimes better to forgo this generality and use the originals,e�ectively �xing them for the elimination: because they are not local to �,they will not be local to any inductive hypotheses and thus cannot change withrecursion. We �x a premise y0i as follows:substitute yi for bound occurrences of y0i; remove the binder 8y0iThere are three classes of `unhelpful' premise we should �x:parametric premises, such as the element type for VectA parametric y0i is the local copy of a yi found in the type of �: it is thusparametric to the subgoal structure and should remain constant.large premisesA large premise has a type too big for the universe which � ~x inhabits: wemust �x such premises to keep � well-typed.irrelevant premises, such as the proof of m � n in � �elimAn irrelevant premise is the local copy of a yi occurring in the argumentsof elim computed by targetting, but not in the instantiated goal patterns.It is being eliminated, but the subgoals will tell us nothing new about it, sowe may as well �x it.We could, of course, �x more premises, but the remaining ~y0 are `helpful' in thatthey yield stronger inductive hypotheses.{ delete duplicating constraintsfor increasing j, if y0i : Xj and the xj constraint is xj = y0i, then removeit, substitute xj for y0i and delete 8y0iThere is no point having a 8y0i in � if y0i must then equal one of �'s argumentsxj . Provided the two have the same type, we can just use xj and remove theconstraint. This ensures that we only get equations which are really necessary(as in our example with m � 0). We should search from left to right, as earlierdeletions may unify later types.BasicElim now plugs in the motive, with its `helpful' ~y0 and necessary equations:� 7! �~x : ~X: 8~y0 : ~Y 0: \~x = ~t[~y0] ! P [~y0; ~y]5.3 Performing the Re�nementHaving computed the motive, our application is now typed as follows:elim : : : : 8~y0 : ~Y 0: \~t[~y] = ~t[~y0] ! P [~y0; ~y] unknowns ? ~w : ~W [~y]BasicElim now adds arguments:{ for each local y0i, the goal premise it copies yi{ for each constraint, now tj [~y] = tj [~y], its proof by re
elim : : : yi : : : (re
 tj [~y]) : : : : P [~y] unknowns ? ~w : ~W [~y]The type Wj of each hole may depend on some subset ~yj of the goal premises ~y,usually parametric. To build a re�nement, we must abstract each wj over its ~yj :wj 7! w0j ~yj unknowns ? w0j : 8~yj : ~Yj : ~W [~yj]

These generalized holes ~w0 : ~W 0 now have local copies of all the premises they need,so they have the same context as the original goal. We can thus �-abstract them:�~w0 : ~W 0: �~y : ~Y : elim : : : : 8~w0 : ~W 0: 8~y : ~Y : P [~y]BasicElim re�nes by this term, solving the goal 8~y : ~Y : P [~y], with ~W 0 as subgoals.6 Eliminating Equational Constraints with UnifyBasicElim applies a rule to an instantiated hypothesis by converting those instanti-ations into equations. Hence we expect equational premises in the subgoals, instan-tiated with the subgoal patterns. The approach of [7] was to treat these equationsas a uni�cation problem [11], leading to a tactic which solves such problems. Theabsence of a uni�er indicates that a subgoal holds vacuously; a unique most generaluni�er simpli�es a subgoal, turning equations back into instantiations. That tacticfrom [7] is the ancestor of the tactic Unify presented here. Now, as then, we mayobserve that, for any given datatype, these rule schemes are derivable:deletion �x = x ! �coalescence � x8y: x = y ! � y x; y distinct variablescon
ict c ~s = c0 ~t ! � c; c0 distinct constructorsinjectivity ~s = ~t ! �c ~s = c ~t ! � c a constructorsubstitution � t8x: x = t ! � x x 62 FV (t)cycle x = t ! � x constructor-guarded in tJust as in [7], these rules are seen as the transition rules for a uni�cation algo-rithm operating by re�nement on problems expressed as equational premises in anarbitrary goal. However, there are some key di�erences with the earlier work:{ `John Major' equality now allows us to consider equations over an arbitrarytelescope, overcoming the previous restriction to simple types.{ Consequently, the con
ict, injectivity and cycle rules require more subtleproofs than in the simply typed fragment.{ The transition rules can be seen as elimination rules targetting an equation.Apart from cycle, the BasicElim tactic can apply them.Unify demands that the goal's equational premises ~s = ~t relate vectors from thesame telescope of �rst-order terms in constructor form: i.e., composed solely ofvariables and constructor symbols. Given such a goal, Unify behaves as follows:

While the goal remains with equational premises, eliminate the leftmost bythe appropriate rule (applying symmetry where necessary).The precondition ensures that the leftmost equation is homogeneoue, and is pre-served by the transitions with subgoals. The process is sound, complete and termi-nating by the same arguments as before: Unify either proves the goal if there is noun�er, or leaves a subgoal simpli�ed by a most general uni�er.Of course, in order to use these rules, we must �rst prove them: deletion is trivial;coalescence and substitution follow easily from =-elim. The other three mustbe proven speci�cally for each datatype.7 Derived Elimination Rules for DatatypesThis section sketches the construction of some useful classes of theorem which canbe proven for each inductive family of datatypes. Included are{ the separation of induction into case analysis and structural recursion{ the proof that constructors are injective and disjoint, a property often dubbed`no confusion'{ the proof that datatypes contain no cyclesThese theorems are all given as elimination rules. For the sake of readability, I shallgive the proofs for concrete but typical examples|vectors for case, recursion andno confusion, binary trees for no cycles. The latter are de�ned:Tree : Type leaf : Tree s; t : Treenode s t : TreeThe general constructions can be found in my thesis [8]. These results extend easilyto mutual de�nitions: in any case, a mutual de�nition can always be recast as aninductive family indexed by a �nite datatype representing `choice of branch'.I begin by decoupling the elim rule for a datatype into its case and recursionprinciples, recovering the
exibility of Coq's Case and Fix primitives [1] in a waywhich is readily extensible to instances of dependent families. This presentationmakes only the necessary connection between case analysis and structural recursion:the former exposes the `predecessors' for which the latter is valid. The recursionrule makes no choice of case analysis strategy, whereas elim on an given x analysesx straight away and forces one-step recursion.We gain more than just `Fibonacci and friends': recursion and case on the indicesof a dependent type often work di�erently from their counterparts on the type itself,and now we can combine them as we wish. For example, the uni�cation algorithmpresented in [9] indexes terms with the number of variables they may use|the outerrecursion is on this index, but the initial case analysis is on terms.

7.1 caseThe case analysis principle for a datatype is formed by deleting the inductive hy-potheses from the step cases of the induction principle, elim.
Vect-case

A : Type� : 8n jN: Vect A n ! Type�0 vnil x : A xs : VectA n �n xs: :�s n (vcons x xs)8n jN: 8xs :VectA n: �n xsE�ectively, case splits a `pattern variable' from into constructor cases, exposing the`predecessors'. Of course, Unify can then simplify, removing some impossible cases.Having stronger premises, case follows directly from elim. We may also prove casefor a relation, where it is often called the inversion principle. The treatment ofinversion in [7] relies clumsily on equations to constrain the indices of relations:case gives a neater rule with an indexed motive, and any equations required for aparticular inversion are supplied by BasicElim.7.2 recursionLet us now facilitate recursion on guarded subterms, after the fashion of Gim�enez[4, 5]. The technique is to introduce an auxiliary structure which collects inductivehypotheses. For any motive � and datatype inhabitant t, � � t contains a proof of�s for each s strictly smaller than t. Gim�enez de�nes� inductively, but computationis enough. For Vect:� : 8n jN: VectA n ! Type xs : VectA n� � xs : Type� � vnil 7! 1� � vcons x xs 7! � � xswhere � � xs 7! � � xs � � xs� � xs is primitive recursive, thus easily de�ned via Vect-elim. Generally, we have� � c ~s 7! �i � � si, e.g. for Tree:� � leaf 7! 1� � node s t 7! � � s � � � twhere � � t 7! � � t � � tWe can now state Vect-recursion:Vect-recursion A : Type� : 8n jN: VectA n ! Type8n jN: 8xs :Vect A n: � � xs ! � xs8n jN: 8xs :VectA n: � xsVect-recursion weakens a goal with a `hypothesis collector', � � xs . When we thenapply case to xs or its subterms, � � unfolds, revealing the inductive hypothesis

