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Abstract

Functional connectivity refers to covarying activity between spatially segregated brain regions and can be studied by
measuring correlation between functional magnetic resonance imaging (fMRI) timeseries. These correlations can be
caused either by direct communication via active axonal pathways or indirectly via the interaction with other regions.
It is not possible to discriminate between these two kinds of functional interaction simply by considering the covariance
matrix. However, the non-diagonal elements of its inverse, the precision matrix, can be naturally related to direct
communication between brain areas and interpreted in terms of partial correlations. In this paper, we propose a Bayesian
model for functional connectivity analysis which allows estimation of a posterior density over precision matrices, and,
consequently, allows one to quantify the uncertainty about estimated partial correlations. In order to make model
estimation feasible it is assumed that the sparseness structure of the precision matrices is given by an estimate of
structural connectivity obtained using diffusion imaging data. The model was tested on simulated data as well as
resting-state fMRI data and compared with a graphical lasso analysis. The presented approach provides a theoretically
solid foundation for quantifying functional connectivity in the presence of uncertainty.
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1. Introduction

One of the oldest and most influential ideas in cognitive
neuroscience is that the brain, and in particular the cortex,
can be divided into specialized functional regions (Friston,
2011). In recent times, the neuroscience community has
become increasingly interested in determining how these
regions are organized as large functional networks and
how their modulation reflects ongoing cognitive process-
ing (Bullmore and Sporns, 2009). The organization of
these functional networks can be described using the um-
brella term ‘functional connectivity’, defined as the devi-
ations from statistical independence between distributed
and often spatially remote neuronal units (Friston, 1994;
Craddock et al., 2013). Despite the indirect nature of the
blood oxygenation level dependent (BOLD) signal, func-
tional magnetic resonance imaging (fMRI) has proven to
be able to extract patterns of co-activation between clus-
ters of voxels (Lowe et al., 2000).

The easiest way to operationalize the notion of func-
tional connectivity is to calculate a covariance matrix
which, in case of standardized variables, is equivalent to
the correlation structure between brain regions. However,
this approach is not able to identify direct (monosynap-
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tic) functional connections as it is also sensitive to indi-
rect (polysynaptic) functional interactions. For example,
if regions A and B as well as regions B and C display cor-
related activity, then A and C will also show correlated
activity even if they are not directly connected (Smith,
2012; Varoquaux and Craddock, In press).

In contrast, the precision matrix, defined as the inverse
of the covariance matrix, captures conditional indepen-
dence between brain regions (Lauritzen, 1996; Whittaker,
2009). That is, elements of the precision matrix are related
to partial rather than full correlations and zero elements of
the precision matrix imply an absence of direct functional
connectivity. Therefore, sparse precision matrices provide
us with valuable information about how different regions
interact, though the estimates need to be interpreted with
care (Marrelec and Benali, 2009; Friston, 2011; Woolrich
and Stephan, In press; Hutchison et al., In press).

A common approach to obtain a point estimate for
a sparse precision matrix is by means of the graphical
lasso (Friedman et al., 2008; Varoquaux et al., 2010; Smith
et al., 2011), which achieves sparseness through `1 regular-
ization. Although the graphical lasso provides a reasonable
point estimate, it is biased due to the induced shrinkage of
the partial correlations. Furthermore, it does not directly
provide a measure of uncertainty regarding the partial cor-
relation estimates. This could lead to possibly erroneous
conclusions about functional connectivity.

From a Bayesian perspective we are interested in the
posterior density of the precision matrix given observed
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data. Ultimately, this should lead to more reliable infer-
ences about a subject’s cognitive state. In order to facili-
tate the estimation problem, we will not resort to shrink-
age, as in the graphical lasso. Rather, we assume that the
conditional independence structure between brain regions
is given by an independent estimate of structural connec-
tivity.

Structural connectivity refers to the presence of white
matter tracts between spatially segregated brain re-
gions (Hagmann et al., 2008). In humans, these tracts
can be estimated in vivo by diffusion weighted imaging
(DWI) which measures the anisotropy in the diffusion of
water molecules (Le Bihan et al., 2001). The final result is
usually a binary undirected graph which reports whether
or not two areas are structurally connected. Clearly two
brain regions can be directly functionally coupled only if
they are physically connected, therefore the concepts of
functional and structural connectivity are intimately re-
lated (Damoiseaux and Greicius, 2009). The idea is to
infer structural connectivity from DWI data and use it as
an additional constraint in our Bayesian model. The valid-
ity of this approach is supported by several recent experi-
mental studies which found a substantial overlap between
structural and functional networks both inside specific cor-
tical areas (Koch et al., 2002) and on a whole brain scale
(Hagmann et al., 2008; Honey et al., 2009, 2007; Damoi-
seaux and Greicius, 2009; Greicius et al., 2009; Cabral
et al., 2012). Related approaches have been used before in
the context of functional and effective connectivity analy-
sis (Stephan et al., 2009; Deligianni et al., 2011; Ng et al.,
2012).

