Prevent Session Hijacking by Binding the
Session to the Cryptographic Network
Credentials

Willem Burgers!, Roel Verdult!, and Marko van Eekelen!»?
willemburgers@student.ru.nl, {rverdult,marko}@cs.ru.nl

! Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands.

2 School of Computer Science,
Open University of The Netherlands.

Abstract. Many cyber-physical applications are responsible for safety
critical or business critical infrastructure. Such applications are often
controlled through a web interface. They manage sensitive databases,
drive important SCADA systems or represent imperative business pro-
cesses. A vast majority of such web applications are well-known to be
vulnerable to a number of exploits. The focus of this paper is on the vul-
nerability of session stealing, also called session hijacking. We developed
a novel method to prevent session stealing in general. The key idea of
the method is binding the securely negotiated communication channel to
the application user authentication. For this we introduce a server side
reverse proxy which runs independently from the client and server soft-
ware. The proposed method wraps around the deployed infrastructure
and requires no alterations to existing software. This paper discusses the
technical encryption issues involved with employing this method. We de-
scribe a prototype implementation and motivate the technical choices
made. Furthermore, the prototype is validated by applying it to secure
the particularly vulnerable BLACKBOARD LEARN system, which is a im-
portant and critical infrastructural application for our university. We
concretely demonstrate how to protect this system against session steal-
ing. Finally, we discuss the application areas of this new method.

Keywords and phrases: software security, web applications, cross site
scripting, session stealing, session hijacking.

1 Introduction

Web applications are hard to secure. Many web applications suffer from security
vulnerabilities that can be exploited by an attacker. A widely used method to
secure web applications involves the creation of an application session for which
the user has to authenticate using a registered login name and corresponding
password. Before such a session is established, a secure encrypted communication
channel is negotiated at a network level to ensure confidentiality. However, the
creation of a session and the use of encrypted communication is not sufficient to
make an application secure against all attacks.

The focus of this paper is on one of the serious attacks: session stealing
or session hijacking. This is aimed at the session mechanism itself. An adver-
sary takes over a valid user session with a recovered authentication token that
is distributed to an genuine user. From this point on we call such a valid au-
thentication token a session identifier (session ID). Most modern websites use
encrypted communication between the client and the server to prevent an adver-
sary from eavesdropping this session ID. However, it does not prevent stealing
the session ID by means of malicious scripts or rogue browser plug-ins.

Sessions in web applications are very common on many infrastructural appli-
cation areas. Many business critical applications and safety critical applications
use a session mechanism. Also cyber-physical applications often use a web server
and a session mechanism for communication purposes. Supervisory control and
data acquisition (SCADA) systems are well-known to be vulnerable to session
hijacking at the transport layer [9]. Improving the safety of sessions contributes
to increasing the security level of such applications.

A user whose session is stolen may not notice anything strange while the
attack is performed, since the execution of the script may run in the background
without changing anything on the screen of the user. This means that the user
can be offered little advice in order to prevent such attacks. The main advice is
to avoid surfing to pages hosted on the same domain that could be infected by
malicious scripts during an active session. This means always closing an open
session before surfing to a website that does not require the same session cre-
dentials. Such advice does not help much if the application for which the session
is opened, is itself vulnerable to cross site scripting. This is the case for many
web applications where data can be entered by users and is to be read by other
users. Vulnerabilities can occur if the output, generated from the entered data, is
not properly encoded. Output encoding prevents executable scripts by replacing
meaningful characters with harmless annotated symbols. For example, when an
adversary is able to post a malicious script, it could compromise the complete
website and steal all active sessions. In that case an attack can happen directly
after a genuine user visits the website only once.

Vulnerabilities like these may greatly reduce the trust of the user in the
system. The user feels very insecure since there seems to be no way for the user
to prevent such an attack.

Motivational example
The method we propose can be applied in general. As an application example a
virtual learning environment is chosen. Such a learning environment is part of
the infrastructure: it is a virtual extension of a school /university building which
aims to create a safe place for students and teachers. In such a safe place students
have confidential discussions with teachers, grades are administered and exams
can be held. The activities that take place in the virtual learning environment are
for a large part the same as the ones that take place in the physical environment.
When within such a virtual learning environment sessions can be stolen without
anyone noticing, which could cause that the hard to gain trust is easily lost.
More specifically, our contribution is motivated by the fact that we discov-
ered several vulnerabilities in the BLACKBOARD LEARN system used at our uni-
versity [4]. We demonstrated multiple ways to steal the session identifier and
successfully perform a privilege escalation attack. In line with the principles of

responsible disclosure, we have notified Blackboard inc. and informed them of
our findings back in July 2011. They reacted quickly with some ad-hoc fixes
and formed a special security task-force team to locate the nature of these prob-
lems [5,6]. The fixes were mostly improvident, one example is that they try to
bind the session to the IP address that is used by a genuine user. Such limita-
tion does not work very effectively for large university networks which operate
behind one big routing firewall, they all seem to have the same IP address. Fur-
thermore, such network information is publicly accessible, can be determined
remotely (using a malicious XSS script) and is easy to spoof. Although some im-
minent threats were resolved, a more conceptual solution for such vulnerabilities
is preferred. The goal is an independent and general applicable design that works
without having access to the source code of the application. Hence, we propose
a secure protocol that wraps around any closed source and proprietary system
and extends its security with significant protection against session hijacking.