for the newly exposed subterm. The proof uses Gim�enez's argument, �xing A, �and the premise (step, say). The conclusion holds by projection from the lemma8n jN: 8xs :Vect A n: � � xsproven with Vect-elim. Each subgoal conclusion computes to some � � c~s��(c~s):step gives � (c ~s) from � � c ~s, which we may then unfold further: in the vnil case,to 1; for the step, � � vcons x xs ; � � xs, exactly the inductive hypothesis.(Generally, we have hypotheses � � si and a goal which is their product.)To see decoupling at work, let us compute the last element of a nonempty vector:? : 8A jType: 8m jN:8xs :Vect A (sm): AEliminating with Vect-recursion introduces a collector � � xs for�n xs 7! 8m jN: 8ys :Vect A (sm): n = sm ! xs = ys ! AThe equational constraints thus appearing in � � xs as it unfolds allow recursiononly on nonempty vectors. Length is clearly crucial|we may analyse it with N-case:? : 8A jType: 8xs :Vect A (s 0):� � xs ! A? : 8A jType: 8m jN:8xs :VectA (s (sm)):� � xs ! AFor the `singleton' subgoal, case on xs delivers the head element we need; forlonger vectors, case exposes a tail for which the equations constraining recursion aresatis�ed. We avoid looking two steps down the vector because we know its length.7.3 no confusionGeneralizing injectivity and con
ict to dependent datatypes requires more sub-tlety than the methods used for simple types by Cornes and Terrasse [2] in Coq,which I adapted for Lego [7]. In particular, we can no longer construct `predeces-sor' functions to show injectivity: there are no obvious candidates for the dummyvalues in the unimportant cases.My approach here is to compute, for any pair of terms, the elimination rule which isappropriate when the two are equal: injectivity for like constructors and con
ictfor unlike. When both terms are constructor-headed, this `no-conf-thm' functionwill choose the right theorem:Vect-no-conf-thm : 8A jType: 8m jN: 8xs :Vect Am: 8n jN: 8ys :Vect Am: TypeVect-no-conf-thm vnil vnil 7! 8� :Type: � ! �Vect-no-conf-thm vnil (vcons y ys) 7! 8� :Type: �Vect-no-conf-thm (vcons x xs) vnil 7! 8� :Type: �Vect-no-conf-thm (vconsm x xs) (vconsn y ys) 7!8� :Type: (m = n ! x = y ! xs = ys ! �) ! �We can clearly construct Vect-no-conf-thm with two applications of Vect-case.Now we can prove Vect-no-confusion, which states:? : 8A jType: 8n jN: 8xs; ys :VectA n: xs = ys ! Vect-no-conf-thm xs ys

