Elimination with a Motive

Conor McBride

Department of Computer Science
University of Durham

Abstract. I present a tactic, BasicElim, for Type Theory based proof sys-
tems to apply elimination rules in a refinement setting. Applicable rules are
parametric in their conclusion, expressing the leverage hypotheses # yield on
any @ & we choose. @ represents the motive for an elimination: BasicElim’s
job is to construct a @ suited to the goal at hand.

If these ¥ inhabit an instance of &’'s domain, I adopt a technique standard
in ‘folklore’, generalizing the Z and expressing the restriction by equation. A
novel notion of = readily permits dependent equations, and a second tactic,
Unify, simpifies the equational hypotheses thus appearing in subgoals.
Given such technology, it becomes effective to express properties of datatypes,
relations and functions in this style. A small extension couples BasicElim
with rewriting, allowing complex techniques to be packaged in a single rule.

1 Introduction

Computations on datatypes in the proof assistant LEGO [6], are by ‘elimination
rules’ playing the dual role of ‘induction principle’ and ‘primitive recursor’. During
my PhD [8], I developed technology to help working with these rules in the cause of
programming. However, this technology soon acquired wider applications: it works
with any theorem resembling a datatype elimination rule. It thus pays to charac-
terize many kinds of information in this style. My claim is that we should exploit a
hypothesis not in terms of its immediate consequences, but in terms of the leverage
it exerts on an arbitrary goal: we should give elimination a motive.

The technical purpose of this paper is to document this elimination technology for
the benefit of other implementers. Its more political purpose is to persuade users to
work with the properties they need in the style supported by this technology.

2 Motivation

I shall introduce the issues with the help of some examples.

2.1 Conjunction and Disjunction

Undergraduates learning natural deduction (such as myself, once upon a time) are
typically taught the following elimination rules for conjunction and disjunction:

[A] [B]

AV B
A-project-1 Ang A-project-r A/\TB V-elim V#CC

Students usually grasp the A-project- rules easily, but finds V-elim frightening.
The trouble is that C' appears from nowhere: students struggle to dream up C'’s
which will eventually lead to their goal. But when they learn proof by refinement,
V-elim finally makes sense: given A V B, we can instantiate C' with the our goal,
splitting it into cases. The need to prove the goal is why we are eliminating A V B:
the goal is the motive for the elimination. We can choose the appropriate motive
precisely because ‘C' appears from nowhere’: V-elim is parametric in its motive.

Elimination rules whose conclusion is a parameter—the motive variable—allow us
to exploit a hypothesis whatever the goal, just as ‘left rules’ in sequent calculus
analyse hypotheses regardless of what stands right of the turnstile. In this light, the
‘simplicity’ of the A-project- rules is less attractive: we may only exploit A A B
when we want to know A or we want to know B. I join the many advocates of the
‘Gentzenized’ alternative, exploiting A A B, whatever our motive C":

[A]
[B]

Aeli AANB C
-elim —=—

2.2 Structural Induction and Recursion

‘Mathematical Induction’ is another common example of elimination with a motive:

® : N — Prop

? (sn)

N-induction W

Here @ stands for a family of propositions indexed by a number. Not even the most
ardent ‘forwardist’ is bold enough to suggest that we should search our collection
of established facts for a pair related by such a @ in order to add Vn:N. & n to that
collection. N-induction needs a motive not only because, like V-elim, it splits the
proof into cases, but also because the abstract n being eliminated is instantiated
in each case. The point of induction is not just to decompose a hypothesis but to
simplify the goal: where constructor symbols appear, computation can happen.

If we allow @ to stand for a N-indexed family of types and supply the appropriate
computational behaviour, induction becomes dependently typed primitive recursion,
supporting functions on n whose return type depends on n. The explicit indexing
of & by numbers makes a strong connection to pattern matching and structural
recursion. We can expose these patterns even in simply typed examples by making
a definition:!

definition Plus — Az,y:N. N
goal 7:Vz,y:N. Pluszy

induction base 7 : Vy:N. PlusQy
induction step ?: Vz:N. (Vy:N. Pluszy) — Vy:N. Plus(sz)y

! T use — for directed computational equalities, reserving = for propositional equality.

The return type of the goal reads like the left-hand side of a functional program
‘under construction’. Induction splits our programming problem in two: we can read
off the instantiated patterns and, in the s case, the legitimate class of recursive calls.

An elimination rule with an indexed motive variable @ justifies a kind of pattern
analysis, ‘matching’ &’s arguments in the conclusion (the goal patterns) against
@’s arguments in the premises (the subgoal patterns): ®’s arguments in inductive
hypotheses (the recursion patterns) allow the corresponding recursive calls. To equip
an elimination rule with a computational behaviour is to give its associated pattern
matching and structural recursion an operational semantics.

2.3 Relation Induction

Inductively defined relations may also be presented with an elimination rule corre-
sponding to induction on derivations. For example, < may be defined as follows:?

m,n : N ¢ : N - N — Prop
m <n : Prop
m<n ®mn
n<n e
m<n . . Pnn P&m (sn)
m<sn S_mdUCtman,Mngn — dmn

Relation induction is easy to apply if the eliminated hypothesis, m < n, ranges over
the entire domain of the relation: we can choose @ by naive ‘undergraduate’ textual
matching. However, if the hypothesis is instantiated, we still need a @ indexed over
the whole domain, so we employ a well known goal transformation which I learned
from James McKinna—use a general m < n, but constrain m and n with equations:

goal ¢
?:Vm,n|N.m <n — P[m,n] Am,n:N. P[m,n]
?7:Vm|Nm<0 > m=0 not obvious. ..