The contributions of this paper:

e a new method of binding the application session to the cryptographic net-
work credentials that effectively prevents hijacking of web sessions;

e a fully functional prototype implementation of the method (for cookies),
built and released under the royalty free BSD license.

The structure of this paper:

Sect. 2 discusses session stealing in more detail. Our method to prevent session
stealing is presented in Sect. 3. Next, in Sect. 4 we demonstrate a prototype
of our proposed method and evaluate its effectiveness in a specific application
instance. Finally, we discuss related work in Sect. 5 and conclude in Sect. 6.

2 Session stealing and prevention

Sessions are necessary to keep track of users, to see which pages they visit and if
they are allowed to visit them. When a user logs on to a website, a new session is
started for that user. The rights of the user to follow links and view webpages are
stored in the session data. Upon each page view, the rights should be checked.
HTTP is a stateless protocol, so it does not provide this user tracking and access
verification. Sessions are therefore implemented in the application which runs on
top of HTTP. The session ID is kept by the client to be sent with each HTTP
request to let the server know the state of the session and verify the user. A
session ID can however be stolen and used by another person. The literature
refers to this issue with the terms session stealing or session hijacking.

2.1 Stealing the session

An adversary with limited access can post a script on a webpage (e.g. via cross
site scripting XS9) and wait for the genuine user to access the infected website.
When the user opens the page, the malicious script executes automatically and
gains access to the decrypted credentials. Such a script often tries to recover the
session ID and discretely communicates it back to the adversary. A variation of
this attack is performed by sending a genuine user a link that triggers a malicious

http:// vulnerable .com/search .php?q=</u><script >
document . write (‘<img src="http://hacker.com/
session\ _hijack .php?ck=" + document.cookie +">7);
</script >

Fig.1. A XSS attack within a URL. Published by Nikiforakis et al. [10]
script from within the browser. An example of an XSS attack via the URL is
given in Fig. 1.

The malicious script sends the cookie of the user to the website of the at-
tacker. With the freshly recovered session ID the adversary gains all the session
capabilities of the genuine user without having to authenticate. The session ID
is often stored in a cookie, but can also be part of the URL3. This latter form is
mostly used in older web applications. The form of the session ID is not really
relevant, as long as there is a value kept by the client to be sent with every
request. This session ID represents the state of the session. In this paper, we will
focus on the method that involves cookies, but our solution proposed in Sect. 3
is generic and will also work for other forms.

2.2 Strengths and weaknesses of http-only cookies

There are special cookies that can not be accessed by any script that gets ex-
ecuted in the browser. Such cookies are referred to as http-only cookies, since
they are stripped away and added again when the http headers are processed in
the browser. This seems to be a powerful countermeasure against scripts that try
to steal the credentials from cookies. Nowadays, most globally used services (like
Facebook, Google and Microsoft) are accessed through users credentials based
on a persistent session ID stored in a http-only cookie. The endless count of these
active services increases the threat of users being tricked to install a malicious
browser plug-in that eave-drops a session 1D and seize their user accounts. An
example that clearly demonstrates how to steal sessions with a browser plug-in
is Firesheep®. It is not exactly a malicious plug-in, but can be used to demon-
strate the severity of an adversary on the network. The main problem is that a
browser plug-in has access to all decrypted incoming website traffic, including
all cookies.

Interestingly, the encrypted data and cryptographic credentials are inaccessi-
ble for a browser plug-in. The decryption is often handled in the browser core or,
preferably, at the network level of the operating system. We propose to use this
specific property to prevent session hijacking by binding the application session
to the already negotiated cryptographic credentials at the network level.

2.3 Session stealing prevention

There are several papers that address the prevention of session hijacking. Our
solution is based on a method proposed in 2006 by Oppliger et al. [11]. Oppliger
et al. propose their method as a defense against a man-in-the-middle (MITM)
attack where the credentials are stolen. Even though the attack is different from
the attack we face, the basic idea can still be used.

% for example: http://domain.com/index.php?session_id=rj3ids98dhpaOmef3jc89mqlt0
4 http://codebutler.com/firesheep/

http://codebutler.com/firesheep/

The idea is to combine the application session with the HTTPS session.
Where HTTP is stateless, HT'TPS needs to keep the state of a connection. With
the combination of HT'TPS and the application session, you can make use of the
security of the HTTPS session to secure your application session. The coupling
of the SSL/TLS session and the application session provides a failsafe.

It is straightforward to detect if a session ID is used by another HTTPS
connection. In such case, the server should immediately ask for renegotiation.
With such a countermeasure it gets a lot harder to take over an application
session if it is cryptographically coupled with the network session. Oppliger et al.
combined the sessions by binding the application session to a client certificate.
With a client certificate, the user proves to the server that he is indeed who
he claims to be. In this paper we propose to use a different form of binding
the sessions. Our method does not require client certificates. Client certificates
require management and seem to be a hassle to install for inexperienced users.
Client certificates are also an optional part of SSL/TLS. Our method uses the
cryptographical keys already available in SSL/TLS.

