
1

Merging partially labelled trees: hardness and a

declarative programming solution
Anthony Labarre Sicco Verwer

Abstract—Intraspecific studies often make use of haplo-

type networks instead of gene genealogies to represent the

evolution of a set of genes. Cassens et al. [4] proposed

one such network reconstruction method, based on the

global maximum parsimony principle, which was later

recast by the first author of the present work as the

problem of finding a minimum common supergraph of

a set of t partially labelled trees. Although algorithms

were proposed for solving the problem on two graphs,

the complexity of the general problem remains unknown.

In this paper, we show that the corresponding decision

problem is NP-complete for t = 3. We then propose a

declarative programming approach to solving the problem

to optimality in practice, as well as a heuristic approach,

both based on the IDP system, and assess the performance

of both methods on randomly generated data.

I. INTRODUCTION

Phylogenetic trees are the traditional tool for repre-

senting the evolution of a given set of species [7]. The

last two decades, however, have witnessed the emer-

gence of a new way of reconstructing and representing

evolution, which has become widespread in phyloge-

netic studies: phylogenetic networks, which generalise

phylogenetic trees by allowing multiple paths between

species. The main reason for using networks rather than

trees is that evolution is not always tree-like: genes

may be duplicated, transferred or lost, and recombination

events (i.e. the breaking of a DNA strand followed

by its reinsertion into a different DNA molecule) as

well as hybridisation events (i.e. the combination of

genetic material from several species) are known to

occur. Moreover, even when evolution is tree-like, situ-

ations exist in which a relatively large number of tree

topologies might be “equally good”, and not enough

information is available to discriminate between those

trees. One proposed solution to the latter issue is the use

of consensus trees, where the idea is to find a tree that

represents a compromise between the given topologies;

another approach, on which we focus in this paper, is

to build a network [8, 10] that is compatible with all

topologies of interest.

Haplotype networks are used in the context of in-

traspecific studies, which focus on relations between

genes rather than between species. Cassens et al. [4] pro-

posed a new method for reconstructing such networks,

based on a given set of trees rather than on the input

sequences. Note that the trees studied in that context,

namely, gene genealogies, differ from the typical phylo-

genetic trees studied in comparative genomics: whereas

phylogenetic trees are usually binary (i.e. internal nodes

have degree three), have labels attached only to their

leaves, and contain branches of arbitrary real length,

gene genealogies allow internal nodes of arbitrary de-

gree, as well as labelled nodes that are not leaves, and

their branches have length exactly one. Cassens et al.’s

June 22, 2013 DRAFT

2

approach comprises two steps: most parsimonious trees

are built from the sequences, and a subset of these trees

is then merged into a graph. Their approach, which

they refer to as “Union of Most Parsimonious trees”,

does not aim at building a smallest graph that contains

all most parsimonious trees, as Bandelt et al. [1] did

using median networks, but rather to summarise the

information contained in a selected portion of those most

parsimonious trees in a graph that is as “succinct” as

possible.

The results produced by UMP on simulated data

seemed promising, in comparison with a few traditional

algorithms [4]. However, the algorithm and the over-

all approach proposed by the authors lacked a proper

formalisation, and were later recast by the first author

of the present work as a minimum common supergraph

problem: given a set of partially labelled trees on the

same label set, find a graph on the same vertex set

which contains all input trees as subgraphs and which

has as few edges as possible [11]. In the same work,

two exact algorithms were given for the same problem

on two partially labelled graphs, running in polynomial

time under some assumptions and in exponential time

in the general case. To the best of our knowledge, the

complexity of the problem has since remained open.

In this work, we settle the complexity of the above

optimisation problem, by showing that the associated

decision problem is NP-complete for three trees. We

make up for this bad news by proposing a practical

approach to solving the problem to optimality in practice,

using the IDP system [15]. This allows us to model our

minimum common supergraph problem as a constraint

satisfaction problem that is automatically translated into

a SAT instance and then solved quickly by a SAT solver.

We give an exact and a greedy method for UMP, both

based on this declarative programming approach, and

assess the performances of both approaches on random

instances of various sizes.

II. BACKGROUND

We recall here a few definitions and notation that will

be needed in the study of our problem, formally stated

at the end of this section. Any graph-theoretical concept

the reader might lack familiarity with can be found in

any textbook on the topic, e.g. Diestel [6].