...so generalize and add an equation
?:Vmn|Nm<n -n=0->m=0 Mmn:Nm<n->n=0->m=0

More generally, an elimination rule for an inductive relation, R : V& : X. Prop,
typically requires some ¢ : V#:X. Prop as motive®

typical goal typical @

7. v§:Y.Rilj] » Plfl A#:X.Vi§:YV.Z=1§] — P[j]

Plugging this & and the proof of R#]j] into the rule delivers a proof of P[jj] subject
to trivial equations £[§] = #[¢]. This technique gives a slightly clumsier & than we
chose for m < 0, which only constrains one argument, so needs only one equation.
It is not hard to see how to remove the unnecessary equation.

Note that our chosen @ # resembles the goal, but with some equations inserted and
R#]§f] missing. & is not indexed over the proof of R, so elimination tells us nothing
about it: we can safely omit it from the motive.

% T adopt Pollack’s convention, using | when binding parameters T wish to keep implicit;
I use subscripts when I need to make them explicit.
3 # =1]j] — denotes the batch of equations 1 = t1[§] = --- &y = tu[§] =

2.4 Induction for Dependent Datatypes

The datatype analogue of inductively defined relations are dependent families of
datatypes, such as the vectors—Ilists of a given length—defined as follows:

A | Type

A: T ' N
ype n ® : Vn|N. Vect An — Type

Vect An : Type

_ A :Type z:A &,us
vnil : Vect A0 e
z: A xs:VectAn Povnil &gy, (veons z s)

Vect-elim

veons z zs : Vect A (sn) Vn|N. Vzs:Vect An. &, xs

Proof terms for relations are interesting only for what they say about the indices—
their structure is unimportant. The terms in dependent datatypes are the actual
data. Correspondingly, the motive @ of Vect-elim is indexed not only over the length
n, but also over the vector itself: we care if a vector is vnil or vcons. On the other
hand, @ is not indexed over the element type A, which is parametric to the entire
inductive definition.

‘Constraint by equation’ also works for instantiated datatypes. For example:

definition ~ VTail — AA|Type. \m|N. Azzs:Vect A (sm). Vect Am
goal ?7: VA|Type.Vm|N. Vazs:Vect A (s m). VTail zzs

motive & +— An|N. Azs:Vect An.Vm|N. Vzzs:Vect A (s m).
n=sm — I$=1IIs —
VTail zzs

base case 7 : VA|Type. Vm|N. Vazs:Vect A (sm).
0=sm — vnil =225 —
VTail zzs

step case ?7: VA|Type.Vn|N.Vz:A.Vzs:Vect An. --- —
Vm|N. Vzzs:Vect A (sm).
SN =SMmM — VCONSZT TS = TTS —
VTail zzs

Solving the equations refutes the base case premises and reduces the step case to

?: VA|Type.Vn|N. Vz: A. Vzs:Vect An. -+ — VTail (vcons z zs)

The return type again shows the one pattern possible, and zs is the tail we seek.

Unlike with <, our chosen @ did quantify over the eliminated zzs—it is matched
to the zs in the goal patterns. Omitted this time is A, parametric to the definition,
so kept parametric in the elimination. We must be sensitive to these distinctions in
order to deliver appropriate behaviour, whatever the elimination rule.

3 Equational Constraints and Dependent Types

By now, the eagle-eyed will have noticed that I write batched equations like & = f[gj]
without worrying about type safety. Indeed, in the above example, I wrote zs = zzs

where zs : Vect An and zzs : Vect A (sm). The conventional Martin-Lof definition
of = forbids such heterogeneous equations, relating elements of different types. You
can thus deduce that I am using an unconventional definition.

I define = as follows:

a: A

¢ :Va':A.a=d — Type
a:A b:B a: A T & a (refl a)
a=Db:Prop refla:a=a =-elim Va':A.Vq:a=d.®d q

This = can compare anything to a, even if it is not in A. Correspondingly, we may
form heterogeneous sequences § = t. However, the introduction and elimination
rules follow the conventional homogeneous definition: we shall only treat something
as an equal of a if its type really is A. T call this ‘John Major’ equality, because it
widens aspirations to equality without affecting the practical outcome.

If §and ¢ are vectors in the same telescope [3], then the leftmost equation s; = t;
is homogeneous and thus vulnerable to elimination. Homogeneity is a maintainable
invariant: solving s; = #; ipso facto unifies the types of s and ts, and so on.

‘John Major’ equality is equivalent to extending Martin-Lof equality with Altenkirch
and Streicher’s ‘uniqueness of identity proofs’ axiom, often referred to as ‘axiom K’.
It is clear that the new equality subsumes the old. On the other hand, we can
write a heterogeneous equation a = b as a homogeneous equation between pairs
(A,a) = (B,b) in the type YT : Type.T. Clearly (A, a) equals itself. The elimination
rule follows if a = a' is a consequence of (A, a) = (A4,a’), and this is a well-known
variant of axiom K. The details of this construction can be found in my thesis.

4 What does an Elimination Rule Eliminate?

In order to mechanize elimination, we shall need some means to determine what kind
of thing a given rule eliminates: what does the rule target? The -elim rules which
come with inductive definitions clearly target inhabitants of the datatype, relation
or family being defined. However, if we wish our tactic to apply more widely, we
should perhaps think a little more carefully about this issue.