3 Session securing by proxying

This section discusses a new prevention method for session hijacking. First, the
general idea is explained in a little more detail. After that, some design details
that were made during the implementation are discussed. Also more details are
given about the protocol and the inner workings of the method. Finally, there is
an attacker model that describes what an attacker can and cannot do.

3.1 Session Binding Proxy

In this paper, we propose Session Binding Proxy (SBP), a method that combines
SSL/TLS session-aware authentication with a reverse proxy. This proxy relays
the requests to the back end application server only if the client that originally
got the application session ID is sending the request. To authenticate a client
over HTTPS, you register the SSL session and application session information.
When a request with the same application session ID is used with a different
SSL session, you know that the session is stolen. By removing the session cookie
from the request, the application session is invalidated. The proxy makes sure
the HTTPS session and application session combination does not need to be
kept inside the application (server). The idea is to use a server side reverse
proxy that handles the HTTP(S) requests as they come in and sends them to
the back-end application server. The application server should only be accessible
by the reverse proxy as shown in Fig. 2.

To administer sessions, the reverse proxy needs to be extended with func-
tionality to read the requests and responses and manage both the SSL/TLS and
the application session. First, we present the identifiers bound together. Then,
two solutions are proposed to manage them to ensure the validity of the session.

SSL identifiers
There are multiple identifiers for the SSL/TLS connection and session provided
by the SSL cipher suite. The most important identifier for the network layer

ST i Backend Application Server

Fig. 2. An application server protected with SBP
is the SSL session ID, which uniquely identifies the current SSL network con-
nection. However, it does not strongly identify a client but rather a connection.
For instance, when the SSL session ID is renegotiated, either by a timeout or
disconnection, the SSL session ID changes.

An alternative identifier for the SSL/TLS connection is the SSL master key.
The master key is part of the SSL handshake, just like the SSL session ID, but
is persistent during a session renegotiation. Therefore, the master key can be
used to identify multiple SSL connections which represent one client session.
The master key is a shared secret between the client’s SSL implementation and
the server’s SSL cipher suite.

Application session identifiers

The way the application session identifier works, depends on the application
itself. Most applications use a session ID stored in a cookie [10]. The admin-
istrator of the SBP is able to choose which cookies represent the application
session identifier and therefore, should be protected. The application might use
JavaScript to read other (non session related) cookies in the browser and change
parts of the webpage based on this value. Such cookies can obviously not be pro-
tected, since it breaks the functionality of the web application if SBP changes the
value. Next, we propose two solutions to bind the SSL and application session
identifiers together.

Solution 1

The first option is to store the SSL/TLS session and application session combina-
tion in memory. When the ‘Set-Cookie’ header is sent by the application server,
the SSL master key and the cookie value pair is stored by the proxy. When the
next request from the client comes in, the session cookie value is checked against
the pairs that are stored by the proxy. If the incoming pair does not match
one of the pairs in memory, the session is invalid. To invalidate the session on
the application server, the request is just sent to the server without the Cookie
header. The server does not recognize any active session and redirects the user
to the login page.

Solution 2

Another method is to authenticate the cookie value with a combination of the
SSL master key and a secret key, known to the proxy only. One way of authen-
ticating the cookie is by combining it with an HMAC value. Another way is to
encrypt the cookie value. We chose to encrypt the cookie, because when this
option is deployed in larger environments, and the proxy is tested next to the

application server (see the dotted line in Fig. 2), the cookies will not be recog-
nizable when encrypted. So, the two systems can not interfere with each other.
For new systems that include SBP in the application, an HMAC will suffice.

When encryption is used, the secret key owned by the proxy is hashed to-
gether with the SSL master key using a secure hash function. The output of this
hash is the key to a AES-256-cbc encryption/decryption function. This means
that the encryption/decryption key is different for every client connection. ‘Set-
Cookie’ headers, for specific cookies, are intercepted by the proxy and their
values are encrypted before sending them to the client. The client cannot de-
crypt the resulting cookie, because it does not know the secret key. This method
saves memory and synchronization of parallel processes with shared resources
is not necessary. Fig. 2 shows some schematics of the layout, with and without
SBP (With SBP, the application server is not directly reachable).

In our proposed prototype in Sect. 3.3, the SBP, Solution 2 is used.

3.2 Session management

This section describes how the SBP handles a request. The first thing that the
SBP server does when it gets a request, is redirect the user to the HT'TPS port
if the user did not connect on that port already. This will start the SSL/TLS
handshake to establish the necessary identifiers. Fig. 3 shows the SSL negotiation
in the first block (lines 0 to 10). All further traffic passes this SSL connection.