In the following we present a new Bayesian frame-
work for estimating functional connectivity. The frame-
work, which we refer to as Bayesian functional connectivity
(BFC) analysis, makes use of a G-Wishart prior (Rover-
ato, 2002). This prior allows the sparseness structure of
estimated precision matrices to be determined by a graph
G, corresponding to structural connectivity. BFC analysis
then amounts to computing a posterior density over sparse
precision matrices. This posterior may then be used to
compute marginal densities for partial correlations of in-
terest. Our approach is compared with existing approaches
using both simulated data and empirical data. We show
that our approach provides robust partial correlation esti-
mates while at the same time quantifying the uncertainty
about functional connectivity.

2. Materials and Methods

2.1. Conventional functional connectivity estimation

Traditionally, functional connectivity estimation has re-
lied on estimating covariance structure between p brain re-
gions from timeseries data X = (x1, . . . ,xN ). Each vector
xn = (xn1, . . . , xnp) reflects neuronal activity (e.g. BOLD
responses) for p brain regions. Without loss of generality,
we assume that data is standardized to have zero mean

and unit standard deviation such that covariance coincides
with correlation. It is assumed that the data are generated
according to a zero-mean multivariate Gaussian density

p(X | Ω) =

N∏
n

N (xn | 0,Ω) ∝ |Ω|N/2 exp

[
−1

2
〈SΩ〉

]
(1)

with precision (inverse covariance) matrix Ω = Σ−1, scat-
ter matrix S = XXT and trace operator 〈·〉. The choice of
this distribution is justified by the fact that it is the max-
imum entropy distribution among all distributions with a
specified mean and covariance (Cover and Thomas, 2006).
Alternatively, the likelihood may be characterized in terms
of the scatter matrix S which follows a Wishart distribu-
tion, i.e.

p(S | Σ, N) =Wp (Σ, N) ∝ |S|−N/2 exp

[
−1

2
〈SΣ−1〉

]
.

(2)
This perspective can be applied more easily for distribu-
tions with a mean different from zero (Anderson, 1984).

We focus on estimating the precision matrix Ω = Σ−1

rather than the covariance matrix. As mentioned before,
zero elements in Ω reflect the absence of direct interac-
tions. More formally, the sparseness structure of Ω, rep-
resented in terms of an undirected graph G where V (G) is
a set of nodes and E(G) is a set of undirected edges be-
tween nodes, is equivalent to the conditional independence
structure of a Gaussian Markov random field (Lauritzen,
1996; Whittaker, 2009). In other words, in the context of
connectivity analysis, ωij = 0 corresponds to the absence
of structural connectivity between brain regions i and j.

In order to estimate the precision matrix Ω of a zero-
mean multivariate Gaussian density from data X one may
maximize the log likelihood

log p(X | Ω) =
1

2
[N log |Ω| − 〈SΩ〉]

which gives the maximum likelihood estimate (MLE):

Ω̂ = arg max
Ω∈M+

[N log |Ω| − 〈SΩ〉] = NS−1 (3)

where the maximization is constrained to precision matri-
ces in the family of p× p positive definite matrices M+.

In practice, however, this empirical estimate does not
contain zero elements. Furthermore, in case N < p, the
maximum likelihood solution does not exist since S/N be-
comes singular. Even in case N > p, the MLE is often
poorly behaved, and regularization is called for (Pourah-
madi, 2011). The graphical lasso (Friedman et al., 2008)
regularizes the preceding MLE through sparsification by
solving

Ω̂ = arg max
Ω∈M+

[
log |Ω| − 1

N
〈SΩ〉 − λ ‖Ω‖1

]
. (4)

The employed `1 regularizer encourages sparse precision
matrices as determined by the regularization parameter
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λ. This maximization problem can be solved using estab-
lished coordinate descent methods (Friedman et al., 2008).
The graphical lasso has been proposed as the method of
choice for functional connectivity estimation (Varoquaux
et al., 2010; Smith et al., 2011; Varoquaux and Craddock,
In press).

Even though the graphical lasso is commonly used to
estimate sparse precision matrices, it suffers from two is-
sues. First, since the graphical lasso employs shrinkage,
pushing precision values towards zero, the resulting func-
tional connectivity estimate is biased. Second, the graphi-
cal lasso produces a point estimate which does not directly
allow inferences to be drawn about the uncertainty in our
estimates arising from sampling noise and finite sample
size.

2.2. Bayesian functional connectivity estimation

In order to tackle the aforementioned issues, we devel-
oped a Bayesian framework for inferring functional connec-
tivity which does not rely on shrinkage but rather assumes
that the sparseness structure G of Ω is given (Dempster,
1972). Specifically, we assume that the graph G is given by
the structural connectivity as estimated from DWI data.

We start by assuming a G-Wishart distribution as the
conjugate prior on precision matrices Ω. The G-Wishart
is defined for the cone M+(G) of positive-definite sym-
metric matrices with off-diagonal elements ωij = 0 when-
ever (i, j) /∈ E(G). A zero-constrained random matrix Ω
has the G-Wishart distribution WG(δ0,D) if its density
is (Wang and Li, 2012):

p(Ω | G) =
|Ω|(δ0−2)/2

ZG(δ0,D)
exp

(
−1

2
〈DΩ〉

)
1{Ω∈M+(G)}

where δ are the prior degrees of freedom, D a symmetric
positive definite prior scatter matrix, and ZG(δ,D) the
normalizing constant. The indicator function 1x evaluates
to 1 if its argument x is true and to 0 if its argument
is false. In our experiments, we set δ0 = 3 and choose
D = Ip×p (Moghaddam et al., 2009). This amounts to a
vague prior for the precision matrix in (1), except that its
support is restricted by G. We may now use Bayes’ rule
to obtain the posterior density for Ω according to

p(Ω | X, G) ∝ p(X | Ω)p(Ω | G)

=
|Ω|(δn−2)/2

ZG(δn,B)
exp

(
−1

2
〈BΩ〉

)
1{Ω∈M+(G)} .

