
Mixed Lazy/Strict Graph Semantics

Marko van Eekelen and Maarten de Mol

marko@cs.kun.nl, maartenm@cs.kun.nl,
Department of Software Technology, Nijmegen University, The Netherlands.

Abstract. Explicitly enforcing strictness is often used by functional pro-
grammers as an important tool for making applications fit time and space
efficiency requirements. Few functional programmers however, are famil-
iar with the consequences of explicitly enforcing strictness for formal
reasoning about their programs. Some “folklore” knowledge has emerged
but this is based on experience rather than on rigid proof. Up to now
no formal model has been available for reasoning about enforcing strict-
ness in denotational and operational semantics. This greatly hampered
formal reasoning on mixed lazy/strict programs.

This paper presents a model for formal reasoning with enforced strictness
based on John Launchbury’s lazy graph semantics. Lazy graph seman-
tics are widely considered to be essential for lazy functional program-
ming languages. In this paper Launchbury’s semantics are extended with
an explicit strict let construct. Correctness and adequacy of our mixed
lazy/strict graph semantics is proven. Using these mixed semantics we
formalise and prove some of the available “folklore” knowledge.

1 Introduction and motivation

Strictness is a property of a function. A function f is strict in its argument if,
according to the language semantics, f⊥ = ⊥, where ⊥ is the symbol represent-
ing the undefined value. Strictness analysis is used to derive strictness properties
for given programs. If the results of such an analysis are indicated via strictness
annotations then these annotations do not change the semantics at all (assuming
that the analysis is correct of course).

Therefore, it is often recommended to use strictness annotations only when
strictness holds mathematically. For the cases of explicit strictness that have the
intention to change the semantics, this recommendation is not sensible at all.
Although it is seldom mentioned in papers and presentations, such explicit strict-
ness that changes the semantics, is present in almost every lazy programming
language (and in almost every program) that is used in real-world examples. In
such programs, strictness is used:

– for improving the efficiency of data structures (e.g. strict lists),
– for improving the efficiency of evaluation (e.g. functions that are made strict

in some arguments due to strictness analysis or due to the programmers
annotations),



– for enforcing the evaluation order in interfacing with the outside world (e.g.
an interface to an external C-call is defined to be strict in order to ensure
that the arguments are fully evaluated before the external call is issued).

Language features that are used to denote this strictness include:

– type annotations (in functions and in data structures: Clean),
– special data structures (unboxed arrays: Clean, Haskell),
– special primitives (seq and deepSeq: Haskell),
– special inside implementations (monads: Haskell),
– special language constructs (let!, #!: Clean),
– special tools (strictness analyzer: Clean).

Implementers of real-world applications make it their job to know about strict-
ness aspects, because without strictness annotations essential parts of their pro-
grams would not work properly. It is mandatory for the compiler to generate
code that takes these annotations into account. For reasoning about these pro-
grams, however, they tend to forget strictness altogether. Usually, strictness is
not taken into account in a formal graph semantics for a programming language.
Disregarding strictness can lead to unexpected non-termination when programs
are changed by hand or automatically transformed.

For reasoning with strictness, there is only little theory and guidance available
so far. In this paper we develop an appropriate mixed denotational and oper-
ational semantics for formal reasoning about programs in a mixed lazy/strict
context. For these semantics the required properties, such as correctness and
computational adequacy will be proven (Sect. 2). As an example of the use of
our mixed semantics we prove several folklore theorems about comparing lazy
and strict graph semantics in Sect. 3. In Sect. 4 we formally prove that with
mixed semantics it is possible to express in the language itself the semantical
difference between Ω and λx.Ω (while in Launchbury’s model these two expres-
sions can only be distinguished from outside the language). Finally, Sect. 5
and 6 discuss related and future work and give concluding remarks.

2 Mixed lazy/strict graph semantics

Since we consider graphs as an essential part of the semantics of a lazy language,
we have chosen to extend Launchbury’s graph semantics [6]. Cycles (using re-
cursion), black hole detection, garbage collection and cost of computation can
be analyzed formally using these semantics. Launchbury has proven that his op-
erational graph rules are correct and computationally adequate with respect to
the corresponding denotational semantics. Informally, correctness means that an
expression which operationally reduces to a value will denotationally be equal
to that value. Computational adequacy informally means that if the meaning of
an expression is defined denotationally it is also defined operationally and vice-
versa. We will prove that our mixed semantics are correct and computationally
adequate in Sect. 2.5. Sections 2.1-2.4 introduce the required preliminaries.

2



2.1 Basic idea of Launchbury’s natural graph semantics

Basically, sharing is represented as let-expressions. In contrast to creating a node
for every application, nodes are created only for those parts of the expression
that are to be shared as is illustrated below.

let x = 3 ∗ 7
in x + x

represents the graph on the right:
Graph reduction is formalised by a system of derivation rules. Graph nodes are
represented by variable definitions in an environment. A typical graph reduction
proof is given below. Each reduction step corresponds to applying a derivation
rule (assuming extra arithmetic application rules; the standard rules are given
in Sect. 2.4).