Firstly, let us establish a minimum requirement. Suppose our rule needs a motive
& : Vi:X. Type. A basic goal and motive are given by:

7. V§:Y. P[j]
¢ — V§:Y.2=1§] — P[]

When we apply the rule, the equations should become reflexive. This is ensured
by instantiating enough of the rule’s arguments to fill in the goal patterns: once
the instantiated rule delivers @ f[gj’], our choice of equations becomes clear. Hence,
we must demand enough information from the user to determine the arguments on
which the goal patterns depend.

Looking back at our examples, we can see that our requirement is satisfied for V-
elimination even before we select a disjunction, although it would seem foolish to
apply the rule without one in mind. For N-induction, we need to choose a number.

Induction on Vect needs both a vector and its length, but the length can be inferred
from the type of the vector, so the user need only indicate the latter. To form the
motive in a < induction, we must identify the numbers being compared, but it
makes more sense to infer these by matching with a hypothesis of form m < n.

We can permit rules with several targets: the ‘double induction’ principle for a
datatype implements lexicographic recursion on two arguments with that type. We
can also imagine rules whose application is restricted by a side-condition whose proof
we would prefer to defer. It seems unlikely that a naive machine strategy could divine
from an arbitrary rule what we must point to when we say ‘eliminate that’. Ingenious
machine strategies disturb me, so I propose to make the ‘manufacturers’ responsible:
we should expect elimination rules to come with ‘operating instructions’.

We might describe how to use a rule with type Vii: ﬁ.T[ﬁ] by giving a list of targetting
expressions over the « for which the user is to supply the actual targets, perhaps
with the aid of a mouse, such that the targets unify with the expressions, solving for
some of the @. With this selection complete, we may proceed with the elimination,
provided the instantiated rule type reduces to something in fully targetted form:

- V®:VZE: X Type. - &]

In effect, an explicit targetting procedure allows us to delay the appearance of the
motive variable . In the computational world of Type Theory, we may thus choose
our targets first and compute an appropriate rule afterwards. Later we shall see
the ‘constructors injective and disjoint’ property of datatypes expressed by one rule
which selects its effect by case analysis on the constructors involved.

The ‘operating instructions’ approach might also benefit user interfaces. Given a
catalogue of known elimination rules and what they target, we can point at a hy-
pothesis and ask ‘which rules would eliminate that?’. The machine could even sort
the responses to give the best matching rule first.

5 An Elimination Tactic: BasicElim

BasicElim implements the ideas above. Its first argument is a rule, typically:
elim : Vi:U. T[]
?7: VY. P[y]

> BasicElim elim ...;

The remaining arguments are some g[i§]—the user’s chosen targets. BasicElim has
three phases:

— plug in the §[g] to make the instantiated rule fully targetted
— construct the motive, by adding equations to the goal, then simplifying
— perform the refinement step, leaving the rest of the rule’s premises as subgoals

5.1 Targetting

BasicElim builds a refinement by applying elim. The first phase constructs and
maintains a full application of elim to terms §[i, §] over the goal’s premises ¢, but

containing holes* . At the same time, it keeps the list of the user’s nominated
targets g[y] so far unmatched. I write such a state as follows:

elim 5[, 7] : E[@,7] unknowns ?@ : U targets §[f]

By ‘full application’, I mean that E[&,] is in weak head normal form and is not a
V-type. I presume some way to annotate E[d,§] with a targetting expression e[d]:
I shall denote this (e[@])E[i,§]. This phase successively fills in the @ by unifying
these e[@]’s with the user’s §[#].

— Initialization: start in state
elim : T[d] wunknowns 7?4 : U targets gy

— loop: while the state has form...

elim 37, 7] : (e[@))E[i, 7] unknowns 7@ : U targets g[i]; gli]

The type is marked with a targetting expression e[i], so collect the next unused
target g[g] and try to unify them. If this fails, then BasicElim fails. Otherwise,
we have a unifier ¢ solving some of @, and leaving a residue @ : U’ unsolved.
The instantiated type may reduce further to weak head normal form, perhaps
revealing more unknown arguments @ for the rule or more targetting expressions:

E[oi,§] ~un V8:V.E'[T; 7,

Hence move to state
elim §loil,§] 7 : E'[@;0,7] unknowns ?d;7 : U'; V' targets g[y]

— postcondition: the state must have this form

elim 37, 7] : u; #]j] unknowns ?@ : U targets none

where u; : VZ: X[f]]. Type

This phase, if successful, consumes all targets, matches the targetting expressions
and constructs an application of elim with some holes, one of which, u;, heads the
return type. Rename it @: it is the motive variable. The postcondition ensures that
¢’s argument types X and arguments ﬂgj‘] contain no holes—the instantiated rule
is now fully targetted.®

5.2 Constructing the Motive

Our basic choice of motive copies the goal, inserting some equations. This phase
refines this choice to avoid useless constraints, maximize the amount of rewriting
done by instantiation in subgoals and remove premises which are being eliminated
but are not mentioned in the goal patterns, as found with rules like V-elim and
<-induction. We start by guessing

P \F:X. V7 Y. 2=17] = P[]

The tactic then performs the following refinements:

* OLEG, a type theory with holes (also known as metavariables and a host of other names)
adequate to support BasicElim, is a useful byproduct of my thesis [8].
5 I have written Type for the universe which & Z inhabits, but any universe is acceptable.