(5)

Because the G-Wishart prior is conjugate to the likelihood,
the resulting posterior once again follows a G-Wishart dis-
tribution with δn = δ0+N the posterior degrees of freedom
and B = D + S the posterior scatter matrix.

In order to approximate this posterior density we em-
ployed an efficient edgewise block Gibbs sampler described
in detail in Wang and Li (2012). The algorithm is simi-
lar to a Bayesian iterative proportional scaling algorithm,

but instead of updating Ω in large blocks (e.g. maximum
cliques in G, as is used in (Lenkoski and Dobra, 2011)), it
is updated per edge. This can be done efficiently, as the
authors show that this only requires 2 × 2 matrix inver-
sions. Source code implementing the Gibbs sampler can
be freely obtained from the author’s website. 1

In practice, we find it more convenient to express func-
tional connectivity in terms of partial correlation rather
than precision. This can be easily achieved via the follow-
ing transformation

ρij|Z =

{ − ωij√
ωiiωjj

for i 6= j

1 for i = j
(6)

reflecting the correlation between brain regions i and
j when we condition on all other brain regions Z =
{1, . . . , N} \ {i, j}. Observe that, given this transforma-
tion, the interpretation in terms of conditional indepen-
dence still holds. Hence, in practice, we use the posterior
density

p(R | X, G) (7)

for the partial correlation matrix R as our estimate of
Bayesian functional connectivity. This density is com-
puted by applying the transformation (6) to each of the
samples of the precision matrix as generated by the Gibbs
sampler.

2.3. Experimental validation

We compared conventional functional connectivity anal-
ysis with Bayesian functional connectivity analysis using
both simulated data and empirical data.

For the conventional analysis, we examined the maxi-
mum likelihood estimate (3) and the graphical lasso (4).
In order to obtain an optimal estimate for the graphi-
cal lasso, we used a five-fold cross-validation procedure
where the log likelihood computed on hold-out data was
used to fine-tune the regularization parameter, as proposed
in (Friedman et al., 2008).

For the BFC analysis, we computed the posterior den-
sity (7) using Gibbs sampling, where we discarded the
first 2000 burn-in samples and stored the subsequent 5000
samples while using the transformation (6). The mode
of this posterior (maximum a posteriori (MAP) estimate)
was used to compare with point estimates obtained using
conventional analyses. Both this MAP estimate as well
as the graphical lasso estimates were computed using fast
optimization procedures due to Schmidt (2010).2

In the remainder of this section, we describe the empir-
ical data which were used to validate our approach.

2.4. Data acquisition

Six healthy volunteers were scanned after giving in-
formed written consent in accordance with the guidelines

1http://www.stat.sc.edu/~wang345
2http://www.di.ens.fr/~mschmidt/Software

3



Table 1: Left-hemisphere AAL regions used in functional connectivity analysis. Right-hemisphere AAL regions 46–90 follow the same labeling.

# region # region # region # region # region

1 precentral 10 supp motor 19 hippocampus 28 fusiform 37 putamen
2 frontal sup 11 olfactory 20 parahippocampal 29 postcentral 38 pallidum
3 frontal sup orb 12 frontal sup medial 21 amygdala 30 parietal sup 39 thalamus
4 frontal mid 13 frontal mid orb 22 calcarine 31 parietal inf 40 heschl
5 frontal mid orb 14 rectus 23 cuneus 32 supramarginal 41 temporal sup
6 frontal inf oper 15 insula 24 lingual 33 angular 42 temporal pole sup
7 frontal inf tri 16 cingulum ant 25 occipital sup 34 precuneus 43 temporal mid
8 frontal inf orb 17 cingulum mid 26 occipital mid 35 paracentral lobule 44 temporal pole mid
9 rolandic oper 18 cingulum post 27 occipital inf 36 caudate 45 temporal inf

of the local ethics committee. These subjects represent a
subset of the data previously used in (Hinne et al., 2013).
T1 structural scans, resting-state functional data and
diffusion-weighted images were obtained using a Siemens
Magnetom Trio 3 T system at the Donders Centre for Cog-
nitive Neuroimaging, Radboud University Nijmegen, The
Netherlands. Resting-state fMRI data were acquired at 3
Tesla by using a multi-echo echo-planar imaging (ME-EPI)
sequence (voxel size 3.5 mm isotropic, matrix size 64×64,
TR=2000 ms, TEs=6.9, 16.2, 25, 35 and 45 ms, 39 slices,
GRAPPA factor 3, 6/8 partial Fourier). A total of 1030
volumes were obtained. An optimized acquisition order
described by Cook et al. (2007) was used in the DWI pro-
tocol (voxel size 2.0 mm isotropic, matrix size 110×110,
TR=13,000 ms, TE=101 ms, 70 slices, 256 directions at
b=1500 s/mm2).