We need only consider vectors of the same type, as Unify only eliminates homoge-neous equations. We may thus attack xs = ys with =-elim, leaving the `diagonal':? : 8A jType: 8n jN: 8xs :Vect A n:Vect-no-conf-thm xs xsNow Vect-case on xs will leave us with trivial injectivity goals. This is fortunate,as the con
ict theorems chosen by Vect-no-conf-thm are too good to be true.`Dummy values' do not arise|each subgoal is speci�cally adapted to its constructor:? : 8A :Type: 8� :Type: � ! �? : 8A :Type: 8n :N: 8x :A: 8xs :Vect A n:8� :Type: (n = n ! x = x ! xs = xs ! �) ! �We can make Vect-no-confusion target an equation over Vect A n and apply itwith BasicElim, but only because BasicElim identi�es the motive variable aftertargetting has enabled the computation which makes it appear.7.4 no cyclesThe remaining theorem we need states that any goal follows from x = t when xis guarded by constructors in t. The computed `collector' � � t exposes � for theguarded subterms of t. We may thus express `x is not a proper subterm of t' bys 6= t 7! s = t ! 8� :Type: �x 6< t 7! (x 6=) � t(with x 6� t 7! (x 6=) � t)If x appears guarded in t, then x 6< t reduces to a product containing x 6= x, fromwhich anything follows. Correspondingly, Tree-no-cycles states that? : 8x; t :Tree: x = t ! x 6< tUnify turns t into x. Induction on x gives a trivial base case and an unfolding step:s; t : TreeHs : s 6< s ? : (node s t) 6� sHt : t 6< t � (node s t) 6� tEach branch of this product follows from the corresponding hypothesis, but onlywith the aid of a cunning generalization: let us prove? : 8x; s; t :Tree: s 6< x ! node s t 6� zand its analogue for t. The computational behaviour of (s 6=) � x suggests that weemploy induction on x. The base case,? : 8s; t :Tree: 1 ! (1 � node s t 6= leaf)follows by con
ict. The step case unfolds as follows|the arrows give the proof:l; r : TreeHl :Hr : s 6< ls 6< r !! node s t 6� lnode s t 6� r H : (� (s 6< ls 6< r �� s 6= ls 6= r)) ? : (� node s t 6� lnode s t 6� r)injectivity � node s t6= node l r

BasicElim cannot be used to apply Tree-no-cycles: for a given t containing x,x 6< t reduces not to a single fully targetted elimination rule in the style of -no-confusion, but to a product of elimination rules. BasicElim, as speci�ed above, isnot smart enough to root out the proof of x = x ! 8� :Type: �. However, the pathto this proof is determined exactly by the position of x in t, so it is not di�cult toimplement this step of Unify separately.8 Elimination with AbstractionThe traditional way to reason about a recursively de�ned function is to use theinductions on its arguments which allow it to reduce: this amounts to simulatimgof the recursive structure by which it was constructed in the �rst place. Functionalabstraction allows us to synthesize programs in a highly compositional manner,but if we must always analyse programs at the level of data, the scalability of ourtechnology will be seriously limited.An alternative is to work at the level of the relations induced by recursive de�nitions.For example, + induces a three-place relation of form x+ y = z:0+ y = yz + y = z(s x) + y = (s z) +-elim � : N ! N ! N ! Type� 0 y y x+ y = z � x y z: : : : : : : : : : : : : : : :� (s x) y (s z)8x; y; z :N: x+ y = z ! � x y zThe introduction rules abstract the recursive calls as premises: they follow by sub-stituting these premises. The elimination rule is exactly the corresponding relationinduction principle: it follows from the same combination of recursion and caseanalyses by which + was constructed. I shall explain the purpose of the box shortly.+-elim eliminates equations of the form x+ y = z. Given such an equation, we canuse BasicElim, but what if there is no such equation? Consider? : 8a; b; c :N: (a+ b) + c = a+ (b+ c)For any of these +'s, we can transform the goal to introduce an equation, theneliminate, reduce and unify, leaving easy subgoals:transformed ? : 8a; b; c; z :N: a+ b = z ! z + c = a+ (b+ c)base case ? : 8y; c :N: y + c = y + cstep case ? : 8x; y; c :N: (x+ y) + c = x+ (y + c) !s (x+ y) + c = s (x+ (y + c))This is essentially the standard proof that + is associative, but, it avoids the choice of`a good induction on data': the derived rule gives by design exactly the computationwe need. Similar techniques in proving properties of inductively de�ned functionsappear in James McKinna's thesis [10].