— fix ‘unhelpful’ premises

Our basic motive contains local copies i’ of all the premises i in the goal.
However, it is sometimes better to forgo this generality and use the originals,
effectively fizing them for the elimination: because they are not local to &,
they will not be local to any inductive hypotheses and thus cannot change with
recursion. We fix a premise y; as follows:
substitute y; for bound occurrences of y}; remove the binder Yy
There are three classes of ‘unhelpful’ premise we should fix:
parametric premises, such as the element type for Vect
A parametric y} is the local copy of a y; found in the type of @: it is thus
parametric to the subgoal structure and should remain constant.
large premises
A large premise has a type too big for the universe which & # inhabits: we
must fix such premises to keep @ well-typed.
irrelevant premises, such as the proof of m < n in < —elim
An irrelevant premise is the local copy of a y; occurring in the arguments
of elim computed by targetting, but not in the instantiated goal patterns.
It is being eliminated, but the subgoals will tell us nothing new about it, so
we may as well fix it.
We could, of course, fix more premises, but the remaining ¢’ are ‘helpful’ in that
they yield stronger inductive hypotheses.

delete duplicating constraints

for increasing j, if y; : X; and the z; constraint is z; = y}, then remove

it, substitute z; for y; and delete Yy}
There is no point having a Vy} in @ if y; must then equal one of ¢’s arguments
z;. Provided the two have the same type, we can just use x; and remove the
constraint. This ensures that we only get equations which are really necessary
(as in our example with m < 0). We should search from left to right, as earlier
deletions may unify later types.

BasicElim now plugs in the motive, with its ‘helpful’ §' and necessary equations:

e

¢ — AT:X. V7 Y. 2=17] —» P[7,7]

5.3 Performing the Refinement

Having computed the motive, our application is now typed as follows:

e

elim ... : Vi:Y'.ilf] = tli"] — P[7,7 unknowns ? @ : Wi

BasicElim now adds arguments:
— for each local y}, the goal premise it copies y;
— for each constraint, now ¢;[¢] = t;[#], its proof by refl

elim ... y;... (reflt;[7])... : P[] unknowns ?@ : WI§]

The type W; of each hole may depend on some subset §; of the goal premises ¥,

usually parametric. To build a refinement, we must abstract each w; over its §;:

-

w; = wh§; unknowns ?w) : Vi :Y;. W[F]

These generalized holes @' : W' now have local copies of all the premises they need,
so they have the same context as the original goal. We can thus A-abstract them:

- —

MF WA Y . elim ... Vi W'V Y. Pl

BasicElim refines by this term, solving the goal ng’:?. P[y], with W' as subgoals.

6 Eliminating Equational Constraints with Unify

BasicElim applies a rule to an instantiated hypothesis by converting those instanti-
ations into equations. Hence we expect equational premises in the subgoals, instan-
tiated with the subgoal patterns. The approach of [7] was to treat these equations
as a unification problem [11], leading to a tactic which solves such problems. The
absence of a unifier indicates that a subgoal holds vacuously; a unique most general
unifier simplifies a subgoal, turning equations back into instantiations. That tactic
from [7] is the ancestor of the tactic Unify presented here. Now, as then, we may
observe that, for any given datatype, these rule schemes are derivable:

deletion B
r=zxz —- &
bz . .

coalescence T —— x,y distinct variables
conflict ————=———= ¢, c distinct constructors

cs§=ct > &
injectivity 8§ = t 2> ® .4 constructor

cS=ct > &
substitution A x & FV(t)

Ve.x =t - &z

cycle z constructor-guarded in ¢

=t > &

Just as in [7], these rules are seen as the transition rules for a unification algo-
rithm operating by refinement on problems expressed as equational premises in an
arbitrary goal. However, there are some key differences with the earlier work:

— ‘John Major’ equality now allows us to consider equations over an arbitrary
telescope, overcoming the previous restriction to simple types.

— Consequently, the conflict, injectivity and cycle rules require more subtle
proofs than in the simply typed fragment.

— The transition rules can be seen as elimination rules targetting an equation.
Apart from cycle, the BasicElim tactic can apply them.

Unify demands that the goal’s equational premises § = # relate vectors from the
same telescope of first-order terms in constructor form: i.e., composed solely of
variables and constructor symbols. Given such a goal, Unify behaves as follows:

While the goal remains with equational premises, eliminate the leftmost by
the appropriate rule (applying symmetry where necessary).

The precondition ensures that the leftmost equation is homogeneoue, and is pre-
served by the transitions with subgoals. The process is sound, complete and termi-
nating by the same arguments as before: Unify either proves the goal if there is no
unfier, or leaves a subgoal simplified by a most general unifier.

Of course, in order to use these rules, we must first prove them: deletion is trivial,
coalescence and substitution follow easily from =-elim. The other three must
be proven specifically for each datatype.

7 Derived Elimination Rules for Datatypes

This section sketches the construction of some useful classes of theorem which can
be proven for each inductive family of datatypes. Included are

— the separation of induction into case analysis and structural recursion

— the proof that constructors are injective and disjoint, a property often dubbed
‘no confusion’

— the proof that datatypes contain no cycles

These theorems are all given as elimination rules. For the sake of readability, I shall
give the proofs for concrete but typical examples—vectors for case, recursion and
no confusion, binary trees for no cycles. The latter are defined:

s,t : Tree
Tree : Type leaf : Tree nodest : Tree

The general constructions can be found in my thesis [8]. These results extend easily
to mutual definitions: in any case, a mutual definition can always be recast as an
inductive family indexed by a finite datatype representing ‘choice of branch’.