Tools from the Oxford FMRIB Software Library (FSL,
FMRIB, Oxford, UK) were used to preprocess the data.
For each subject’s anatomical scan, brain extraction was
performed using FSL BET (Smith, 2002), probabilis-
tic brain tissue segmentation was performed using FSL
FAST (Zhang et al., 2001) and sub-cortical structures were
segmented using FSL FIRST (Patenaude et al., 2011).

2.5. Preprocessing of diffusion imaging data

DWI data were preprocessed using FSL FDT (Behrens
et al., 2003) and consisted of correction for eddy currents
and estimation of the diffusion parameters. A measure
of white matter connectivity was obtained by FDT Prob-
trackx 2.0 (Behrens et al., 2003, 2007). The voxels that live
on the boundary between white matter and gray matter
were used as seeds for tractography, gray matter was used
as a target mask. For each seed voxel 5000 streamlines
were drawn with a maximum length of 2000 steps. The
streamlines were restricted by the fractional anisotropy
to prevent them from wandering around in gray matter.
Streamlines in which a sharp angle (> 80◦) occurred were
discarded.

This procedure resulted in a matrix providing voxel-to-
voxel connectivity for each subject s. Each matrix was re-
duced to a 90×90 streamline count matrix Cs by summing
the streamline counts over voxels belonging to 90 distinct
brain regions, as defined by the automatic anatomical la-
belling (AAL) atlas (Tzourio-Mazoyer et al., 2002) while

excluding cerebellar structures. The regions defined by the
AAL template are displayed in Table 1 for ease of refer-
ence. Finally, edges of the structural connectivity graph
G were determined by the streamline count matrices as
follows:

(i, j) ∈ E(G)↔
⋂

s∈{1,...,6}

(csij > 0 ∧ csji > 0) . (8)

This particular definition corresponds to the following in-
tuition: at the coarse scale that is given by the AAL tem-
plate, we require that each subject shows support for a par-
ticular connection. Per subject we are lenient and thresh-
old at zero. Alternatively, using the union of the thresh-
olded networks for each subject would result in extremely
dense estimates. The structural graph G was used as a
constraint for Bayesian functional connectivity analysis.

2.6. Preprocessing of functional data

Multi-echo images obtained using the rs-fMRI acquisi-
tion protocol were combined using a custom Matlab script
(MATLAB 7.7, The MathWorks Inc., Natick, MA, USA)
which implements the procedure described in (Poser et al.,
2006) and also incorporates motion correction using func-
tions from the SPM5 software package (Wellcome Depart-
ment of Imaging Neuroscience, University College London,
UK). Of the 1030 combined volumes, the first six were dis-
carded to allow the system to reach a steady state. The
data was then factorized into 77 independent components
using FSL MELODIC (Beckmann and Smith, 2004), of
which 37± 1 were retained by manually removing artifact
components. After preprocessing, the fMRI data were par-
cellated according to the AAL atlas. For these regions, the
functional data was summed and standardized to have zero
mean and unit standard deviation. The resulting BOLD
timeseries for all six subjects were used in subsequent func-
tional connectivity analyses.

3. Results

3.1. Simulation study

We performed a simulation study in order to compare
the performance of the G-Wishart approach with the max-
imum likelihood estimate and the graphical lasso. We as-
sumed the structural estimate defined in (8) as the ground
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Figure 1: A. The simulated precision matrix Ωs, and reconstructions Ωr using the graphical lasso, MLE and MAP-G solution, for N = 1024.
Note that the diagonal elements have been set to zero to increase the visibility of the differences between the off-diagonal elements. The
reconstruction for the MAP estimate using a full graph has been omitted, as it was indistinguishable from the MLE solution. B. The
Kullback-Leibler divergence for the four different methods as a function of the number of samples. The inset shows a detailed view. C. The
Kullback-Leibler divergence for the four different methods as a function of the amount of rewiring applied to the ground truth graph. Note
that the MLE, the graphical lasso and the MAP estimate using the full graph are unaffected by this rewiring; the dotted lines are provided
as a visual aid. D. The Kullback-Leibler divergence for the four different methods as a function of false positives and false negatives. The
vertical dashed line indicates the actual density. The effect of false negatives is shown on the left side of this line (until the graph is near
empty) whereas the right side shows the effect of false positives (until the graph is the complete graph). Similar to C, the other methods are
unaffected by the changes in G and are only shown for convenience.
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truth. Using this structure, 100 random precision ma-
trices Ωs were drawn from the posterior p(Ω|X, G) with
δn = 3 + n and B = Ip×p + S, with S the mean covari-
ance matrix of the six subjects. The consequence of this
approach was that the used precision matrices were en-
sured to be positive definite, follow the structure of G,
and have comparable conditioning as the MAP estimates
in our experiments using real data. From the sampled pre-
cision matrices Ωs, an N×p data matrix Xs ∼ N (0,Ω−1s )
was generated, with N = {128, 256, . . . , 4096}. For each
ground truth precision matrix Ωs and the different sam-
ple sizes, we created reconstructions Ωr of Ωs using four
strategies: the graphical lasso estimate, the maximum like-
lihood estimate (MLE), the maximum a posteriori (MAP)
estimate using the G-Wishart prior and Gs as structural
estimate and the MAP estimate using the Wishart prior,
which corresponds to a G-Wishart prior with a full graph.
An example precision matrix, as well as the different re-
constructions, is shown in Fig. 1A.