When the SSL connection is made, the application session can be established.
The first request sent to the server does not contain a cookie, because the server
has not set any cookies yet. The SBP can simply replay the request to the
application server. Any request on a page without a session cookie results in a
redirect to the login page. When the user logs in, the application server will send
a ‘Set-Cookie” header. This header is intercepted by SBP and the value of the
cookie is encrypted with the key k., which is a hash of a secret system key K,
and the SSL master key k concatenated, performed by k. < hash(K,||k). In
our prototype, we use SHA256 as the hashing algorithm. Every encryption with
AES-256-cbe (denoted by {—}) requires a fresh random Initialization Vector
(IV) such that an attacker cannot generate multiple session ID values encrypted
with the same key and IV. We generate a new random IV for every new ‘Set-
Cookie’” header. The IV is not required to be secret. The cookie is encrypted
as follows {cookie}y, + encrypt(cookie, k., IV). In order to later retrieve the
IV, we concatenate it with the encrypted cookie. The encrypted version of the
header {cookie}y, and the IV is sent to the client. This process is shown in the
second block (lines 11 to 19) in Fig. 3. From this point on with each request by
the user, the client sends the encrypted cookie along with every request. When
a request is received with encrypted session data, SBP decrypts the value of the
cookie and send the plaintext cookie to the back end server. This can be seen in
the final block (lines 20 to 25) of Fig. 3.

When the request is sent over the same SSL connection, the same master key
will be used and the cookie value decrypts normally. When the request is sent
from a different client, the SSL master key differs and the decrypted result will
be some random data. When the back end server receives such a request with
random cookie data, it tries to load a session that does not exist. The application
responds on a non-existing session request with a redirection to the login page.

Client Proxy [[Server
SSL/TLS negotiation
0 |picks challenge cc
1 co
2 picks connection id
3 id, certificate
4 |picks secret S
5 {S}pubtickeyprozy
6 |k < hash(S,cc,id) k < hash(S, cc,id)
7 {id}r
8 verify {id}j
9 {catr
10 |verify {cc}r
SSL/TLS initialized
11 request
12 forward request
13 request
14 get cookie
15 answer, cookie
Phitinbiackettshbbl
16 ke < hash(K,||k)
17 picks IV
18 answer, IV, {cookie}y,.
19 |stores IV, {cookie}y,
Session established
20 request, I'V, {cookie} .
21 ke < hash(K,||k)
22 request, cookie
Ty
23 answer
24 forward answer
25 answer
Request handled

Fig. 3. Session Binding Proxy protocol
The same goes for an expired SSL session. As said in Sect. 3.1, the SSL

master key is used for renegotiation, but whenever an SSL session is completely
terminated, the corresponding master key expires. Values that are encrypted
with an expired master key become invalid and are just ignored. This will result
in a session invalidation and the user is logged out and redirected to the login
page. SSL session expiration also has an effect on so called long-living cookies.
These cookies are needed for a ‘Stay signed in’ option that allows the user to
keep visiting a website with the same session for multiple days or even weeks.
We want to improve SBP in the future to handle expired SSL sessions such that
long-living cookies can also be used.

3.3 Prototype

To show that the idea works in practice, a prototype for SBP is implemented as
a module for the popular reverse proxy server Nginx. Nginx is a very lightweight
application and can be used as reverse proxy, webserver and load balancer. It is
written in C and highly optimized for performance. Because SBP relies heavily
on the efficiency of the reverse proxy, we chose to implement it as a module for a
proven to be robust and reliable reverse-proxy server like Nginx. The framework
can be used to handle the requests and only the application logic of the cookie

names and SSL master key data should be configured. This was slightly harder
than we initially thought however, because the Nginx framework is not very well
documented®. Nginx is built to work in phases. An HTTP request is processed
by all the phases in order, starting from phase 1 all the way up until the response
is sent out at phase 10. Each phase can have zero or more handlers. There are
ten phases in total as depicted in Fig. 4.

Nginx Phase Description

NGX_HTTP_SERVER_REWRITE_PHASE
NGX_HTTP_-SERVER_CONFIG_PHASE
NGX_HTTP_REWRITE_PHASE
NGX_HTTP_-POST_-REWRITE_PHASE
NGX_HTTP_PREACCESS_PHASE
NGX_HTTP-ACCESS_-PHASE
NGX_HTTP_POST_ACCESS_PHASE
NGX_HTTP-TRY_FILES_PHASE

Request URI transformation on virtual server level
Configuration location lookup

Request URI transformation on location level
Request URI transformation post-processing phase
Access restrictions check preprocessing phase
Access restrictions check phase

Access restrictions check post-processing phase
Try files directive processing phase

NGX_HTTP_CONTENT_PHASE
0 |[NGX_HTTP_LOG_PHASE

Content generation phase
Logging phase

Fig. 4. Phases of Nginx

= © 00U WN Y

The module hooks into the rewrite phase (phase 3 in Fig. 4) to decrypt and
modify the cookie values in the request headers. Then, the request is handled
by the reverse proxy module of Nginx. The request is forwarded to the back end
and its response is returned to the Nginx proxy and at some point handed to the
filters of the module. Filters hook in to phase 10 of Nginx, where they perform
some last modification to the response before sending it to the client. In the
presence of ‘Set-Cookie’ headers, the cookie value in the header is encrypted.
Finally, the resulting headers and page body are returned to the client.