{ } : let x = 3 ∗ 7 in x + x


{ x 7→ 3 ∗ 7} : x + x


{ x 7→ 3 ∗ 7} : x

{ x 7→ 3 ∗ 7} : 3 ∗ 7
{ x 7→ 3 ∗ 7} : 21

∗
{ x 7→ 21} : 21

V ar

{ x 7→ 21} : x

{ x 7→ 21} : 21

V ar

{x 7→ 21 : 42

+

{x 7→ 21} : 42

Let

2.2 Notational conventions.

We will use the following notational conventions:

– x, y, v, x1 and xn are variables,
– e, e′, e1, en, f , g and h are expressions,
– z and z′ are values (i.e. expressions of the form λ x. e and constants, when

the language is extended with constants),
– the notation ẑ stands for a renaming (α-conversion) of a value z such that

all lambda bound and let-bound variables in z are replaced by fresh ones.
– Γ , ∆ and Θ are taken to be heap variables (a heap is assumed to be a set

of variable bindings, i.e. pairs of distinct variables and expressions),

3



– a binding of a variable x to an expression e is written as x 7→ e,
– ρ, ρ′, ρ0 are environments (an environment is a function from variables to

values),
– the judgment Γ : e ⇓ ∆ : z means that in the context of the heap Γ a term

e reduces to the value z with the resulting set of bindings ∆,
– and finally σ and τ are taken to be derivation trees for such judgments.

2.3 Mixed lazy/strict expressions

We extend the expressions of Launchbury’s system with a strict variant of recur-
sive let-expressions. Experience with two different lazy programming languages
that allow explicit enforcing of strictness (Haskell[4] and Clean[8]), seems to indi-
cate that a non-recursive strict let-expression (non-recursiveness is then assumed
to be enforced syntactically), is sufficient from the point of view of the program-
mer. From a semantic point of view it will turn out that allowing recursion does
not impose any problems. Recursion is essential for the definition of cyclic graph
structures. Therefore, we suggest to the designers of Haskell and Clean to allow
recursion for their strictness constructs. This will give the programmer more
means for explicit control of evaluation of cyclic structures.

In strict let-expressions only one variable can be defined in contrast to mul-
tiple ones for standard lazy let-expressions. This is natural since the order of
evaluation is important. With multiple variables an extra mechanism for speci-
fying their order of evaluation would have to be introduced. With single variable
let-expressions an ordering is imposed easily by nesting of let-expressions.

With the extension of these strict let-expressions the class of expressions to
consider is given by the following grammar:

x ∈ V ar
e ∈ Exp ::= λ x. e

| e x
| x
| let x1 = e1 · · · xn = en in e
| let! x1 = e1 in e

As in Launchbury’s semantics we assume that the program under consideration
is first translated to a form of lambda terms in which all arguments are variables
(expressing sharing explicitly). This is achieved by a normalisation procedure
which first performs a renaming (α-conversion) using completely fresh variables
ensuring that all bound variables are distinct and then introduces a non-strict let
definition for each argument of each application (this let-introduction is defined
below as ∗). The semantics are defined on normalized terms only.

(e x)∗ = (e∗)(x∗) if x is a variable
= let y = (x∗) in (e∗) y otherwise where y is a fresh variable

(λx.e)∗ = λx.(e∗)
(x)∗ = x

(let x1 = e1 · · ·xn = en in e)∗ = let x1 = (e∗1) · · ·xn = (e∗n) in (e∗)
(let! x1 = e1 in e)∗ = let! x1 = (e∗1) in (e∗)

4



2.4 Definition of mixed lazy/strict graph semantics

Before defining mixed semantics we recall the basic rules of Launchbury’s natural
(operational) semantics: the Lambda, Application, Var iable and Let-rule.

Γ : λ x.e ⇓ Γ : λ x.e

Γ : e ⇓ ∆ : λ y.e′ ∆ : e′[x/y] ⇓ Θ : z

Γ : e x ⇓ Θ : z

Γ : e ⇓ ∆ : z

(Γ, x 7→ e) : x ⇓ (∆,x 7→ z) : ẑ

(Γ, x1 7→ e1 · · ·xn 7→ en) : e ⇓ ∆ : z

Γ : let x1 = e1 · · ·xn = en in e ⇓ ∆ : z

Lam

App

V ar

Let

We will extend the rules above with a recursive Str ictLet rule. This operational
Str ictLet rule is quite similar to the rule for a normal let, but it adds a condition
to enforce the shared evaluation of the expression. We will prove the required
properties for the introduced rule.

Definition 1. Operational Mixed Lazy/Strict Graph Semantics.

The let! derivation rule has two requirements. One for the evaluation of e1 (ex-
pressing that it is required to evaluate it on forehand) and one for the standard
lazy evaluation of e. Sharing in the evaluation is achieved as follows. First, for
the evaluation of e1 the environment Γ is extended with x1 7→ e1 and in order to
achieve shared evaluation x1 is taken as the term to be evaluated. Then, in the
resulting environment Θ the reference to x1 will still be present but (due to the
Var-rule) it will be referring to the evaluated result. This environment is taken
as the environment for the shared evaluation of e.