I begin by decoupling the elim rule for a datatype into its case and recursion
principles, recovering the flexibility of CoQ’s Case and Fix primitives [1] in a way
which is readily extensible to instances of dependent families. This presentation
makes only the necessary connection between case analysis and structural recursion:
the former exposes the ‘predecessors’ for which the latter is valid. The recursion
rule makes no choice of case analysis strategy, whereas elim on an given z analyses
x straight away and forces one-step recursion.

We gain more than just ‘Fibonacci and friends’: recursion and case on the indices
of a dependent type often work differently from their counterparts on the type itself,
and now we can combine them as we wish. For example, the unification algorithm
presented in [9] indexes terms with the number of variables they may use—the outer
recursion is on this index, but the initial case analysis is on terms.

7.1 case

The case analysis principle for a datatype is formed by deleting the inductive hy-
potheses from the step cases of the induction principle, elim.

A : Type
@ : Vn|N. Vect An — Type

z: A x5 :VectAn Przs

b vnil b 1, (veons x zs)
Vn|N. Vzs:Vect An. ®,, zs

Vect-case

Effectively, case splits a ‘pattern variable’ from into constructor cases, exposing the
‘predecessors’. Of course, Unify can then simplify, removing some impossible cases.

Having stronger premises, case follows directly from elim. We may also prove case
for a relation, where it is often called the inversion principle. The treatment of
inversion in [7] relies clumsily on equations to constrain the indices of relations:
case gives a neater rule with an indexed motive, and any equations required for a
particular inversion are supplied by BasicElim.

7.2 recursion

Let us now facilitate recursion on guarded subterms, after the fashion of Giménez
[4,5]. The technique is to introduce an auxiliary structure which collects inductive
hypotheses. For any motive ¢ and datatype inhabitant ¢, & < ¢ contains a proof of
& s for each s strictly smaller than ¢. Giménez defines < inductively, but computation
is enough. For Vect:

® :Vn|N. Vect An — Type zs: VectAn
& < zs : Type

é < vnil =1
® <veonsxxs — P < as
where ® <zs — & <15 X Pxs

& < zxs is primitive recursive, thus easily defined via Vect-elim. Generally, we have
& <cs > x;P<s;, eg. for Tree:

é < leaf = 1
® <nodest — d<s x &<t
where ® <t — & <t x &t

We can now state Vect-recursion:

A : Type
@ : Vn|N. Vect An — Type

Vn|N. Vzs:Vect An. ® < zs — & xs
Vn|N. Vzs:Vect An. @ zs

Vect-recursion

Vect-recursion weakens a goal with a ‘hypothesis collector’, & < zs. When we then
apply case to zs or its subterms, ¢ < unfolds, revealing the inductive hypothesis

for the newly exposed subterm. The proof uses Giménez’s argument, fixing A, &
and the premise (step, say). The conclusion holds by projection from the lemma

Vn|N. Vzs:Vect An. d < zs

proven with Vect-elim. Each subgoal conclusion computes to some ¢ < ¢3 x ¢ (c5):
step gives @ (¢ §) from & < ¢ §, which we may then unfold further: in the vnil case,
to 1; for the step, & < vconsx zs ~ & < zs, exactly the inductive hypothesis.

(Generally, we have hypotheses & < s; and a goal which is their product.)

To see decoupling at work, let us compute the last element of a nonempty vector:

?7: VA|Type. Vm|NVzs:Vect A (sm). A

Eliminating with Vect-recursion introduces a collector ¢ < zs for

S, zs — Ym|N. Vys:Vect A(sm).n=sm — zs=ys — A

The equational constraints thus appearing in & < zs as it unfolds allow recursion
only on nonempty vectors. Length is clearly crucial—we may analyse it with N-case:

?7: VA|Type.Vas:Vect A(s0).d < zs — A
?7: VA|Type.Vm|NVzs:Vect A(s(sm)).® <zs — A

For the ‘singleton’ subgoal, case on zs delivers the head element we need; for
longer vectors, case exposes a tail for which the equations constraining recursion are
satisfied. We avoid looking two steps down the vector because we know its length.

7.3 mno confusion

Generalizing injectivity and conflict to dependent datatypes requires more sub-
tlety than the methods used for simple types by Cornes and Terrasse [2] in CoQ,
which T adapted for LEGO [7]. In particular, we can no longer construct ‘predeces-
sor’ functions to show injectivity: there are no obvious candidates for the dummy
values in the unimportant cases.