Let us build some technology to facilitate this way of working with functions. Wecould write a tactic, Abst e[~y], abstracting the occurrences of e[~y] from the goal:before ? : 8~y : ~Y : P [~y; e[~y]]after ? : 8~y : ~Y : 8x: e[~y] = x ! P [~y; x]Of course, P [~y; x] may not be well-typed6, but when it is, Abst then BasicElim onthe equation does what we want. The box around x + y in +-elim indicates thatthe rule targets expressions of form x+y, but eliminates equations x+y = z, hencean abstraction is to precede elimination. Let us call this extended tactic AbstElim.A homogeneous equational law, 8~x : ~X: s[~x] = t[~x] gives a derived rule via =-elim:~x : ~X� : T [~x] ! Type� t[~x]8z :T [~x]: s[~x] = z ! � zAbstElim with such a rule rewrites by the law: targetting allows us to select whichterm to rewrite, provided uni�cation can infer the ~x. Commonplace one-step rewrit-ing can be implemented by a simple wrapper for AbstElim.The recursive structure of a function is not always its key characteristic. However,there is nothing to stop us deriving more useful properties. Consider, for example,the equality test for natural numbers:N-eq : N ! N ! BoolN-eq 0 0 7! trueN-eq 0 (s y) 7! falseN-eq (s x) 0 7! falseN-eq (s x) (s y) 7! N-eq x yThe obvious induction principle is like this (you can guess the cases for false):
N-eq-elim � : N ! N ! Bool ! Type� 0 0 true � � � N-eq x y = b � x y b: : : : : : : : : : : : : : : : : : : :� (s x) (s y) b8x; y :N: 8b :Bool: N-eq x y = b ! � x y bSuppose, however, we are trying to prove a goal like? : 8x; y :N: P [if (N-eq x y) then t[x; y] else e[x; y]]N-eq-elim x y is not very helpful: it analyses the inputs to the test, but in the stepcase, we learn nothing about the output. We might prefer an inversion principle:N-eq-inv � x x true x 6= y: : : : : : : : :� x y false8x; y :N: 8b :Bool: N-eq x y = b ! � x y b6 This problem already arises with rewriting tactics, and it deserves closer attention.

Applying this rule to our goal with AbstElim always instantiates the result of thetest with a constructor, allowing the `if' to reduce, yielding? : 8x :N: P [t[x; x]]? : 8x; y :N: x 6= y ! P [e[x; y]]It is easy to prove N-eq-inv from N-eq-elim: the details are in my thesis, but thekey technique is demonstrated in the next section. AbstElim makes the inversionprinciple a much more useful characterization than a theorem like8x; y :N: (N-eq x y) = true, x = y9 Derived Structure for DatatypesAs long ago as 1987 [12], Phil Wadler proposed a mechanism to allow a type (notnecessarily inductive) an alternative constructor presentation or view, given map-pings between old and new. This permits pattern matching programs over the view,regardless of the underlying representation, overcoming a key drawback of abstractdatatypes. We can achieve a similar e�ect by deriving elimination rules.I suggested earlier that an elimination rule for a datatype D, with a motive indexedover D, induces a notion of pattern matching for D. Consequently, a derived elim-ination rule induces a derived notion of pattern matching. For example, given thefunction vsnoc which attaches an element to the end of a vector, we can prove
Vect-snoc-elim

A : Type� : 8n jN: VectA n ! Type� vnil � xs x : A: : : : : : : : : : : : :� (vsnoc xs x)8n jN: 8xs :Vect A n: � xsThis gives an alternative to `destructor functions' such as the `last element' op-eration described earlier. Case analysis with respect to vsnoc has at least twoadvantages over the destructor:{ The pattern (vsnoc xs x) clearly shows the decomposition into `last' and `allbut last'.{ The derived notion of `bigger' given by vsnoc yields a derived notion of `struc-turally smaller', legitimizing recursive calls.Of course, comparing the lengths in their types, xs is clearly smaller than (vsnocxsx),but there are plenty of derived notions of `smaller' which are not so obvious. For ex-ample, y is clearly smaller than s (x+y). We can derive the corresponding recursionprinciple for N:N-plus-rec � : N ! Type8n :N: (8x; y :N: n = s (x+ y) ! � y) ! � n8n :N: � n