(Γ, x1 7→ e1) : x1 ⇓ Θ : z1 Θ : e ⇓ ∆ : z

Γ : let! x1 = e1 in e ⇓ ∆ : z
Str

It may be apparent that a strict let will behave the same as a normal let
when e1 has a weak head normal form. Otherwise, no derivation will be possible
for the strict let. This is for instance the case when the evaluation of e1 requires
recursively the evaluation of x1.

If we would replace let!’s by standard let’s in any expression, the weak head
normal form of that expression would not change. However, if we would replace
in an expression let’s by let!’s, then the weak head normal form of that expression
would either stay the same or it would become undefined. Among others these
properties will be proven in Sect. 3.

Of course, not only the operational semantics have to be extended but we
also have to extend the definition of the lazy denotational meaning function with
rules for the meaning of the new let! construct.

5



As in [6] we have a mathematical function domain, containing at least a lifted
version of its own function space, ordered in the standard way with least element
⊥ following Abramsky and Ong [1], [2], and we use Fn and ↓Fn as lifting and
projection functions.

An environment ρ is a function from variables to values where the domain
of values is the function domain. We use the following ordering on environments
expressing that larger environments bind more variables but have the same values
on the same variables: ρ ≤ ρ′ is defined as ∀x.[ρ(x) 6= ⊥ ⇒ ρ(x) = ρ′(x)]. The
initial environment, indicated by ρ0, is the function that maps all variables to ⊥.
We use a special semantic function on environments {{ }}. It resolves the possible
recursion and is defined as: {{x1 7→e1···xn 7→en}}ρ = µρ′.ρ t (x1 7→ Je1Kρ′ · · ·xn 7→
JenKρ′) where µ stands for the least fixed point operator and t denotes the least
upper bound of two environments. It is important to note that for this definition
to make sense the environment must be consistent with the heap (i.e. if they
bind the same variable then there must exist an upper bound on the values to
which each binds each such variable).

Definition 2. Denotational Mixed Lazy/Strict Graph Semantics.

Jλx.eKρ = Fn (λv.JeKρt(x 7→v))
Je xKρ = (JeKρ) ↓Fn (JxKρ)
JxKρ = ρ(x)
Jlet x1 = e1 · · ·xn = en in eKρ = JeK{{x1 7→e1···xn 7→en}}ρ
Jlet! x1 = e1 in eKρ = ⊥ , if Jx1K{{x1 7→e1}}ρ = ⊥

= JeK{{x1 7→e1}}ρ

In extension to [6] we defined above a meaning for let!-expressions. This meaning
is given by a case distinction. If the meaning of the expression to be shared is
⊥, then the meaning of the let!-expression as a whole becomes ⊥. Otherwise,
the meaning is simply the same as the meaning of the corresponding normal let-
expression. As with the operational rules, we distinguish between the recursive
case (requiring the use of {{}}) and the non-recursive case.

2.5 Correctness and Computational Adequacy

In this section we will show that each of the theorems stated for natural lazy
semantics in [6] also holds for mixed lazy/strict semantics. The first theorem
deals with proper use of names.

Theorem 1 (Distinct Names). If Γ : e ⇓ ∆ : z and Γ : e is distinctly named
(i.e. every binding occurring in Γ and in e binds a distinct variable which is also
distinct from any free variables of Γ : e), then every heap/term pair occurring
in the proof of the reduction is also distinctly named.

Proof. The cases of the StrictLet rules are trivial since no renaming takes place
there. The proof for the other cases is exactly the same as in [6].

6



Theorem 2 essentially states that reductions preserve meaning on terms and that
they possibly only change the meaning of heaps by adding new bindings.

Theorem 2 (Correctness).

Γ : e ⇓ ∆ : z ⇒ ∀ρ. {{Γ}}ρ ≤ {{∆}}ρ ∧ JeK{{Γ}}ρ = JzK{{∆}}ρ
Proof. Induction on the structure of the derivation for Γ : e ⇓ ∆ : z. There are
five cases:

CASE 1-4. (Lambda), Application, Variable and Let The proofs for these cases
are essentially the same as the ones in [6]. They are not listed here. For
interested readers the full proof is given in Appendix A.1.

CASE 5. (StrictLet)
(Γ, x1 7→ e1) : x1 ⇓ Θ : z1 Θ : e ⇓ ∆ : z

Γ : let! x1 = e1 in e ⇓ ∆ : z
Str

Assume by induction: [IH1]: ∀ρ. {{Γ, x1 7→ e1}}ρ ≤ {{Θ}}ρ and
[IH2]: ∀ρ. Jx1K{{Γ,x1 7→e1}}ρ = Jz1K{{Θ}}ρ and
[IH3]: ∀ρ. {{Θ}}ρ ≤ {{∆}}ρ and
[IH4]: ∀ρ. JeK{{Θ}}ρ = JzK{{∆}}ρ

To prove:
[1]: ∀ρ. {{Γ}}ρ ≤ {{∆}}ρ and [2]: ∀ρ. Jlet! x1 = e1 in e K{{Γ}}ρ = JzK{{∆}}ρ
Proof (StrictLet).
[1]: {{Γ}}ρ

≤ {{Γ, x1 7→ e1}}ρ (variable x1 not bound in Γ )
≤ {{Θ}}ρ [IH1]
≤ {{∆}}ρ [IH3]

[2]: Jlet! x1 = e1 in eK{{Γ}}ρ
= JeK{{x1 7→e1}}({{Γ}}ρ)

since Jx1K{{x1 7→e1}}({{Γ}}ρ) = Jz1K{{Θ}}ρ (due to [IH2]) and Jz1K{{Θ}}ρ 6= ⊥
(z1 is a value: denotationally a lifted function which cannot be ⊥)

= JeK{{(Γ,x1 7→e1)}}ρ (variable x1 not bound in Γ )
= JeK{{Θ}}ρ [IH1] (and the definition of ≤)
= JzK{{∆}}ρ [IH4]

The Computational Adequacy theorem below states that a term with a heap has
a valid reduction if and only if they have a non-bottom denotational meaning
starting with the initial environment ρ0.