My approach here is to compute, for any pair of terms, the elimination rule which is
appropriate when the two are equal: injectivity for like constructors and conflict
for unlike. When both terms are constructor-headed, this ‘no-conf-thm’ function
will choose the right theorem:

Vect-no-conf-thm : VA|Type. Vm|N. Vzs:Vect A m. Vn|N. Vys:Vect Am. Type

Vect-no-conf-thm vnil vnil —VP:Type. ®d — &
Vect-no-conf-thm vnil (vconsy ys) +> VP:Type. ®
Vect-no-conf-thm (vcons z zs) vnil — V& :Type. &

Vect-no-conf-thm (vcons,, x zs) (vcons,, y ys) —
Vo:Type.(m=n - 2=y - zs=ys - &) - &

We can clearly construct Vect-no-conf-thm with two applications of Vect-case.
Now we can prove Vect-no-confusion, which states:

?: VA|Type. Vn|N. Vzs, ys:Vect An. zs = ys — Vect-no-conf-thm zs ys

We need only consider vectors of the same type, as Unify only eliminates homoge-
neous equations. We may thus attack zs = ys with =-elim, leaving the ‘diagonal’:

?: VA|Type. Vn|N. Vzs:Vect A n.Vect-no-conf-thm zs zs

Now Vect-case on zs will leave us with trivial injectivity goals. This is fortunate,
as the conflict theorems chosen by Vect-no-conf-thm are too good to be true.
‘Dummy values’ do not arise—each subgoal is specifically adapted to its constructor:

?: VA:Type.V@:Type. & — &
?7: VA:Type.Vn:N. Vz: A. Vzs:Vect An.
V@:Type.(n=n > z=2 - zs=1s — &) - &

We can make Vect-no-confusion target an equation over Vect A n and apply it
with BasicElim, but only because BasicElim identifies the motive variable after
targetting has enabled the computation which makes it appear.

7.4 no cycles

The remaining theorem we need states that any goal follows from x = ¢ when z
is guarded by constructors in ¢. The computed ‘collector’ & < t exposes & for the
guarded subterms of t. We may thus express ‘x is not a proper subterm of ¢’ by

s#t = s=t — Vb:Type.
gt (v#)<t
(withz £t — (z#)t)

If x appears guarded in t, then = £ ¢ reduces to a product containing = # z, from
which anything follows. Correspondingly, Tree-no-cycles states that

7 Ve, t:Treeex =t - z &£t

Unify turns ¢ into 2. Induction on x gives a trivial base case and an unfolding step:

s,t : Tree
Hs : s¢s ?: (nodest) £s
Ht :t£t x (nodest) £t

Each branch of this product follows from the corresponding hypothesis, but only
with the aid of a cunning generalization: let us prove

?:Va,s,t:Tree.s £ — nodest £ z

and its analogue for t. The computational behaviour of (s #) < x suggests that we
employ induction on 2. The base case,

?: Vs, t:Tree.1 — (1 x node st # leaf)

follows by conflict. The step case unfolds as follows—the arrows give the proof:

l,r : Tree - Y
H : s#£1|—|nodest LI H: (sglxs#1) 7: (nodest Ll
Hr : s£r|—|nodest<Lr X(sg€rxs#r) x|nodest £r)

L J \ s X| nodest
injectivity # nodel r

BasicElim cannot be used to apply Tree-no-cycles: for a given ¢ containing z,
x &£ t reduces not to a single fully targetted elimination rule in the style of -no-
confusion, but to a product of elimination rules. BasicElim, as specified above, is
not smart enough to root out the proof of x = x — V&:Type. ®. However, the path
to this proof is determined exactly by the position of x in ¢, so it is not difficult to
implement this step of Unify separately.

8 Elimination with Abstraction

The traditional way to reason about a recursively defined function is to use the
inductions on its arguments which allow it to reduce: this amounts to simulatimg
of the recursive structure by which it was constructed in the first place. Functional
abstraction allows us to synthesize programs in a highly compositional manner,
but if we must always analyse programs at the level of data, the scalability of our
technology will be seriously limited.

An alternative is to work at the level of the relations induced by recursive definitions.
For example, + induces a three-place relation of form = + y = z:

®: N—=- N> N — Type

0O+y=y r+y=2z Pryz
z+y==z ; P0yy & (sx)y (sz2)
_ETYZE el
(sz)+y=(s2) elmv:c,y,z:N. z+y|l=2z = Payz

The introduction rules abstract the recursive calls as premises: they follow by sub-
stituting these premises. The elimination rule is exactly the corresponding relation
induction principle: it follows from the same combination of recursion and case
analyses by which + was constructed. I shall explain the purpose of the box shortly.

+-elim eliminates equations of the form z +y = z. Given such an equation, we can
use BasicElim, but what if there is no such equation? Consider

?:Va,b,c:N. (a+b)+c=a+ (b+c)

For any of these +’s, we can transform the goal to introduce an equation, then
eliminate, reduce and unify, leaving easy subgoals:

transformed 7 :Va,b,c,z:Noa+b=2 = z4+c=a+ (b+c¢)

base case ?7: Vy,c:N y+c=y+c
step case ?:Vz,y,e:N. (z+y)+c= z+(y+c —
s(z+y)+c=s(z+ (y+c)

This is essentially the standard proof that + is associative, but, it avoids the choice of
‘a good induction on data’: the derived rule gives by design exactly the computation
we need. Similar techniques in proving properties of inductively defined functions
appear in James McKinna’s thesis [10].

Let us build some technology to facilitate this way of working with functions. We
could write a tactic, Abst e[¢], abstracting the occurrences of e[f] from the goal:

—

before 7 : V§:Y. P[y,e[i]]

after 7:V§:Y.Ve.e[fl =z — P[]

Of course, P[¢, z] may not be well-typed®, but when it is, Abst then BasicElim on
the equation does what we want. The box around z + y in +-elim indicates that
the rule targets expressions of form = + y, but eliminates equations x +y = z, hence
an abstraction is to precede elimination. Let us call this extended tactic AbstElim.

A homogeneous equational law, Vi': X . s[Z] = t[] gives a derived rule via =-elim:

Vz:T[Z].|s[d]|=2 = Pz

AbstElim with such a rule rewrites by the law: targetting allows us to select which
term to rewrite, provided unification can infer the . Commonplace one-step rewrit-
ing can be implemented by a simple wrapper for AbstElim.