Set—Cookie: s_session_id=609A38D1ECB3A70590BC51D41EA44048
; Path=/; Secure; HttpOnly

Fig. 5. Cookie sent from backend server to proxy

Set—Cookie: s_session_id=CD444464249E9227—Sz/
12JEoX4uWvTfvzXAc4r20AXsMF /MmvZBYcF7CQCFGWBIeq+
CJbNKwglZbU7G6CGSCI59QDagYhrZQu2RPCXLKRzX /
Te58QVFEMB5UkL5J8SigaTOJY8dr5fLInUyYGP; Path=/; Secure;

HttpOnly

Fig. 6. Cookie sent from proxy to client

Fig. 5 shows a simple example of a HT'TP header from the back end server.
An example of the the encrypted cookie is shown in Fig. 6.

The encryption and decryption is done using an AES-256-cbc function, pro-
vided by the used OpenSSL cipher suite. It has three main parameters, namely
the key, the initialization vector and the data. For the key, the system private
key K, is concatenated with the SSL master key k& using SHA256. The output
of this hash is the encryption key. In our prototype, the system key K, is a
256 bit hexadecimal string, randomly generated at the startup of Nginx. The

® SBP started out as a bachelor thesis subject for Willem Burgers [1]. A proof of
concept of SBP for the thesis was implemented in PHP

initialization vector is a 64 bit random, generated upon each new ‘Set-Cookie’
header intercepted. In order to decrypt with the same IV, it is placed in front
of the cookie value, separated by a ‘-’. To ensure that the cookie is still handled
correctly by the browser, only the value of the cookie is encrypted.

3.4 Attacking the SBP

This section describes the implications of an adversary with access to different
levels of the server and client. In Fig. 7 a schematic overview is given of the
protection level of SBP. Known attacks against SSL and cookies are represented
by arrows on the level they can attack.

Session Bnerg Proxy Man-In-The-Browser attacks BEAST, CRIME and other XSS attacks

Root level User level
Fig. 7. Attacker model.

Suppose an adversary can execute JavaScript code (access to level 1 or 2 in
Fig. 7). He can use this to craft an XSS attack and steal a cookie from a user.
With SBP in place, the attacker can still steal the cookies, but he will not be
able to take over the user’s session, because he cannot decrypt or re-encrypt the
cookie. An alternative prevention method against an adversary with access to
level 1 or 2 would be to make use of http-only cookies as described in Sect. 2.2.

When the attacker has access to level 3, more advanced attacks can be
crafted. A browser plugin has more rights than JavaScript and can read all
cookies, even the http-only cookies. A malicious plug-in is able to send sensi-
tive cookies to the adversary. To put it in perspective, a browser plug-in is also
able to perform other attacks. A browser plug-in can forge requests while the
user is logged in such that it looks like the user did the request. This way, an
attacker does not need to steal the session. It is a different kind of attack called
man-in-the-browser [13] and therefore this kind of attack is out of the scope for
this paper. A browser plug-in can also view the user credentials while logging
in. Just capturing the username and password can be sufficient to take over the
entire account. However, modern systems migrate to two-factor authentication
to make sure that even with the username and password, an adversary is still
not able to log on. After a successful login, the session identifier is a crucial
credential that should be protected. SBP aims to provide such a protection.

When level 4 is compromised, the adversary has full user level access to a
machine. The adversary can access the cookies of the browser directly through
the file system. The adversary can capture user input directly which enables
phishing attacks. As explained for level 3, with modern authentication techniques
like two-factor authentication, the adversary is still not able to do anything with
the recovered cookies.

An attacker has to use operating system exploits to gain access to level 5
and 6. Kernel exploits are often fixed within days of discovery making it hard

10

to gain access to SSL/TLS credentials. Only an adversary with access to the
SSL/TLS master key k and the system private key K, can bypass the SBP
system protection.

On the server side, the attacker needs to gain root access to recover the keys
needed to hijack the session. Nginx runs under a isolated user account on the
server and once again, operating system exploits need to be used in order to get
a hold of the necessary information.

4 Validating SBP

To validate our SBP method, we have designed and implemented a prototype.
The code of our prototype is open source and available on a public github repos-
itory®. This prototype is fully functional and released under the same license
as Nginx, the royalty free BSD License, which defines very minimalistic distri-
bution restrictions. The prototype was deployed on a widely used and complex
application in order to check whether it can actually prevent session hijacking
in a real-life context. We chose BLACKBOARD LEARN since this application fits
our requirements very well.

BLACKBOARD LEARN (previously BLACKBOARD ACADEMIC SUITE) is one
of the most popular e-learning systems or Learning Management System (LMS)
in higher education worldwide. It is used by thousands of educational institu-
tions spread over numerous countries. One of its main features is to publish the
contents of a course on the Internet for students. This is not directly very secu-
rity sensitive. However, BLACKBOARD LEARN also has the ability to keep track
of grades for assignments with the intention to derive the final grades from the
BLACKBOARD LEARN system. Clearly, influencing the grades might be a goal
of an attacker. Furthermore, BLACKBOARD LEARN has the ability to take on-
line exams completely within the system. Being able to access these exams in
advance is obviously another feasible attack goal.