Theorem 3 (Computational Adequacy).

JeK{{Γ}}ρ0 6= ⊥ ⇔ (∃∆, z . Γ : e ⇓ ∆ : z)

Proof. The proof of [6] requires just a single adaption:
The proof of [6] requires an alternative resourced denotational semantics N JK

by adding an extra resource argument to the meaning function that works as a
counter since it is decremented with every application of the meaning function.
In this resourced semantics an environment does not bind a variable to a value

7



directly but here an environment is a function that takes a variable and produces
a function that given a resource produces a value. Such environments will be de-
noted with φ or ψ. Again we define a semantic environment function resolving re-
cursion as follows N{{x1 7→e1···xn 7→en}}φ = µψ.φt(x1 7→ N Je1Kψ · · ·xn 7→ N JenKψ).

This resourced semantics has to be extended in order to incorporate the
rule for the strict let expression. The extended definition of a resourced mixed
semantics N JK is given below.

Definition 3. Resourced Denotational Mixed Semantics.

N JeKφ ⊥ = ⊥
N Jλx.eKφ (S k) = Fn (λψ.N JeKφt(x7→ψ) k)
N Je xKφ (S k) = (N JeKφ k) ↓Fn (N JxKφ k)
N JxKφ (S k) = φ x k
N Jlet x1 = e1 · · ·xn = en in eKφ (S k) = N JeKN{{x1 7→e1···xn 7→en}}φ k
N Jlet! x1 = e1 in eKφ (S k) = ⊥ , if N Jx1KN{{x1 7→e1}}φ k = ⊥

= N JeKN{{x1 7→e1}}φ k

With these extended semantics the proof proceeds as in [6]. The full proof is
given in Appendix A.2.

3 Relation to lazy semantics

In this section we will prove some “folklore” knowledge of programmers that use
explicit strictness in a lazy functional programming language.

A expressions that are bottom lazily, will also be bottom when we make some-
thing strict ;

B when strictness is added to an expression that is non-bottom lazily, either
either the result stays the same or it becomes bottom;

C expressions that are non-bottom using strictness will (after !-removal) also
be non-bottom lazily with the same result.

This “folklore” ABC of using strictness must be first turned into formal state-
ments. The concept of result will be formalised by operational meaning. !-removal
for expressions and environments is formalised below.

Definition 4. Removal of !’s for expressions. The function −! is defined on ex-
pressions such that e−! is the expression e in which every let!-expression is re-
placed by the corresponding let-expression:

(x)−! = x
(λx.e)−! = λx.(e−!)
(e x)−! = (e−!)(x−!)
(let x1 = e1 · · ·xn = en in e)−!

= let x1 = e−!
1 · · ·xn = e−!

n in e−!

(let! x1 = e1 in e)−! = let x1 = e−!
1 in e−!

8



Definition 5. Removal of !’s for environments. The function −! is defined on
environments such that Γ−! is the environment Γ in which in every binding
every expression e is replaced by the corresponding expression e−!:

(Γ, x 7→ e)−! = (Γ−!, x 7→ e−!)
{ }−! = { }

Note that the empty environment is not indicated by the standard symbol for
an empty set, ∅, but instead by { } as in [6].

We can now formalise the “folklore” ABC. The standard lazy denotational and
operational meanings of [6] is indicated by JKlazy and ⇓lazy.

Theorem 4 (Formal Folklore ABC).
A : Je−!Klazy

{{Γ−!}}ρ0
= ⊥

⇒ JeK{{Γ}}ρ0 = ⊥
B : Je−!Klazy

{{Γ−!}}ρ0
6= ⊥

⇒ (JeK{{Γ}}ρ0 = ⊥ ∨ ∃z, ∆, Θ[Γ : e ⇓ ∆ : z ∧ Γ−! : e−! ⇓lazy Θ : z−!]
C : JeK{{Γ}}ρ0 6= ⊥

⇒ (Je−!Klazy
{{Γ−!}}ρ0

6= ⊥ ∧ ∃z, ∆,Θ[Γ : e ⇓ ∆ : z ∧ Γ−! : e−! ⇓lazy Θ : z−!]

Proof. The proofs are straightforward combining computational adequacy (The-
orem 3) and the three Theorems 5, 6 and 7 below.

Theorem 5 (Meaning of !-removal).

Je−!Klazy
{{Γ−!}}ρ0

= ⊥ ⇒ JeK{{Γ}}ρ0 = ⊥

Proof. Follows directly from the definition of the meaning function J K.
Theorem 6 (Compare with Lazy Reduction).