Definition II.1. [11] An (n, k)-graph G = (V,E,L),

where V (G) = Vl(G) ∪ Vu(G) and |Vl(G)| = k, is a

graph on n vertices, k of which are labelled.

We distinguish between the set Vl(G) of labelled

vertices and the set Vu(G) of unlabelled vertices. Unless

explicitly stated, all (n, k)-graphs will use the label set

{1, 2, . . . , k} for labelled vertices. The L in the above

definition corresponds to the following concept.

Definition II.2. [11] The labelling L assigns a distinct

label to each vertex in Vl(G); it is called a partial

labelling if k < n (in which case we say that G is

partially labelled), and a complete labelling if k = n

(in which case we say that G is completely labelled).

Definition II.3. [11] An (n, k)-tree is a connected

(n, k)-graph with n−1 edges and whose labelled vertex

set includes all vertices of degree 1.

The following function, which (possibly) returns the

label of vertex v in the (n, k)-graph G, allows us to adapt

classical concepts from graph theory to our needs:

lab : V (G)→ {1, 2, . . . , k} ∪ {∅}

: v 7→ lab(v) =

 i if v has label i,

∅ otherwise.

This is not to be confused with the labellings introduced

in Definitions II.1 and II.2: labelling L assigns labels to

June 22, 2013 DRAFT

3

vertices, while function lab (possibly) returns labels. We

will also use lab on edges, in order to obtain the pairs

of labels that correspond to the endpoints of interest:

if v, w ∈ V (G), then lab({v, w}) = {lab(v), lab(w)}.

Therefore, we have:

lab(E(G)) = {{i, j} | i, j ∈ {1, 2, . . . , k} ∪ {∅} and

∃ v, w ∈ V (G) : lab(v) = i, lab(w) = j}.

We intentionally refrain from providing an explicit def-

inition of the image of lab({v, w}) for unlabelled

vertices, because we will only use that function on pairs

of labelled vertices.

Definition II.4. An (n, k)-graph G is a subgraph of an

(n, k)-graph H if the labellings of G and H can be

completed in such a way that the resulting (n, n)-graphs

G′ and H ′ satisfy lab(E(G′)) ⊆ lab(E(H ′)). In that

case, we also say that H is a supergraph of G.

By “completing a labelling”, we mean assigning dis-

tinct labels to the remaining unlabelled vertices; already

labelled vertices must not be altered. We adapt the fol-

lowing definition from Bunke et al. [3] to our purposes.

Definition II.5. [11] A common supergraph of a set

{G1, G2, . . . , Gt} of (n, k)-graphs is an (n, k)-graph G

that is a supergraph of each Gi (for 1 ≤ i ≤ t). It is

minimum if there is no other graph G′ with |E(G′)| <

|E(G)| that shares this property.

Figure 1 shows two (n, k)-trees, along with two su-

pergraphs G1 and G2 of those trees. G2 is not minimum,

since G1 has fewer edges; and G1 is indeed minimum,

since |E(G1)| = |E(T1)|+1 = |E(T2)|+1 and, although

both trees are isomorphic, their labellings cannot be

completed in such a way that lab(E(T1)) = lab(E(T2)).

We now have everything we need to formally state our

problem as a decision problem:

T1 T2
1 3

4 2

1 3

42

1 3

4

2

1

3

4 2

G1 G2

Fig. 1. Two (7, 4)-trees T1 and T2, and common supergraphs G1

and G2 of T1 and T2; G1 is minimum, but G2 is not.

COMMON SUPERGRAPH OF PARTIALLY LABELLED

TREES (CS-PLT)

• Instance: (n, k)-trees T1, T2, . . ., Tt on the same

label set, a natural upper bound K.

• Question: can the labellings of T1, T2, . . ., Tt be

completed in such a way that ∪ti=1lab(E(Ti)) ≤ K?

Note that a common supergraph of the input trees is

defined exactly by the above union.

III. THE COMPLEXITY OF CS-PLT

In this section, we prove the hardness of CS-PLT.

Theorem III.1. CS-PLT is NP-complete for three trees.