Several serious vulnerabilities have been found in BLACKBOARD LEARN. On-
line24 [12] did a full black box investigation of BLACKBOARD LEARN version 8.
They found all kinds of feasible attacks. One vulnerability with major impact
allows an adversary to insert executable code or send emails with viruses from
BLACKBOARD LEARN. Because of these flaws in BLACKBOARD LEARN, one of
the possibilities is that students can elevate their permissions to the permissions
of a teacher. This can be done e.g. by session hijacking. A student can insert
cross site scripting (XSS) code in an assignment and when the teacher opens
this assignment to grade the work, the code is executed in the browser of the
teacher. Blackboard Inc., the company behind BLACKBOARD LEARN responded
with a new version in which all the problems were claimed to be fixed. LaQuSo”
verified this claim by again testing the BLACKBOARD LEARN system version 9.1
SP5 as a black box. LaQuSo concluded [4] that BLACKBOARD LEARN blacklisted
the previous attacks, but that workarounds for the blacklisting filter were very
easily found. Vulnerabilities can be expected to keep popping up until structural
security measures have been fully incorporated by BLACKBOARD LEARN.

6 https://github.com/whurgers/Session- Binding- Proxy
" The Laboratory for Quality Software (LaQuSo) is a joint activity of Technische
Universiteit Eindhoven and Radboud Universiteit Nijmegen.

11

https://github.com/wburgers/Session-Binding-Proxy

The structural nature of the revealed vulnerabilities lead the Board of Di-
rectors of the Radboud University in Nijmegen to decide in September 2011 not
to use BLACKBOARD LEARN for any privacy or security sensitive activities until
further notice. Hence, BLACKBOARD LEARN can not be used for online exams
and teachers e.g. have to keep a separate version of the grades they gave to
students since the students can edit the BLACKBOARD LEARN grades.

Sect. 4.1 first explains the details of a cross site script that steals a session in
BLACKBOARD LEARN. Then, Sect. 4.2 reports on the results of testing our pro-
totype on the Radboud University Nijmegen BLACKBOARD LEARN test server.
Finally, Sect. 4.3 evaluates the test result impact for BLACKBOARD LEARN.

4.1 Session Stealing in BLACKBOARD LEARN

It was still very easy to steal sessions in BLACKBOARD LEARN version 9.1 SP5
by executing an XSS attack. The LaQuSo research showed that especially the
Discussion board and Blog-Assignments were vulnerable and scripts could be
injected in the title/subject field as well as the message field of both modules.
When a student hands in a Blog-Assignment or submits something to the Dis-

document . write (”"<img src=\"http://website.com/bb/?cookie
=” 4+ document . cookie+ 7\”7>");

Fig. 8. bb.js

cussion board and the teacher requests the page, the script in Fig. 8 can get the
cookies of the teacher and send them to the attackers website (at website.com).

@ Blackboard Leam - Mozila Firefox =8 EoN %~
Fle Edit View History Bookmaris Tools Help

Ihave a queston.

e..b_group.id=3.1

& Next # Previous »2 Highiight all | Match case

Fig. 9. Student injects JavaScript code — Instructor views malicious post

The screens that invoke the XSS attack are shown. The upper image of Fig. 9
shows the student injecting the attack in the Discussion board and the bottom
image of Fig. 9 shows the teacher viewing the discussion thread. The teacher does
not even have to open the thread, because the attack is injected in the title. With
such an attack, the adversary is able to steal all the necessary cookies from a
teacher and hijack the session.

4.2 Applying the SBP prototype

The prototype was tested on the, fully functional, local BLACKBOARD LEARN
test server of the Radboud University Nijmegen. In order to detect and resolve

12

incompatibilities with earlier versions this server is used for testing new BLACK-
BOARD LEARN releases and patches before putting them in actual operation.
It generally takes several weeks or even a few months before a new release is
fully operational. The BLACKBOARD LEARN test environment runs on several
application servers. A load balancer divides the work between the application
servers. This load balancer is not the SSL/TLS endpoint, so the SSL connection
is still intact after being routed through the load balancer. For every application
server, a SBP is included on the same system such that the routing will look
like: incoming request—load balancer—SBP —BLACKBOARD LEARN server.
We first tested whether it is still possible to steal a session in BLACKBOARD
LEARN on the standard BLACKBOARD LEARN test server. We used two browsers
A and B, both having the login page of the BLACKBOARD LEARN test server
open. We logged in on browser A, copied the cookies from browser A to browser
B and refreshed the page on browser B. By copying the cookies, the session was
transferred to browser B and we were logged in on both browsers.

Then, we performed the same attack again but first made sure that the
installed SBP prototype was used. This was achieved by one simple redirect at
the highest level. Again we used two browsers A and B. Both had the login page
of the BLACKBOARD LEARN test server open, but this time we were connected to
the SBP machine. This means that all traffic flowed through the proxy. Again, we
logged in on browser A and copied the cookies to browser B. When we refreshed
the page on browser B now, we were not logged in. The reason for that is that
both browsers had a different SSL session. The cookie that is sent to the back end
server will not be valid and the session is not taken over. So, SBP was effectively
used to prevent session hijacking in BLACKBOARD LEARN.