Γ : e ⇓ ∆ : z ⇒ Γ−! : e−! ⇓lazy Θ : z−! ∧ Jz−!Klazy
{{Θ}} = Jz−!Klazy

{{∆−!}}

Proof. Assume we have Γ : e ⇓ ∆ : z with derivation tree σ. First, apply the
transformation −! to the leaves of σ which is valid since it is clear that for each
leaf, which is always of the form Γ : λ x.e ⇓ Γ : λ x.e, also Γ−! : λ x.e−! ⇓lazy

Γ−! : λ x.e−! will be valid. Then, replace in σ each occurrence of a StrictLet-
rule by a Let-rule, leaving out the subtree corresponding to the precondition
(Γ, x1 7→ e1) : x1 ⇓ Θ : z1. This results in a new derivation tree τ which is a
valid derivation tree for ⇓lazy. However, this derivation tree contains the new
environment Θ in which some extra non-lazy evaluations are stored. Since the
meaning of e−! is not ⊥, it holds that Jz−!Klazy

{{Θ}} = Jz−!Klazy
{{Γ,x1 7→e1}} and hence

Jz−!Klazy
{{Θ}} = Jz−!Klazy

{{∆−!}}. Inductively, this gives the required result since apart
from !-appearance in the leaves of the tree, the only sources of !-introduction in
e are the StrictLet-rules.

9



Theorem 7 (Reduction and !-removal).

Γ−! : e−! ⇓lazy ∆ : z−! ⇒ (Γ : e ⇓ Θ : z ∧ JzK{{Θ}} = JzK{{∆}}) ∨ JeKρ = ⊥

Proof. Suppose we have Γ−! : e−! ⇓lazy ∆ : z−!. The derivation tree σ can be
used to construct a derivation tree τ for Γ : e ⇓ Θ : z by adding where appro-
priate !’s, StrictLet-rules and conditions with Θ environmnets as in the proof of
Theorem 6. The only way to complete this tree is to prove these conditions. So,
when all conditions can be proved Γ : e ⇓ Θ : z holds (and the meanings for the
environments are the same), otherwise there is simply no valid derivation tree
and hence JeKρ = ⊥ according to Theorem 3.

4 Example proofs with mixed semantics

With a small example we will show how proofs can be made using mixed se-
mantics; the proofs show formally that with mixed semantics it is possible to
distinguish operationally between terms that were indistinguishable lazily.

Lazy semantics [6] makes it possible to yield λx.Ω (Ω is defined below) and
Ω as different results. However, in lazy semantics it is not possible to define a
function f that produces a different observational result depending on which one
is given as an argument. We say that two terms “produce a different observational
result” if at least one term produces a basic value and the other one either
produces a different basic value or ⊥. This means that in lazy natural semantics
λx.Ω and Ω belong to a single equivalence class of which the members cannot
be distinguished observationally by the programmer.

With mixed semantics a definition for such a distinguishing function f is
given below. The result of f on λx.Ω will be 42 and the result of f on Ω will be
⊥. Note that it is not possible to return anything else than ⊥ in the Ω case.

Ω ≡ (λx.xx)(λx.xx)
f ≡ λx.(let! y = x in 42)

We will prove two properties:

@∆, z. {} : f Ω ⇓ ∆ : z (1)
∃∆. {} : f (λx.Ω) ⇓ ∆ : 42 (2)

For the first property we have to prove that it is impossible to construct a finite
derivation according to the operational semantics. Applying Theorem 3, the
computational adequacy theorem, it is sufficient to show that the denotational
meaning of f Ω is undefined. The proof is given below:
Jf ΩKρ
= J(λx.let! y = x in 42)(Ω)Kρ
= (Jλx.let! y = x in 42Kρ) ↓Fn (JΩKρ)
= (Fn (λv.Jlet! y = x in 42Kρt(x 7→v))) ↓Fn (JΩKρ)
= (λv.Jlet! y = x in 42Kρt(x 7→v))JΩKρ

10



= Jlet! y = x in 42Kρt(x7→JΩKρ)

= ⊥ since JxKρt(x7→JΩKρ) = (ρ t (x 7→ JΩKρ))(x) = JΩKρ = ⊥
The proof of the second property is written down with sub-derivations contained
within square brackets and stating the name of the used derivation rule. To
work with numerals we assume in the operational semantics the availability of a
standard reduction rule (Num) that states that each numeral reduces to itself.




{ } : f (λx.Ω)
{ } : (λx. let! y = x in 42) (λx.Ω)

{ } : (λx. let! y = x in 42)
{ } : (λx. let! y = x in 42)

Lam


{ } : (let! y = x in 42) [λx.Ω/x]
{ } : let! y = λx.Ω in 42

{ } : λx.Ω

{ } : λx.Ω

Lam

{y 7→ λx.Ω} : 42
{y 7→ λx.Ω} : 42

Num

{y 7→ λx.Ω} : 42

let!

{y 7→ λx.Ω} : 42

App

5 Related and Future work

A formal semantics that is similar to Launchbury’s, has been defined indepen-
dently by Barendsen and Smetsers [3]. They address strictness analysis but they
do not address explicitly enforced strictness. To transfer results it might be
worthwhile to establish a formal correspondence between these two semantics.