The recursive structure of a function is not always its key characteristic. However,
there is nothing to stop us deriving more useful properties. Consider, for example,
the equality test for natural numbers:

N-eq : N - N — Bool
N-eq 0 0 > true
N-eq 0 (sy)r false

N-eq (sz) 0 > false
N-eq (sz) (sy) — N-eq z y

The obvious induction principle is like this (you can guess the cases for false):

¢ : N —- N — Bool = Type

. ®00true - & (sx)(sy)b
N-eq-elim
Vz,y:N.Vb:Bool. N-eqzy|=b — dxyb

Suppose, however, we are trying to prove a goal like

?: Va,y:N. P[if (N-eq z y) then t[z, y] else e[z, y]]

N-eq-elim z y is not very helpful: it analyses the inputs to the test, but in the step
case, we learn nothing about the output. We might prefer an inversion principle:

N-equinv d x x true & z y false
Vz,y:N.Vb:Bool. N-eqzy|=b — dxyb

6 This problem already arises with rewriting tactics, and it deserves closer attention.

Applying this rule to our goal with AbstElim always instantiates the result of the
test with a constructor, allowing the ‘if” to reduce, yielding

?: Va:N Plt[z,z]]
?:Vo,y:N.x #y — Ple[z,y]]

It is easy to prove N-eqg-inv from N-eq-elim: the details are in my thesis, but the
key technique is demonstrated in the next section. AbstElim makes the inversion
principle a much more useful characterization than a theorem like

Vz,y:N. (Nreqzy) =true ez =y

9 Derived Structure for Datatypes

As long ago as 1987 [12], Phil Wadler proposed a mechanism to allow a type (not
necessarily inductive) an alternative constructor presentation or view, given map-
pings between old and new. This permits pattern matching programs over the view,
regardless of the underlying representation, overcoming a key drawback of abstract
datatypes. We can achieve a similar effect by deriving elimination rules.

I suggested earlier that an elimination rule for a datatype D, with a motive indexed
over D, induces a notion of pattern matching for D. Consequently, a derived elim-
ination rule induces a derived notion of pattern matching. For example, given the
function vsnoc which attaches an element to the end of a vector, we can prove

A : Type

& : Vn|N. Vect An — Type
bzrs x: A

& vnil & (vsnoc s x)

Vect-snoc-elim Vn|N. Vzs:Vect An. ® zs

This gives an alternative to ‘destructor functions’ such as the ‘last element’ op-
eration described earlier. Case analysis with respect to vsnoc has at least two
advantages over the destructor:

— The pattern (vsnoc zs z) clearly shows the decomposition into ‘last’ and ‘all
but last’.

— The derived notion of ‘bigger’ given by vsnoc yields a derived notion of ‘struc-
turally smaller’, legitimizing recursive calls.

Of course, comparing the lengths in their types, zs is clearly smaller than (vsnoczsz),
but there are plenty of derived notions of ‘smaller’ which are not so obvious. For ex-
ample, y is clearly smaller than s(x 4+ y). We can derive the corresponding recursion
principle for N:

& : N — Type

Vn:N. (Vz,y:Nn=s(z+y) - Py) = &n
vn:N. &n

N-plus-rec

Of course, this says the same thing as well-founded induction for <, but what is
important is the way that it says it, namely ‘if n is matched to (s (z + y)), then a
recursive call on y is legitimate’. N-plus-rec does not explain how to find such a
match; it just installs a hypothesis collector in the style of recursion rules—the
proof is similar.

To make patterns with +, we need a derived notion of case analysis. Many are
possible, but this one which compares two numbers, showing their difference via +:

¢ : N = N — Type

S(y+(sz)y Pxx Pz(z+(sy))
Ve,y:N. ¢z y

N-compare

This rule splits the (z, y)-plane into three regions: below, on, and above the diagonal
x = y. Its proof illustrates a key technique (also used to prove N-eg-inv): induction
on z and case on y, but allowing ¢ to vary inside the induction motive. The base
cases (positive z-axis, origin, positive y-axis) fit neatly into the three regions covered
by the rule’s premises. It is the step case which is subtle: we do not yet know the
region in which the point (s z,sy) lies. However, the inductive hypothesis, Hzy, is
a fully targetted elimination rule which locates (z,y)! BasicElim with Hzy reduces
the goal to instances of the corresponding premises.

z,y N
Hzy :V®9":N — N — Type. & : N = N — Type
(Vz,y:N. &' (y + (sz)) y) — oy : Ve, y:N.&(y+ (sz))y
(Vo:N. &' zx) — ¢q : Ve:N. bz
g’az,y:N. Pz (r+(sy)) — ¢q : Vz,y:N.®x (z+ (sy))
Ty

l

?: Ve, y:N. & (s(y + (sx))) (sy)
?:Ve:N. & (sz) (sz)
?:Vo,y:N. & (sz) (s (z+ (sy)))

2.
?:P(sx)(sy) BasicElim Hzy;

Unify;

An example—N-plus-rec and N-compare allow us to write Euclid’s algorithm:

Ged — Az,y:N. N

?:Va,y:N. Ged z y

Eliminating z and y in turn with N-plus-rec installs ‘hypothesis collectors’ for
recursive calls on lexicographically smaller pairs of numbers. Now let us analyse the
arguments with N-compare and N-case—here are the generated patterns:

Gced (sz) O
Ged (s (y + (s))) (sy)

Ged (y + (s)y N-case on y

Ged z z < Gcd z T

Gedzy N-compare

Gedz (2 + (sy))

N-case on z

~— ~—

Ged (sz) (s (z + (sy)))
For the ‘diagonal’ case, we return z; for the 0 cases, we return (s z) and (s y)
respectively. The remaining cases are solved by appeal to the hypothesis collectors,
which legitimize the recursive calls producing Ged (s z) (s y).