4.3 Validation evaluation

The BLACKBOARD LEARN test server we used did not have the most recent
patches by Blackboard Inc., where some cookies are protected from JavaScript
access by making them http-only. The browser will then keep the cookies for itself
and when requesting access to the cookies by the JavaScript command ’docu-
ment.cookie’, it only returns the cookies that do not have the http-only attribute.
This means that XSS attacks based on JavaScript requesting the cookies, will
not work. The most important cookie in BLACKBOARD LEARN is the s_session_id
cookie. The s_session_id cookie is set to http-only in the recent patches. The ses-
sion cannot be hijacked by XSS attacks because of this property. This does not
mean that session stealing becomes impossible. Recent papers have shown that
cookies sent over an HTTPS connection can be read using a chosen plaintext
attack on SSL/TLS [3]. This recent BLACKBOARD LEARN patch is therefore less
effective than our SBP approach. In Sect. 5 we will discuss this attack on SS-
L/TLS. It is important to note that SBP does not prevent XSS attacks or other
attacks from happening (proper input validation and output encoding should be
in place in order to achieve that), but it does prevent one of their uses. SBP is
a general approach in which sessions can no longer be stolen by only obtaining
the session ID from the cookie of a client’s browser.

The validation has shown that our SBP prototype is fully operational, easily
deployed and effective in practice against session stealing via XSS. Even in a
production environment with multiple application servers.

13

4.4 General applicability of SBP

The use of SBP is not limited to e-learn environments only. Many legacy web ap-
plications suffer from various XSS vulnerabilities, mainly due the lack of proper
maintenance. Without having access to the source-code it is hard to protect
them against widely distributed and general applicable XSS exploit scripts. Our
contribution provides a setup that does not require any knowledge of the web
application that it protects. As long as it is accessible through a secure channel
(SSL/TLS) and uses a cookie to store the session credentials, then the SBP is
able to fortify the security of its online sessions. Our case study shows the ro-
bustness and demonstrates that hijacking a session is only mountable when the
clients computer or application server is completely compromised.

5 Related Work

5.1 Session hijacking prevention

There are several other proposals to prevent session hijacking. Johns (2006) [7]
proposes a solution where the cookies in which the session ID is kept are sent
from a different subdomain. This way the JavaScript code cannot get the cookie,
because it does not fall under the same-origin policy, so the cookie is safe. This
does not prevent every type of attack though. With browser hijacking or XSS
propagation, session cookies can still be obtained by an attacker. Johns uses URL
randomization and one-time URLs to prevent these attacks from being executed.
He also writes that these methods are not meant as a complete replacement
for input and output validation in the application, but it is an extra layer of
protection. This sure is a good way of preventing session hijacking, though it is
a lot of hassle to implement. Most of the application needs to be rewritten.

Another method is to run a piece of software on the client computer which
intercepts the ‘Set-Cookie’ header before it is sent to the browser. This way the
cookies will never be in the browser at all. This method is proposed by Nikiforakis
et al. (2011) [10]. Without much overhead this system will prevent JavaScript
code from accessing the cookie information. This still relies on the client side.
A secure implementation without memory leaks makes this a good solution. As
mentioned in Sect. 2.3, this paper is based on the work of Oppliger et al. [11].
They propose to bind the application session to the SSL/TLS session to prevent
MITM attacks. To bind the two sessions, they use either a software token (like
a client cerficate or a private key) or a hardware token (like a smartcard or
dedicated device). This is a safe solution, but it requires the distribution of a
pre shared key to the client/user. The same binding idea can be used for session
hijacking, but we propose a different binding method.

The only other paper that uses the binding of SSL/TLS Session-Aware User
Authentication as a basis is a proposal by Chen et al. [2]. They make use of
a two factor authentication method by means of a separate device (3g phone).
With this device they bind the SSL/TLS session to the application session. It
requires both client and server side changes.

In Fig. 10, an overview is given of the modifications that are required to
secure sessions with the various proposed methods.

14

Protection method| Side Eoftware pgtchgs EWENETT Ciaviges

rowser |application |software token|hardware token|server
SessionSafe [7] Server| no yes no no no
SessionShield [10] Client| yes no no no no
Session-Aware [11] Server| no yes yest yest no
TLS-SA + GAA [2] | Both no yes? no yes yes?
SBP Server no no no no no

L The implementation can work with either a software token or a hardware token
? Either the server application needs to be modified or install additional software

Fig. 10. Comparison of patch requirements to prevent session stealing
5.2 Related attack setups