With the purpose of deriving a lazy abstract machine Sestoft [9] has re-
vised Launchbury’s semantics. Launchbury’s semantics require global inspection
(which is unwanted for an abstract machine) for preserving the Distinct Names
property. When an abstract machine is to be derived from our mixed semantics,
analogue revisions will be required. As is further pointed out by Sestoft [9] the
rules given by Launchbury are not fully lazy. Full laziness can be achieved by
introducing new let-bindings for every maximal free expression.

Andrew Pitts [7] discusses non-termination issues of logical relations and
operational equivalence in the context of the presence of existential types in a
strict language. He provides some theory that might also be used to address
the problems that arise in a mixed lazy/strict context. That would require a

11



combination of his work and the work of Patricia Johann and Janis Voigtländer
[5] who use a denotational approach to present some “free” theorems in the
presence of Haskell’s seq.

Acknowledgements We would like to thank the anonymous referees of an
earlier version of this paper for their helpful reviews.

6 Conclusions

We have extended Launchbury’s lazy graph semantics with a construct for ex-
plicit strictness. The resulting derivation system is shown to be correct and
computationally adequate.

We have explored what happens when strictness is added or removed within
mixed lazy/strict graph semantics. Correspondences and differences between lazy
and mixed semantics have been established by studying the effects of removal and
addition of strictness. Our results formalise the common “folklore” knowledge
about the use of explicit strictness in a lazy context.

Mixed lazy/strict graph semantics differs significantly from lazy graph se-
mantics. It is possible to write expressions that with mixed semantics distinguish
between particular terms that have different lazy semantics while these terms
can not be distinguished by an expression within that lazy semantics. This was
shown formally as a small example of the use of mixed semantics in formal proofs.

References

1. S. Abramsky. The lazy lambda calculus. In D. A. Turner, editor, Research Topics
in Functional Programming, pages 65–116. Addison-Welsey, Reading, MA, 1990.

2. S. Abramsky and C.-H. L. Ong. Full abstraction in the lazy lambda calculus.
Information and Computation, (105):159–267, 1993.

3. E. Barendsen and S. Smeters. Graph Rewriting Aspects of Functional Programming,
chapter 2, pages 63–102. World scientific, 1999.

4. P. Hudak. The Haskell School of Expression: Learning Functional Programming
through Multimedia. Cambridge University Press, New York, 2000.

5. P. Johann and J. Voigtlaender. Free theorems in the presence of seq. In Proceedings
of the 31st International Conference on Principles of Programming Languages 2004
(POPL’04), pages 99–110. IEEE Press, 2004.

6. J. Launchbury. A natural semantics for lazy evaluation. In Conference Record
of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 144–154, Charleston, South Carolina, 1993.

7. A. M. Pitts. Existential types: Logical relations and operational equivalence. In
Proceedings of the 25th International Conference on Automata Languages and Pro-
gramming, ICALP’98, volume 1443 of Lecture Notes in Computer Science, pages
309–326. Springer-Verlag, Berlin, 1998.

8. R. Plasmeijer and M. van Eekelen. Concurrent CLEAN Language Report (version
2.0), December 2001. http://www.cs.kun.nl/∼clean/contents/contents.html.

9. P. Sestoft. Deriving a lazy abstract machine. Journal of Functional Programming,
7(3):231–264, 1997.

12



A Proofs

This appendix lists some full proofs including those parts that are essentially
the same as in [6].

A.1 Full Proof of Correctness Theorem

Theorem 2 Correctness

Γ : e ⇓ ∆ : z ⇒ ∀ρ. {{Γ}}ρ ≤ {{∆}}ρ ∧ JeK{{Γ}}ρ = JzK{{∆}}ρ
Induction on the structure of the derivation for Γ : e ⇓ ∆ : z. There are five

cases:

CASE 1. (Lambda)
Γ : λ x.e ⇓ Γ : λ x.e

Lam

To prove: [1]: ∀ρ. {{Γ}}ρ ≤ {{Γ}}ρ and [2]: ∀ρ. Jλx.eK{{Γ}}ρ = Jλx.eK{{Γ}}ρ
Proof (Lambda). [1]: Follows directly from the reflexivity of ≤. [2]: Trivial.

CASE 2. (Application)
Γ : e ⇓ ∆ : λ y.e′ ∆ : e′[x/y] ⇓ Θ : z

Γ : e x ⇓ Θ : z
App

Assume by induction: [IH1]: ∀ρ. {{Γ}}ρ ≤ {{∆}}ρ and
[IH2]: ∀ρ. JeK{{Γ}}ρ = Jλy.e′K{{∆}}ρ and
[IH3]: ∀ρ. {{∆}}ρ ≤ {{Θ}}ρ and
[IH4]: ∀ρ. Je′[x/y]K{{∆}}ρ = JzK{{Θ}}ρ

To prove: [1]: ∀ρ. {{Γ}}ρ ≤ {{Θ}}ρ and [2]: ∀ρ. Je xK{{Γ}}ρ = JzK{{Θ}}ρ
Proof (Application).
[1]: Transitivity of ≤ applied to [IH1] and [IH3] yields {{Γ}}ρ ≤ {{Θ}}ρ.
[2]: Je xK{{Γ}}ρ