Proof: We present a reduction from MONOTONE 1-

IN-3 SATISFIABILITY (see Schaefer [14]):

MONOTONE 1-IN-3 SATISFIABILITY

• Instance: a Boolean formula φ = C1∧C2∧· · ·∧Cn

without negations over a set Σ = {`1, `2, . . . , `m},

with exactly three distinct literals per clause.

• Question: does there exist an assignment of truth

values f : Σ→ {TRUE, FALSE} such that exactly one

literal is TRUE in every clause of φ?

June 22, 2013 DRAFT

4

a) The transformation: We encode instances of

MONOTONE 1-IN-3 SATISFIABILITY using three trees,

whose construction and purpose are explained below,

and we illustrate the transformation on an example in

Figure 2.

1) The first tree T1 encodes the occurrences of lit-

erals in the MONOTONE 1-IN-3 SATISFIABILITY

instance φ. It is constructed using a matrix indexed

by the literals and clauses from φ. Every occur-

rence of a literal `j in a clause Ci is mapped onto

a pair of nodes connected by an edge, where one

node is a leaf labelled with Lj
i , which we call a

literal node, and the other node is unlabelled. After

creating these nodes for all literal occurrences, we

connect the unlabelled nodes that share an edge

with occurrences of the same literal by adding

edges vertically in the matrix, i.e., in order of

occurrence. The first occurrence of every literal

is then connected to a root node R, which is itself

connected to a TRUE node T and a FALSE node F

(all three nodes are labelled).

2) In tree T2, R is connected to three paths:

a) a first path that consists of all 3n literal

nodes;

b) a second path, called the TRUE CHAIN, that

contains n unlabelled nodes and the node

labelled T at one end;

c) a third path, called the FALSE CHAIN, that

contains 2n unlabelled nodes and the node

labelled F at one end.

The first path is connected to node R, while the

unlabelled extremities of the TRUE CHAIN and of

the FALSE CHAIN are both connected to R. The

TRUE CHAIN and the FALSE CHAIN represent a

truth assignment to the literals in φ. This assign-

ment is determined by labelling T1 and T2 in the

CS-PLT instance: a literal `j in Ci represented by

an unlabelled node u connected to Lj
i in T1 is set

to TRUE (resp. FALSE) if u is assigned the same

label as a node from the TRUE CHAIN (resp. FALSE

CHAIN) from T2.

3) Tree T3 overlaps for a large part with T2. The

only difference being that the TRUE CHAIN is

split up and every unlabelled node from this chain

is connected to T and three literal nodes from

a unique clause. These edges thus encode the

different clauses in φ. In addition, by limiting the

number of allowed edges in a CS-PLT solution by

a value K (see below), they encode the constraint

that every clause contains exactly one TRUE literal.

T1

C1

C2

...

Ci

...

Cn

`1 `2 `3 . . . `j . . . `m

L1
1 L2

1 L3
1

L1
2 L2

2 Lj
2

Lm
iL2

i Lj
i

L1
n L3

n Lm
n

RF T

T2

L1
1 L1

2 L1
n L2

1 L2
2 L2

i · · · Lm
n

RF · · ·

2n

T· · ·

n

T3

L1
1 L2

1 L3
1 L1

2 L2
2 Lj

2
· · · L1

n L3
n Lm

n

RF · · ·

2n T

Fig. 2. The three trees built in our transformation.

June 22, 2013 DRAFT

5

Figure 3 shows an example of the construction applied

to a small example instance. In addition to these trees,

the CS-PLT decision problem requires an upper bound

which is given as (derived later in the proof):

K = 12n+m+ 1.

We now show that φ is satisfiable under the monotone

1-in-3 restrictions if and only if the labellings of these

three trees can be completed in such a way that the union

of the resulting labelled edge sets has size at most K.

(⇒): Let f be a solution to φ. We use f to

construct a solution to the CS-PLT instance of size at

most K, which consists of three respective labellings

for the unlabelled nodes of T1, T2 and T3, as follows.