There are also papers that describe attacks on cookies and sessions. As men-
tioned in Sect. 4.3 there exist attacks like Browser Exploit Against SSL/TLS
(BEAST) [3] and CRIME to steal cookies. Both attacks are implemented in
JavaScript for speed, but can be run on any user level. BEAST and CRIME use
known plaintext attacks to guess the unencrypted cookie that is sent over an
encrypted SSL connection. The cookie is guessed character by character. This
brute force method allows to guess an entire cookie. Where BEAST works only
on certain versions of SSL/TLS, CRIME works for any version. CRIME makes
use of the compression in SSL/TLS to guess the cookie. The flaws of compres-
sion in combination with encryption are already described in a paper by John
Kelsey in 2002 [8]. There is a proof of concept for the CRIME attack. With some
modifications it can be used to actually capture cookies even though they have
the http-only property. This is just another method to get the cookie from the
client. Our proposed method also defends against both attacks as depicted in
the attacker model. Even though they can steal the cookie. It is still hard to
copy the SSL session. Also the last two years people could download a Firefox
add-on that would sniff network traffic and intercept cookies from other users.
This extension is called Firesheep. The main focus of the creator of Firesheep
was to encourage sites like Facebook and Twitter to always use HT'TPS, not
just when logging in. Nowadays those sites do use HT'TPS for all their traffic
and Firesheep is useless. BEAST and CRIME can be used however. Firesheep
will also not work on sites that use SBP, because SBP needs HTTPS to work.

6 Conclusions

We have presented a new, general technique to prevent session stealing, SBP. Us-
ing a server side reverse proxy the secure communication channel is bound to the
user authentication of the session. We validated the approach by implementing
SBP and testing it on a test server of a widely used infrastructural application
which was vulnerable to session stealing. Using SBP, this application was shown
to be effectively protected against the earlier session stealing attacks. We made
our prototype implementation available as open source to be used by a broad
community in a wide context. This prototype is fully functional and released un-
der the same license as Nginx, the royalty free BSD License, which defines very
minimalistic distribution restrictions. We want to improve on our prototype to
handle full SSL/TLS connection termination and renegotiation, such that long-
living cookies can also be used with SBP. This will make it deployable in all
contexts.

15

Acknowledgements

We thank the anonymous reviewers for useful feedback and for believing this so-
lution has the potential to grow into the universally acceptable security standard
solution. This motivates us to continue along this path and make our solution
work for every context.

References

10.

11.

12.

13.

. Willem Burgers. Session proxy, a prevention method for session hijacking in black-

board. bachelor thesis, Institute for Computing and Information Sciences, Radboud
University Nijmegen, The Netherlands. Bachelors Thesis, July 2012.

. Chunhua Chen, Chris J. Mitchell, and Shaohua Tang. SSL/TLS session-aware user

authentication using a gaa bootstrapped key. In 5th IFIP WG 11.2 international
conference on Information security theory and practice: security and privacy of
mobile devices in wireless communication (WISTP 2011), volume 6633 of Lecture
Notes in Computer Science, pages 54—68. Springer-Verlag, 2011.

Thai Duong and Juliano Rizzo. Here come the XOR Ninjas. White paper, Netifera,
May 2011.

Marko van Eekelen, Rachid Ben Moussa, Engelbert Hubbers, and Roel Verdult.
Blackboard Security Assessment. Technical Report ICIS-R13004, Radboud Uni-
versity Nijmegen, April 2013.

Blackboard Inc. Release notes for blackboard learn 9.0 service pack 7 (9.0.692.0).
Behind the Blackboard for System Administrators € Developers, 2011.

. Blackboard Inc. Release notes for blackboard learn 9.1 service pack 8 (9.1.82223.0).

Behind the Blackboard for System Administrators € Developers, 2012.

Martin Johns. SessionSafe: Implementing XSS immune session handling. In 11th
European Conference on Research in Computer Security (ESORICS 2006), volume
4189 of Lecture Notes in Computer Science, pages 444-460. Springer-Verlag, 2006.
John Kelsey. Compression and information leakage of plaintext. In Joan Daemen
and Vincent Rijmen, editors, 9th Fast Software Encryption (FSE 2002), volume
2365 of Lecture Notes in Computer Science, pages 95-102. Springer-Verlag, 2002.
HyungJun Kim. Security and Vulnerability of SCADA Systems over IP-Based
Wireless Sensor Networks. International Journal of Distributed Sensor Networks,
2012, 2012. Article ID 268478.

Nick Nikiforakis, Wannes Meert, Yves Younan, Martin Johns, and Wouter Joosen.
SessionShield: Lightweight protection against session hijacking. In 8rd Interna-
tional Symposium Engineering Secure Software and Systems (ESSoS 2011), volume
6542 of Lecture Notes in Computer Science, pages 87-100. Springer-Verlag, 2011.
Rolf Oppliger, Ralf Hauser, and David Basin. SSL/TLS session-aware user authen-
tication — or how to effectively thwart the man-in-the-middle. Computer Commu-
nications, 29(12):2238-2246, August 2006.

Michiel Prins and Jobert Abma. Security research blackboard academic suite.
https://www.online24.nl/blackboard-security-research, Online24, 2010.
Nattakant Utakrit. Review of browser extensions, a man-in-the-browser phishing
techniques targeting bank customers. 2009.

16

https://www.online24.nl/blackboard-security-research