= JeK{{Γ}}ρ ↓Fn JxK{{Γ}}ρ
= Jλy.e′K{{∆}}ρ ↓Fn JxK{{Γ}}ρ [IH2]
= (Fn (λv.Je′K{{∆}}ρt(y 7→v))) ↓Fn JxK{{Γ}}ρ
= (λv.Je′K{{∆}}ρt(y 7→v))JxK{{Γ}}ρ
= Je′K{{∆}}ρt(y 7→JxK{{Γ}}ρ)

= Je′[x/y]K{{∆}}ρ (standard λ-calculus substitution lemma)
= JzK{{Θ}}ρ [IH4]

CASE 3. (Variable)
Γ : e ⇓ ∆ : z

(Γ, x 7→ e) : x ⇓ (∆,x 7→ z) : ẑ
V ar

Assume by induction:
[IH1]: ∀ρ. {{Γ}}ρ ≤ {{∆}}ρ and [IH2]: ∀ρ. JeK{{Γ}}ρ = JzK{{∆}}ρ
To prove:
[1]: ∀ρ. {{Γ, x 7→ e}}ρ ≤ {{∆,x 7→ z}}ρ and [2]: ∀ρ. JxK{{Γ,x 7→e}}ρ = JẑK{{∆,x7→z}}ρ

13



Proof (Variable).
[1]: {{Γ, x 7→ e}}ρ

= µρ′.ρ t {{Γ}}ρ′ t (x 7→ JeKρ′)
= µρ′.ρ t {{Γ}}ρ′ t (x 7→ JeK{{Γ}}ρ′)
= µρ′.ρ t {{Γ}}ρ′ t (x 7→ JzK{{∆}}ρ′) [IH2]
≤ µρ′.ρ t {{∆}}ρ′ t (x 7→ JzK{{∆}}ρ′) [IH1]
≤ µρ′.ρ t {{∆}}ρ′ t (x 7→ JzKρ′)
= {{∆,x 7→ z}}ρ

[2]: JxK{{Γ,x 7→e}}ρ
= {{Γ, x 7→ e}}ρ(x)
= {{∆,x 7→ z}}ρ(x) (definition of ≤)
= JzK{{∆,x 7→z}}ρ (definition of the meaning function J K)
= JẑK{{∆,x 7→z}}ρ (α-conversion of z)

CASE 4. (Let)
(Γ, x1 7→ e1 · · ·xn 7→ en) : e ⇓ ∆ : z

Γ : let x1 = e1 · · ·xn = en in e ⇓ ∆ : z
Let

Assume by induction: [IH1]: ∀ρ. {{(Γ, x1 7→ e1 · · ·xn 7→ en)}}ρ ≤ {{∆}}ρ and
[IH2]: ∀ρ. JeK{{(Γ,x1 7→e1···xn 7→en)}}ρ = JzK{{∆}}ρ

To prove:
[1]:∀ρ.{{Γ}}ρ ≤ {{∆}}ρ and [2]:∀ρ.Jlet x1 = e1 · · ·xn = en in eK{{Γ}}ρ = JzK{{∆}}ρ

Proof (Let).
[1]: {{Γ}}ρ

≤ {{Γ, x1 7→ e1 · · ·xn 7→ en}}ρ (variables x1 · · ·xn not bound in Γ )
≤ {{∆}}ρ [IH1]

[2]: Jlet x1 = e1 · · ·xn = en in eK{{Γ}}ρ
= JeK{{x1 7→e1···xn 7→en}}({{Γ}}ρ)

= JeKµρ′.{{Γ}}ρt(x1 7→Je1Kρ′ ··· xn 7→JenKρ′ )

= JeK{{Γ,x1 7→e1···xn 7→en}}ρ (variables x1 · · ·xn not bound in Γ )
= JzK{{∆}}ρ [IH2]

CASE 5. (StrictLet)
(Γ, x1 7→ e1) : x1 ⇓ Θ : z1 Θ : e ⇓ ∆ : z

Γ : let! x1 = e1 in e ⇓ ∆ : z
Str

Assume by induction: [IH1]: ∀ρ. {{Γ, x1 7→ e1}}ρ ≤ {{Θ}}ρ and
[IH2]: ∀ρ. Jx1K{{Γ,x1 7→e1}}ρ = Jz1K{{Θ}}ρ and
[IH3]: ∀ρ. {{Θ}}ρ ≤ {{∆}}ρ and
[IH4]: ∀ρ. JeK{{Θ}}ρ = JzK{{∆}}ρ

To prove:
[1]: ∀ρ. {{Γ}}ρ ≤ {{∆}}ρ and [2]: ∀ρ. Jlet! x1 = e1 in e K{{Γ}}ρ = JzK{{∆}}ρ

Proof (StrictLet).
[1]: {{Γ}}ρ

≤ {{Γ, x1 7→ e1}}ρ (variable x1 not bound in Γ )

14



≤ {{Θ}}ρ [IH1]
≤ {{∆}}ρ [IH3]