Of course, this says the same thing as well-founded induction for <, but what isimportant is the way that it says it, namely `if n is matched to (s (x + y)), then arecursive call on y is legitimate'. N-plus-rec does not explain how to �nd such amatch; it just installs a hypothesis collector in the style of recursion rules|theproof is similar.To make patterns with +, we need a derived notion of case analysis. Many arepossible, but this one which compares two numbers, showing their di�erence via +:N-compare � : N ! N ! Type� (y + (s x)) y � x x � x (x+ (s y))8x; y :N: � x yThis rule splits the (x; y)-plane into three regions: below, on, and above the diagonalx = y. Its proof illustrates a key technique (also used to prove N-eq-inv): inductionon x and case on y, but allowing � to vary inside the induction motive. The basecases (positive x-axis, origin, positive y-axis) �t neatly into the three regions coveredby the rule's premises. It is the step case which is subtle: we do not yet know theregion in which the point (s x; s y) lies. However, the inductive hypothesis, Hxy , isa fully targetted elimination rule which locates (x; y)! BasicElim with Hxy reducesthe goal to instances of the corresponding premises.x; y : NHxy : 8�0 :N ! N ! Type:(8x; y :N: �0 (y + (s x)) y) !(8x :N: �0 x x) !(8x; y :N: �0 x (x+ (s y))) !�0 x y � : N ! N ! Type�b : 8x; y :N: � (y + (s x)) y�d : 8x :N: � x x�a : 8x; y :N: � x (x+ (s y))? : � (s x) (s y) BasicElimHxy ;Unify; ? : 8x; y :N: � (s (y + (s x))) (s y)? : 8x :N: � (s x) (s x)? : 8x; y :N: � (s x) (s (x+ (s y)))An example|N-plus-rec and N-compare allow us to write Euclid's algorithm:Gcd 7! �x; y :N: N? : 8x; y :N: Gcd x yEliminating x and y in turn with N-plus-rec installs `hypothesis collectors' forrecursive calls on lexicographically smaller pairs of numbers. Now let us analyse thearguments with N-compare and N-case|here are the generated patterns:Gcdxy N-compare Gcd (y + (s x)) y N-case on y Gcd (s x) 0Gcd (s (y + (s x))) (s y)Gcd x x Gcd x xGcd x (x + (s y)) N-case on x Gcd 0 (s y)Gcd (s x) (s (x+ (s y)))For the `diagonal' case, we return x; for the 0 cases, we return (s x) and (s y)respectively. The remaining cases are solved by appeal to the hypothesis collectors,which legitimize the recursive calls producing Gcd (s x) (s y).