We quantified the quality of the reconstruction of the
ground truth precision using the Kullback-Leibler (KL)
divergence:

DKL (Ωs||Ωr) =
1

2 log 2

[
log
|Ωs|
|Ωr|

+ 〈ΩrΩ
−1
s 〉 − p

]
.

The results of the simulation are provided in Fig. 1B. The
figure shows that compared to the maximum likelihood
estimator and the MAP estimate using the Wishart dis-
tribution, the G-Wishart approach does not require many
samples in order to reconstruct Ωs. Also, it outperforms
the graphical lasso estimates. However, this critically de-
pends on the quality of G. To see how well the G-Wishart
MAP estimate approximates the ground truth, we ran ad-
ditional simulation runs in which the structural graph G
was increasingly perturbed. We considered three cases. In
the first, the graph is rewired by removing edges at random
and simultaneously connecting randomly selected discon-
nected nodes, thus keeping the density of G constant. The
results of this rewiring are shown in Fig. 1C. In the second
and third case we either removed edges, representing false
negatives, or we added edges, representing false positives.
The results of these perturbations are shown in Fig. 1D.
The results show that the performance of the G-Wishart
approach deteriorates linearly with increasing rewiring. In
the low-powered setting of N = 128, we observe that the
approach outperforms the alternatives for up to 20% of
the edges replaced, but for the high-powered setting of
N = 4096 this percentage drops to 5%. For false negative
errors in the structural estimate, the number of samples
has a clear effect on the performance. For few samples,
the effect of mere sparsity keeps the Kullback-Leibler di-
vergence lower than the MLE or the Wishart MAP, al-
though the graphical lasso obviously performs better than
the (near) empty structural graph. Once more samples
are acquired, false negatives have an even stronger nega-
tive influence on the performance. Less troublesome are
false positives, for which we observe the converse behavior.

For few samples, false positives provide difficulty for the
G-Wishart approach, but once a large number of samples
is obtained, an increase in density of the structural esti-
mate of up to 90% still shows the G-Wishart approach as
the most successful.

Finally, we considered the merit of the Bayesian ap-
proach by considering how the posterior density of partial
correlation changes depending on the number of samples
and the quality of the provided structural estimate. We
considered three cases: the estimation of partial correla-
tion for a ground truth edge using G, the same estima-
tion using a perturbed graph with 20% of the edges re-
placed, but with the ground truth edge still intact and
finally the estimation of partial correlation for an edge
that was absent in the ground truth, yet is present in the
perturbed graph. We used the same structural estimate
for G as before, and used one random sampled precision
matrix as ground truth, from which data was generated
for N = {128, 1024, 4096}. As an example, Fig. 2A and B
show the estimated partial correlation between the supple-
mentary motor areas for the true graph and the perturbed
graph that contains this connection, respectively. Notably,
the distributions become more narrow when more samples
are acquired (as expected). In Fig. 2C the partial correla-
tion between the left cuneus and the right temporal pole is
shown. Note that this connection is not in our structural
estimate. The distributions show that for erroneous edges
(i.e. false positives), the G-Wishart approach correctly
estimates a partial correlation of zero.

3.2. Empirical validation

We now turn to the empirical validation where we used
a structural connectivity graph G as estimated from DWI
data to constrain the correlation structure which explains
resting-state fMRI data.

3.2.1. Estimated structural connectivity graph

The structural connectivity as estimated via the proce-
dure described in Eq. (8) is shown in Fig. 3, separately
for intra-hemispheric connectivity in left and right hemi-
spheres as well as inter-hemispheric connectivity between
left and right hemispheres. The region numbers corre-
spond to those displayed in Table 1. A total of 774 struc-
tural links were identified of which 329 were left intra-
hemispheric connections, 328 were right intra-hemispheric
connections and 117 were inter-hemispheric connections.
This gives a network density of 0.19. Note that his is
denser than the density of 0.11 reported by Gong et al.
(2009). However, for our purposes, the BFC analysis can
still provide evidence against edges which were erroneously
included in the structural graph as we saw in the simula-
tion.

3.2.2. Bayesian functional connectivity analysis

BFC analysis was performed on the resting-state data
for each of the six subjects and amounted to computing
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Figure 3: Connectivity of the structural connectivity matrix used as a constraint in BFC estimation. Submatrices representing intra-
hemispheric and inter-hemispheric connectivity are shown separately here for ease of reference. Black (white) squares indicate the presence
(absence) of a structural connection.

posterior densities p(R | X, G). Figure 4 shows the mean
partial correlations between all brain regions for each of
the six subjects. Mean partial correlations between re-
gions ranged from -0.43 to 0.79. Furthermore, partial cor-
relation estimates had standard deviations ranging up to

0.04, illustrating the fact that absolute certainty cannot be
achieved using a finite amount of data. It can be observed
that functionally homologous regions in the left and right
hemispheres are strongly partially correlated.