[2]: Jlet! x1 = e1 in eK{{Γ}}ρ
= JeK{{x1 7→e1}}({{Γ}}ρ)

since Jx1K{{x1 7→e1}}({{Γ}}ρ) = Jz1K{{Θ}}ρ (due to [IH2]) and Jz1K{{Θ}}ρ 6= ⊥
(z1 is a value: denotationally a lifted function which cannot be ⊥)

= JeK{{(Γ,x1 7→e1)}}ρ (variable x1 not bound in Γ )
= JeK{{Θ}}ρ [IH1] (and the definition of ≤)
= JzK{{∆}}ρ [IH4]

A.2 Full Proof of Computational Adequacy Theorem

Theorem 3 Computational Adequacy

JeK{{Γ}}ρ0 6= ⊥ ⇔ (∃∆, z . Γ : e ⇓ ∆ : z)

Proof. The two implications are proven separately.
⇐: Follows immediately from Theorem 2. The meaning of the resulting value z
is a lifted function which cannot be ⊥.
⇒: This part requires more effort. The denotational semantics are hard to relate
to the operational semantics. So, as in [6] we define alternative versions of the
denotational and operational semantics. These alternative versions are equivalent
to the original ones but they are more closely related to each other.

First, we give an alternative resourced denotational semantics N JK by adding
an extra resource argument to the meaning function that works as a counter
since it is decremented with every application of the meaning function. This
counter is taken from the countable chain domain C (defined by the domain
equation C = C⊥). On C we defined the injection function S such that the ele-
ments of C can be given by the sequence ⊥, S⊥, S(S⊥), . . . with limit element
ω ≡ S(S(S · · · )). In this resourced semantics an environment does not bind a
variable to a value directly but here an environment is a function that takes a
variable and produces a function that given a resource produces a value. Such
environments will be denoted with φ or ψ. Again we define a semantic environ-
ment function resolving recursion as follows N{{x1 7→e1···xn 7→en}}φ = µψ.φt (x1 7→
N Je1Kψ · · ·xn 7→ N JenKψ). Using these notations and auxiliary definitions N JK
is defined as follows.

Definition 6. Resourced Denotational Mixed Semantics.

N JeKφ ⊥ = ⊥
N Jλx.eKφ (S k) = Fn (λψ.N JeKφt(x7→ψ) k)
N Je xKφ (S k) = (N JeKφ k) ↓Fn (N JxKφ k)
N JxKφ (S k) = φ x k
N Jlet x1 = e1 · · ·xn = en in eKφ (S k) = N JeKN{{x1 7→e1···xn 7→en}}φ k
N Jlet! x1 = e1 in eKφ (S k) = ⊥ , if N Jx1KN{{x1 7→e1}}φ k = ⊥

= N JeKN{{x1 7→e1}}φ k

15



Clearly, given infinite resources N JK equals JK, i.e. if ∀x.ρ x = φ x ω then JeKρ =
N JeKφ ω. Furthermore, the following lemma holds (using for m applications of
S the notation Sm):

Lemma 1. ∀x.ρ x = φ x ω ∧ JeKρ 6= ⊥ ⇒ ∃m.N JeKφ (Sm⊥) 6= ⊥
Proof. N JK is a continuous function since it is defined using continuous functions
only. So, it holds that if JK produces non-bottom for some term, so does some
finite approximation.

Second, an alternative operational semantics ⇓N is obtained by replacing the
Application and Var iable rules given in Sect. 2.4 by alternative ones. Below we
state only the changed rules, the rest of the system (including the lazy and strict
let-rules) remains the same.

Γ : e ⇓N ∆ : λ y.e′ (∆, y 7→ x) : e′ ⇓N Θ : z

Γ : e x ⇓N Θ : z

(Γ, x 7→ e) : ê ⇓N ∆ : z
(Γ, x 7→ e) : x ⇓N ∆ : z

App

V ar

The effect of these new rules is that they mimic the operations on environments
in the alternative denotational semantics more closely. The new application rule
adds an indirection for each lambda reduction, increasing the number of closures
instead of performing a substitution directly. Furthermore, updating is removed
by the new variable rule.

Lemma 2. Γ : e ⇓ ∆ : z ⇔ Γ : e ⇓N Θ : z′ ∧ ∃n.substn(Θ : z′) = ∆ : z

Proof. subst removes the introduced closures and is defined as subst((Γ, x 7→
e) : z) = Γ : z [e/x]. The proof follows by induction on the derivation tree.

The next lemma relates the alternative denotational and operational semantics
to each other.

Lemma 3.
N JeKN{{x1 7→e1···xn 7→en}}φ(Sm⊥) 6= ⊥ ⇒ ∃∆, z.(x1 7→ e1 · · ·xn 7→ en) : e ⇓N ∆ : z

Proof. By induction on m.

Now, we can finish our proof of the⇒ part of Theorem 3. Assume that JeK{{Γ}}ρ0 6=
⊥. Then, by Lemma 1 there exists an m such that the corresponding approximat-
ing alternative denotational semantics is non-bottom. By Lemma 3 there exists
a corresponding derivation according to the alternative operational semantics.
Finally, by Lemma 2 there is a corresponding derivation conform the original
operational semantics.

16