Our program is not justi�ed by an external argument relating < to subtraction`on the right'. We have analysed the data declaratively `on the left' in terms of+, and employed a structural recursion. This derived structure gets its operationalsemantics not from a clever matcher, but by executing N-plus-rec and N-compare.10 Conclusion and Further WorkMany of the ideas underlying the tactics and techniques in this paper are rootedin folklore: using equational constraints for induction on instantiated relations ishardly novel, but there is a gap between folklore and an implementable generalpurpose tactic|a gap now bridged. No current theorem prover provides a tacticcomparable in
exibility to AbstElim. The concise and powerful style of character-ization it supports for data, relations and functions could, I believe, optimize largedevelopments considerably for many people, as it has for me.Along the way, I have given a new `John Major' de�nition of equality, adequate toexpress systems of equations in the presence of dependency. I have also suppliedproofs for the `no confusion' and `no cycles' properties of constructors whichextend to dependent datatypes, underpinning Unify|an update of the uni�cationtactic from [7]. I hope these technical contributions will prove useful.However, the story is far from over: there are a number of ways in which thistechnology could be improved and extended. For example, the current separation ofAbstElim into Abst and BasicElim is suboptimal: it introduces an equation only toeliminate it|with a little thought, it should be possible to deliver the same analysisdirectly. There is also no reason why the basic elimination behaviour for functionsshould not be generated automatically for each de�nition. Just as with datatypesthemselves, this could be split into a case rule, capturing the function's patternanalysis, and a recursion rule, capturing its termination structure.To my mind, though, the most important potential bene�t from good eliminationtechnology is the declarative power it gives to programming, especially with depen-dent types. Here case analysis not only determines control
ow, but also re�nes thetype information. The separation of case from recursion, the characterization offunctions and the support for derived notions of structure all have a rôle: a functionover some T (f x), depending on a computed index, may well terminate by the nativeor derived structure of T , but its analysis should probably examine f .AbstElim and Unify enable us to construct these new programs interactively. Nev-ertheless, it seems desirable to have a high-level term language in which eliminationrules (a special kind of dependently typed function) can be de�ned, then invoked ex-plicitly, delivering derived patterns on the left-hand side of a program. By derivingnew elimination rules from old, we have the potential to add signi�cant declarativepower to the languages of programming and proof, without any need to extend theunderlying operational semantics of the �-calculus with inductive types.AcknowledgementsThis work would not have been possible without a considerable inheritance of tech-nology from the Coq project, in particular from Cristina Cornes. Much of the detailwas worked out under the supervision of Healfdene Goguen and Rod Burstall, towhom I also owe a debt of gratitude. However, it was James McKinna who planted

the seeds which grew into this work, and his grant (UK EPSRC GR/N 24988/01)which continues to support it: this paper is for him.References1. L'�Equipe Coq. The Coq Proof Assistant Reference Manual. pauil-lac.inria.fr/coq/doc/main.html, Apr 2001.2. Cristina Cornes and Delphine Terrasse. Inverting Inductive Predicates in Coq. InTypes for Proofs and Programs, '95, volume 1158 of LNCS. Springer-Verlag, 1995.3. N.G. de Bruijn. Telescopic Mappings in Typed Lambda-Calculus. Information andComputation, 91:189{204, 1991.4. E. Gim�enez. Codifying guarded de�nitions with recursive schemes. In Peter Dybyer,Bengt Nordstr�om, and Jan Smith, editors, Types for Proofs and Programs, '94, volume1158 of LNCS, pages 39{59. Springer-Verlag, 1994.5. E. Gim�enez. Structural recursive de�nitions in type theory. In Proceedings of ICALP'98, LNCS 1443. Springer-Verlag, July 1998.6. Zhaohui Luo and Robert Pollack. LEGO Proof Development System: User's Man-ual. Technical Report ECS-LFCS-92-211, Laboratory for Foundations of ComputerScience, University of Edinburgh, May 1992.7. Conor McBride. Inverting inductively de�ned relations in LEGO. In E. Gim�enezand C. Paulin-Mohring, editors, Types for Proofs and Programs, '96, volume 1512 ofLNCS, pages 236{253. Springer-Verlag, 1998.8. Conor McBride. Dependently Typed Functional Programs and their Proofs. PhDthesis, University of Edinburgh, 1999.9. Conor McBride. First-Order Uni�cation by Structural Recursion. Submitted to theJournal of Functional Programming, February 2001.10. J. McKinna. Deliverables: A Categorical Approach to Program Development in TypeTheory. PhD thesis, Laboratory for Foundations of Computer Science, University ofEdinburgh, 1992.11. Alan Robinson. A Machine-oriented Logic Based on the Resolution Principle. Journalof the ACM, 12:23{41, 1965.12. P. Wadler. Views: A way for pattern matching to cohabit with data abstraction. InPOPL'87. ACM, 1987.