1) To every unlabelled node U j
i connected to a literal

node Lj
i in T1, we assign the label a(U j

i) defined

below and which corresponds to the number of

literal nodes Lj′

i′ connected to unlabelled nodes

U j′

i′ representing either literals with smaller labels

alphabetically (i.e. lj
′
< lj) or the same literal but

occurring in an earlier clause (i.e. lj
′

= lj and

i′ < i):

a(U j
i) = |{Lj′

i′ | (l
j′ < lj) ∨ (lj

′
= lj ∧ i′ < i)}|.

2) The kth unlabelled node from the TRUE CHAIN

Uk,T in T2 (ordered from R to T) receives the

label assigned to the kth unlabelled node U j
i in T1

(in ascending label order) that represents a TRUE

literal:

(a(U1,T), . . . , a(Un,T))

= SORT({a(U j
i) such that f(lj) = TRUE).

Since f is a 1-in-3 solution, it is guaranteed that

this assigns a unique label to every unlabelled node

from the TRUE CHAIN.

3) Similarly, the ith node from the FALSE CHAIN in

T2 and T3, namely, Ui,F , receives the label of the

U j
i nodes representing FALSE literals:

(a(U1,F), . . . , a(U2n,F))

= SORT({a(U j
i) such that f(lj) = FALSE).

4) The kth split up TRUE CHAIN nodes Uk,s from T3

are all connected to all three literal nodes from

clause Ck. We label these nodes with the label of

the U j
k node representing the TRUE literal lj in Ck:

a(Uk,s) = a(U j
k) such that f(lj) = TRUE

This labelling is uniquely defined since f assigns

the TRUE value to exactly one literal in every clause

Ci. Figure 3 shows the completely labelled trees that

result from applying the aforementioned steps to the

trees shown in Figure 2.

We now show that these labellings yield a graph that

contains exactly K = 12n + m + 1 edges. Every tree

potentially adds all its 6n + 3 edges to the resulting

graph, so we derive K by counting the overlapping edges

between the different trees starting with those from T2:

in T3: The 2n + 1 edges connecting the FALSE CHAIN

nodes to R overlap with those from T2 since the

unlabelled nodes are assigned exactly the same label

by a(·), and 1 of the edges between T and the split

up TRUE CHAIN overlaps with a TRUE CHAIN edge;

in T1: Tree T1 contains a lot of overlapping edges due to

the a(·) labelling:

– n of the edges to literal nodes overlap with

those from T3 because every Uk,s is assigned

the same label as some U j
k .

– All of the 3n − m edges connecting the un-

labelled nodes U j
i are shared by nodes repre-

senting literals that are assigned the same truth

value by f and consecutive labels by a. Hence

June 22, 2013 DRAFT

6

these nodes are already connected by either the

TRUE CHAIN or the FALSE CHAIN from T2.

– 2 edges between R and newly labelled nodes

overlap with those in T2 since the TRUE CHAIN

and FALSE CHAIN start with the smallest label

assigned to a TRUE and a FALSE literal by a,

corresponding to the first occurrence of these

literals.

– 1 edge connecting R with T .

This sums up to 3(6n+ 2)− (2n+ 1 + 1)− (n+ 3n−

m + 2 + 1) = 18n + 6 − 6n + m − 5 = 12n + m + 1

edges, which equals K.

(⇐): If the constructed CS-PLT instance is true,

then the original MONOTONE 1-IN-3 SATISFIABILITY

instance is true. We first observe that the K edges deter-

mined above (see the (⇒) part) is the minimum number

of edges resulting that can be obtained by labelling our

three trees and taking the union of the resulting edge sets

since we counted the maximum number of overlapping

edges, making in total:

• 2 edges connecting R with T and F , which is

minimal due to T1;

• m edges connecting R with unlabelled nodes,

which is minimal due to T1;

• 5n edges between literal nodes and unlabelled

nodes, minimal due to T1 and T3;

• 3n edges connecting literal nodes, minimal due to

T2;

• 2n−1 edges between unlabelled nodes in the FALSE

CHAIN, minimal due to T2;

• n− 1 edges between unlabelled nodes in the TRUE

CHAIN, minimal due to T2;

• n edges between T and unlabelled nodes in the split

up TRUE CHAIN, minimal due to T3;

• and 1 edge between F and an unlabelled node in

the FALSE CHAIN, minimal due to T2.