Ged 0 (sy

Our program is not justified by an external argument relating < to subtraction
‘on the right’. We have analysed the data declaratively ‘on the left’ in terms of
+, and employed a structural recursion. This derived structure gets its operational
semantics not from a clever matcher, but by executing N-plus-rec and N-compare.

10 Conclusion and Further Work

Many of the ideas underlying the tactics and techniques in this paper are rooted
in folklore: using equational constraints for induction on instantiated relations is
hardly novel, but there is a gap between folklore and an implementable general
purpose tactic—a gap now bridged. No current theorem prover provides a tactic
comparable in flexibility to AbstElim. The concise and powerful style of character-
ization it supports for data, relations and functions could, I believe, optimize large
developments considerably for many people, as it has for me.

Along the way, I have given a new ‘John Major’ definition of equality, adequate to
express systems of equations in the presence of dependency. I have also supplied
proofs for the ‘no confusion’ and ‘no cycles’ properties of constructors which
extend to dependent datatypes, underpinning Unify—an update of the unification
tactic from [7]. T hope these technical contributions will prove useful.

However, the story is far from over: there are a number of ways in which this
technology could be improved and extended. For example, the current separation of
AbstEliminto Abst and BasicElimis suboptimal: it introduces an equation only to
eliminate it—with a little thought, it should be possible to deliver the same analysis
directly. There is also no reason why the basic elimination behaviour for functions
should not be generated automatically for each definition. Just as with datatypes
themselves, this could be split into a case rule, capturing the function’s pattern
analysis, and a recursion rule, capturing its termination structure.

To my mind, though, the most important potential benefit from good elimination
technology is the declarative power it gives to programming, especially with depen-
dent types. Here case analysis not only determines control flow, but also refines the
type information. The separation of case from recursion, the characterization of
functions and the support for derived notions of structure all have a role: a function
over some T (f z), depending on a computed index, may well terminate by the native
or derived structure of T', but its analysis should probably examine f.

AbstElim and Unify enable us to construct these new programs interactively. Nev-
ertheless, it seems desirable to have a high-level term language in which elimination
rules (a special kind of dependently typed function) can be defined, then invoked ex-
plicitly, delivering derived patterns on the left-hand side of a program. By deriving
new elimination rules from old, we have the potential to add significant declarative
power to the languages of programming and proof, without any need to extend the
underlying operational semantics of the A-calculus with inductive types.

Acknowledgements

This work would not have been possible without a considerable inheritance of tech-
nology from the Coq project, in particular from Cristina Cornes. Much of the detail
was worked out under the supervision of Healfdene Goguen and Rod Burstall, to
whom I also owe a debt of gratitude. However, it was James McKinna who planted

the seeds which grew into this work, and his grant (UK EPSRC GR/N 24988/01)
which continues to support it: this paper is for him.

References

10.

11.

12.

.L’Equipe Coq. The Coq Proof Assistant Reference Manual. pauil-

lac.inria.fr/coq/doc/main.html, Apr 2001.

. Cristina Cornes and Delphine Terrasse. Inverting Inductive Predicates in Coq. In

Types for Proofs and Programs, ’95, volume 1158 of LNCS. Springer-Verlag, 1995.
N.G. de Bruijn. Telescopic Mappings in Typed Lambda-Calculus. Information and
Computation, 91:189-204, 1991.

. E. Giménez. Codifying guarded definitions with recursive schemes. In Peter Dybyer,

Bengt Nordstrém, and Jan Smith, editors, Types for Proofs and Programs, ’94, volume
1158 of LNCS, pages 39-59. Springer-Verlag, 1994.

E. Giménez. Structural recursive definitions in type theory. In Proceedings of ICALP
’98, LNCS 1443. Springer-Verlag, July 1998.

Zhaohui Luo and Robert Pollack. LEGO Proof Development System: User’s Man-
ual. Technical Report ECS-LFCS-92-211, Laboratory for Foundations of Computer
Science, University of Edinburgh, May 1992.

Conor McBride. Inverting inductively defined relations in LEGO. In E. Giménez
and C. Paulin-Mohring, editors, Types for Proofs and Programs, ’96, volume 1512 of
LNCS, pages 236—253. Springer-Verlag, 1998.

Conor McBride. Dependently Typed Functional Programs and their Proofs. PhD
thesis, University of Edinburgh, 1999.

Conor McBride. First-Order Unification by Structural Recursion. Submitted to the
Journal of Functional Programming, February 2001.

J. McKinna. Deliverables: A Categorical Approach to Program Development in Type
Theory. PhD thesis, Laboratory for Foundations of Computer Science, University of
Edinburgh, 1992.

Alan Robinson. A Machine-oriented Logic Based on the Resolution Principle. Journal
of the ACM, 12:23-41, 1965.

P. Wadler. Views: A way for pattern matching to cohabit with data abstraction. In
POPL’87. ACM, 1987.