In order to gain more insight into the partial correlations

7



S1 mean partial correlation S1 SD partial correlation S2 mean partial correlation S2 SD partial correlation

S3 mean partial correlation S3 SD partial correlation S4 mean partial correlation S4 SD partial correlation

S5 mean partial correlation S5 SD partial correlation S6 mean partial correlation S6 SD partial correlation SD

mean

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.01

0.02

0.03

0.04

0.05

 

 

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90  

 

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

 

 

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90  

 

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

 

 

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90  

 

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

 

 

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90  

 

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

 

 

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90  

 

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

 

 

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90  

 

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

le
ft

 h
em

is
ph

er
e

rig
ht

 h
em

is
ph

er
e

Figure 4: Whole-brain BFC estimates. Mean and standard deviation of the partial correlation matrices are shown for each of the six subjects.

between particular regions, we focus on connections with
either high or low mean partial correlations. Since quali-
tatively different behavior can be observed for inter- and
intra-hemispheric connections, we handle them separately.

Table 2 depicts five inter-hemispheric connections and
five intra-hemispheric connections which showed the
strongest partial correlations. Evidence for non-zero par-
tial correlations between the regions identified in Table 2
is supported by literature. Specifically, partial correla-
tions between supplementary motor areas (Salvador et al.,
2005), cingulate cortices (Salvador et al., 2005), as well
as prefrontal areas (Damoiseaux et al., 2006; Beckmann
et al., 2005), have been identified before. The strong par-
tial correlation between putamen and pallidum can be ex-
plained by monosynaptic feedforward and feedback path-
ways between the striatum and the globus pallidus (Bolam
et al., 2000; Smith and Bolam, 1990). Structural connec-
tivity between left and right precuneus is also supported
by anatomical studies (Cavanna and Trimble, 2006). Like-
wise, evidence exists for direct connections between left
and right caudate (Mensah and Deadwyler, 1974; Medina

and Pazo, 1981).

Table 3 shows five inter-hemispheric connections and
five intra-hemispheric connection which showed the weak-
est partial correlations. A comparison between Tables 2
and 3 suggests that connections with strong partial corre-
lations are supported by many more streamlines compared
to the connections that showed weak partial correlations.
This is confirmed by highly significant positive correlations
between streamline count and absolute partial correlation
values (ρ > 0.40, p < 10−31 in all subjects). This relation-
ship has been observed before (Hermundstad et al., 2013).
This indicates that there is a clear correspondence between
the information conveyed by the structural connectivity as
estimated using DWI and the Bayesian functional connec-
tivity analysis applied to resting-state fMRI data.

3.2.3. Comparison with the graphical lasso

While the Bayesian approach to functional connectivity
analysis has been shown to lead to interpretable estimates
of partial correlation while at the same time quantifying
the uncertainty in these estimates, it is important to com-
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Table 2: Five inter-hemispheric and intra-hemispheric connections with highest mean partial correlations. Hemispheres H are indicated by
‘L’ (left hemisphere) and ‘R’ (right hemisphere). Mean and standard deviation of the partial correlation, averaged over subjects, are denoted
by µ and σ, respectively. Logarithm of the total number of streamlines between regions, averaged over subjects, is denoted by n.

# region 1 H region 2 H µ σ logn

1 supp motor area R supp motor area L 0.60 0.018 9
2 paracentral lobule R paracentral lobule L 0.59 0.018 7
3 cingulum ant R cingulum ant L 0.57 0.018 7
4 precuneus R precuneus L 0.57 0.016 7
5 caudate R caudate L 0.56 0.016 4

1 frontal mid L frontal sup L 0.65 0.019 10
2 pallidum R putamen R 0.60 0.017 10
3 pallidum L putamen L 0.59 0.016 11
4 frontal inf tri L frontal inf oper L 0.56 0.019 9
5 frontal inf tri R frontal inf oper R 0.56 0.019 9

Table 3: Five inter-hemispheric and intra-hemispheric connections with lowest mean partial correlations. Hemispheres H are indicated by ‘L’
(left hemisphere) and ‘R’ (right hemisphere). Mean and standard deviation of the partial correlation, averaged over subjects, are denoted by
µ and σ, respectively. Logarithm of the total number of streamlines between regions, averaged over subjects, is denoted by n.

# region 1 H region 2 H µ σ logn

1 frontal sup medial R putamen L 0.02 0.016 5
2 putamen R frontal mid L 0.02 0.014 4
3 parietal sup R putamen L 0.02 0.014 2
4 putamen R parietal sup L 0.02 0.014 2
5 putamen R precuneus L 0.02 0.015 4

1 putamen L calcarine L 0.01 0.009 5
2 caudate L precuneus L 0.02 0.013 4
3 putamen R lingual R 0.02 0.017 5
4 putamen L cingulum ant L 0.02 0.019 5
5 lingual R frontal sup orb R 0.02 0.007 4

pare its behavior with conventional approaches to func-
tional connectivity analysis. In the following, we compare
BFC estimates with estimates produced by the graphical
lasso. Note that the cross-validation procedure used to
select the value of the regularization parameter for the
graphical lasso led to quite dense partial correlation ma-
trices. On average, only 53 region pairs were estimated to
have zero partial correlation.

Figure 5A shows the whole-brain point estimates pro-
duced by the graphical lasso. A comparison of these esti-
mates with those obtained by BFC analysis, as depicted
in Fig. 4, indicate that both approaches show some corre-
spondence in terms of block diagonal structure and strong
partial correlations between inter-hemispheric functionally
homologous areas. At the same time, results show that
the estimated partial correlations tend to be weaker for
the graphical lasso.

Figure 5B shows a scatter plot comparing partial cor-
relation estimates obtained using both approaches. The
clouds of blue and yellow datapoints indicate that the
graphical lasso leads to smaller partial correlation esti-
mates as expected by the shrinkage property. This is con-
firmed by the fact that 72% of the connections according
to G have lower absolute partial correlations for the graph-
ical lasso compared to the Bayesian approach. Green data-
points show non-zero partial correlations for BFC analysis

which were forced to zero by the graphical lasso. Red dat-
apoints signify non-zero partial correlations for the graph-
ical lasso which were forced to be zero according to the
structural graph G. The two outliers with non-zero par-
tial correlations above 0.7 according to the graphical lasso
reflect connectivity between left and right posterior cin-
gulate cortex in two subjects, which has been reported
previously (Salvador et al., 2005).

An alternative to using cross-validation for selecting the
regularization parameter λ is to tune it such that a prede-
termined network density is achieved. Figure 5C compares
partial correlations between BFC analysis and graphical
lasso estimates obtained with λ set to 0.15. This gives
much sparser point estimates that more closely resemble
the structural graph G. Two main effects can be observed.
First, with increased λ partial correlations are much more
affected by shrinkage. That is, 94% of the connections
given by the structural graph G have lower absolute par-
tial correlations for the graphical lasso compared to the
Bayesian approach. Second, there is a substantial increase
in the number of connections implied by the structural
graph that are set to zero.

In order to quantify the fit of the different models to the
data we used a hold-out scheme where the first 512 samples
were used as training data, and the remaining samples as
test data. If we compare the G-Wishart approach, the
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Figure 5: Graphical lasso results. (A) Graphical lasso functional connectivity estimates converted to partial correlations for six subjects. (B)
Scatter plot comparing partial correlations for all six subjects as estimated using BFC analysis (mean partial correlation) or the graphical
lasso. For the graphical lasso, a point estimate was obtained using nested cross-validation. Blue datapoints denote non-zero partial correlations
that are larger in magnitude for BFC than for the graphical lasso. Yellow datapoints denote non-zero partial correlations that are lower in
magnitude for BFC than for the graphical lasso. Red datapoints denote partial correlations which were zero for BFC analysis and non-zero
for the graphical lasso. Green datapoints denote partial correlations which were zero for the graphical lasso and non-zero for BFC analysis.
(C) Same as (B) but now with graphical lasso estimates obtained with λ fixed to 0.15.

cross-validated graphical lasso and the graphical lasso with
sparsity matched with G, we find a log-likelihood on the
test data of −4.81 · 104± 0.48 · 104, −5.90 · 104± 0.11 · 104

and −4.36 ·104±0.18 ·104, respectively. From these results
we conclude that the sparsity of G is valuable for correct
estimation of partial correlations, but that the structural
estimate we used was sub-optimal.

3.2.4. Posterior densities

In order to gain additional insight into the posterior den-
sities estimated by BFC analysis and to allow further com-
parison with the point estimates produced by the graphical
lasso, Fig. 6 shows the estimates in each subject for the
inter- and intra-hemispheric connections with strongest
and weakest partial correlation according to the BFC anal-
ysis. For the strong partial correlations, shown in Fig. 6A,
the graphical lasso estimates tend to be much smaller than
the estimates obtained using the BFC approach. In part,
this is likely due to the shrinkage induced by the graphi-
cal lasso. MLE estimates are also shown for comparison.
The weak partial correlations shown in Fig. 6B are espe-
cially interesting. While the graphical lasso makes binary
statements about the presence or absence of a non-zero
partial correlation, Bayesian functional connectivity anal-
ysis quantifies the uncertainty in our estimates, thereby
providing a more nuanced view.

For comparison, Fig. 6 also shows the 95% confidence
intervals around the MAP estimates of the distribution,
which were obtained by applying the Fisher transform to
the estimates (Fisher, 1915) with n−3−p = 1024−3−90 =
931 degrees of freedom. The distributions and intervals
show that for high partial correlations, the 95% confidence
interval is enclosed in the MAP distribution, while for low
partial correlation the confidence interval is wider than the
(bulk of the) distribution.

4. Discussion

We proposed Bayesian functional connectivity analysis
as a new approach for analyzing the interactions between
BOLD timeseries in multiple brain regions. The approach
produces a posterior density for the partial correlation ma-
trix and relies on the use of a G-Wishart distribution. This
distribution has been used extensively for analyzing co-
variance structure in high-dimensional problems in biology
(Jones et al., 2005), economics (Carvalho et al., 2007) and
epidemiology (Dobra et al., 2011). In a neuroscientific con-
text, we use the G-Wishart distribution as a prior which
constrains the partial correlation matrix via a structural
graph G, as derived from diffusion imaging data.

As demonstrated using both simulated and empirical
data, Bayesian functional connectivity analysis based on
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Figure 6: Posterior densities for individual partial correlations as estimated by BFC analysis (blue), point estimates produced by the graphical
lasso (red) and the MLE (yellow). The shaded areas show the 95% confidence interval around the MAP estimate. (A) Estimates obtained for
the inter- and intra- hemispheric connections with the strongest partial correlation. (B) Estimates obtained for the inter- and intrahemispheric
connections with the weakest partial correlation.

the G-Wishart is a promising approach for functional con-
nectivity analysis in cognitive neuroscience. The main ad-
vantages of our approach compared to existing approaches
are as follows. First, we constrain the functional connec-
tivity estimates using a structural graph G as estimated
from diffusion imaging data, thereby effectively achieving
multi-modal data fusion (Biessmann et al., 2011; Groves
et al., 2011). The constraints imposed by G alleviate the
need to impose shrinkage, thereby reducing bias in the
partial correlation estimates. Second, we can quantify the
uncertainty in our estimates, which allows sound inferences
to be drawn about the presence of non-zero partial corre-
lations between BOLD timecourses for multiple regions of
interest.

Results based on simulated data show that the G-
Wishart approach outperforms the maximum likelihood
estimate, the normal Wishart MAP estimate and the
graphical lasso for limited data (cf. Fig. 1B). As more
data becomes available the different approaches converge
to the same estimate. Note however that these results are
obtained when the G-Wishart approach has access to the
ground truth graph G. Figure 1C and Fig. 1D show that

as the structural graph is perturbed more and more, even-
tually, the G-Wishart is outperformed by the MLE and
the graphical lasso.

Empirical results show that the connections with high
partial correlations correspond to anatomical tracts that
are known from literature. In our empirical comparison
with the graphical lasso, we observed salient differences
between respective functional connectivity estimates. This
can be due to a number of reasons. First, we used cross-
validation for the graphical lasso to select the regular-
ization parameter λ. This led to much denser precision
matrices and, hence, different functional connectivity es-
timates. Second, the graphical lasso employs shrinkage,
which can explain in part the observation that graphical
lasso partial correlation estimates are typically lower than
those obtained with the Bayesian approach. As shown in
Fig. 5C, an alternative to cross-validation is to set the reg-
ularization parameter to a fixed value, achieving a desired
network density. However, in this case, many connections
that are implied by the structural graph and achieve rel-
atively high partial correlations under the Bayesian ap-
proach will be set to zero. Furthermore, the shrinkage
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effect becomes stronger, thereby further underestimating
partial correlation values. By comparing the model likeli-
hood on hold-out data for either the G-Wishart approach,
the cross-validated graphical lasso and the graphical lasso
with a fixed density, we find that the graphical lasso al-
gorithm with fixed density performs best, followed by the
G-Wishart approach. Note however, that the fixed lasso
density was determined by the structure G and that cross-
validation, which would be a standard way to estimate
the lasso shrinkage, performed worse. Most likely, im-
provements in the structural estimate will increase the G-
Wishart performance.

In order to constrain the estimation problem, BFC anal-
ysis makes use of a structural graph as estimated from
diffusion imaging data. Drawn conclusions therefore crit-
ically depend on the quality of the employed structural
graph. As shown in Fig. 1C and Fig. 1D, errors in the esti-
mated structural matrix can produce serious biases as con-
nections between regions that show high partial correlation
can be completely ruled out from the analysis. In other
words, false negatives in the structural estimate strongly
(negatively) influence the usefulness of the G-Wishart ap-
proach. For example, we observed that the potential con-
nection between posterior cingulate cortices (which was
found to have a high partial correlation in two subjects
when using the graphical lasso) was absent in our esti-
mates. In order to prevent the exclusion of important con-
nections due to biases associated with probabilistic stream-
lining (Dauguet et al., 2007; Li et al., 2012), a more lenient
threshold may be used to estimate the structural graph,
preventing false negatives at the expense of false positives.
In addition, connections known to be absent may simply
be ruled out in the prior. Notwithstanding these caveats,
the proposed methodology is theoretically sound and may
take advantage of various future developments in diffusion
imaging (Dell’Acqua and Catani, 2012).

A potential alternative to the multimodal approach fol-
lowed in this paper would be to dispense with diffusion
imaging data altogether and use functional data to esti-
mate not only a posterior density over partial correlation
matrices but also over structural graphs (Atay-Kayis and
Massam, 2005). In order to solve this inference problem,
sophisticated methods have been developed (Wang and Li,
2012). However, at present, these methods do not scale
well with problem size, prohibiting a straightforward ap-
plication to functional connectivity analysis.

Notwithstanding the strengths and weaknesses of dif-
ferent approaches to functional connectivity analysis, we
maintain that, in order to draw valid conclusions about
functional connectivity, one needs to employ methods that
quantify the uncertainty in our estimates. This holds es-
pecially when inferences depend on a small amount of
data. One approach would be to use bootstrap proce-
dures together with the graphical lasso (Hastie et al.,
2008). Another approach, as demonstrated in this pa-
per, is to use a Bayesian approach. While both structural
connectivity and effective connectivity have been tackled

using Bayesian approaches (Hinne et al., 2013; Jbabdi
et al., 2007; Daunizeau et al., 2011), research into how
whole brain functional connectivity can be estimated us-
ing Bayesian approaches has remained scarce. Some no-
table exceptions are the approach by Venkataraman et al.
(2010) who used a forward model in which fMRI and DWI
data were combined and the approach by (Marrelec et al.,
2006), who used a Bayesian approach to estimate a group
partial correlation matrix. As advocated in this paper, we
propose that a generative model consisting of a G-Wishart
prior and a multivariate Gaussian likelihood term serves
as an elegant new approach for Bayesian functional con-
nectivity analysis.
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