This sums up to 12n + m + 1 = K. We note that

after assigning labels to the unlabelled nodes from T1,

and T3, every literal node shares at least one and at

most two edges with unlabelled nodes, independent of

the labelling. Since the number of edges between literal

nodes and unlabelled nodes does not influence any of the

other counts, any additional edges between unlabelled

and literal nodes will therefore result in strictly more

than K edges.

In a solution of size K, we thus have exactly n

literal nodes that share exactly a single edge with an

unlabelled node. Consequently, for every split up TRUE

CHAIN node from T3, exactly one is assigned a label

such that one if its three edges with literal nodes overlaps

with an edge from T1. The literal nodes connected to

these overlapping edges determine the TRUE literals in

the original satisfiability problem, all the other literals are

set to FALSE. Since every split up TRUE CHAIN node in

T3 is connected to nodes representing exactly the literal

occurrences of a single clause, this makes exactly one

literal true in every clause. In addition to this property,

we require that if a literal is true, then every instance of

that literal is true. We show this by making the following

observation that is key to our translation:

A CS-PLT solution of size K has no edges be-

tween the TRUE CHAIN and the FALSE CHAIN.

To see why this holds, one only has to observe that in

the above edge counts, we counted exactly 3n−2 edges

between unlabelled nodes. Since the TRUE CHAIN and

the FALSE CHAIN in T2 already contribute this amount

of edges, any additional edge will yield a solution of size

K + 1. Thus, in a solution of size K, the same labels

are assigned to the FALSE CHAIN nodes from T2 and T3.

Furthermore, all of the edges between unlabelled nodes

June 22, 2013 DRAFT

7

from T1 have to overlap with those from T3. Since these

edges connect the different occurrences of literals, these

occurrences are all labelled with either TRUE CHAIN or

FALSE CHAIN labels, but not both. Consequently, if the

CS-PLT problem is true (has a solution of size K), then

using our construction, every literal occurrence of the

same literal is assigned the same truth value, and exactly

one literal is set to TRUE in every clause, making the

MONOTONE 1-IN-3 SATISFIABILITY instance satisfied.

b) Time complexity: The transformation clearly

runs in time polynomial in the size of the MONOTONE 1-

IN-3 SATISFIABILITY instance, and a solution to CS-PLT

can easily be verified in polynomial time. The CS-PLT

problem is therefore NP-complete.

IV. FINDING A MINIMUM COMMON SUPERGRAPH IN

PRACTICE

Theorem III.1 deprives us of any hope of obtaining a

polynomial-time algorithm for solving CS-PLT, but does

not imply that we should abandon our search for efficient

and exact solutions. We decided to use the efficient

approach that consists in translating our problem into a

constraint satisfaction problem, and to rely on an efficient

SAT solver to obtain an exact solution to it, which allows

us to make use of advanced solving techniques such

as conflict analysis, intelligent back-jumping, and clause

learning [2].

Figure 4 shows the typical workflow of a SAT solver

based approach. We circumvent the difficulties pointed

out in that workflow by relying on the IDP model

expansion system [15], which is particularly convenient

since it only requires us to provide a logical description

of our problem. IDP translates the description into a

constraint satisfaction problem, runs a solver, and trans-

lates the result back into a solution to our problem.

Another attractive feature of IDP is that it can be used

26 edges

C1

C2

C3

C4

A B C D E

L1
1 L2

1 L3
1

1 4 6

L1
2 L2

2 L3
2

2 7 10

L1
3 L2

3 L3
3

5 8 11

L1
4 L2

4 L3
4

3 9 12

RF T

17 extra edges (bold)

L1
1 L2

1 L3
1 L1

2 L2
2 L3

2 L1
3 L2

3

L3
3L1

4L2
4L3

4

R

F1211105

1

2 3 4

T9876

11 extra edges (dotted)

L1
1 L2

1 L3
1

6

L1
2 L2

2 L3
2

7

L1
3 L2

3 L3
3

8

L1
4 L2

4 L3
4

9

R

F 12 11 10 5 1234

T

Fig. 3. A solution to the CS-PLT instance constructed from the

MONOTONE 1-IN-3 SATISFIABILITY instance (A ∨ B ∨ C) ∧ (A ∨
C ∨ E) ∧ (B ∨ D ∨ E) ∧ (A ∨ D ∨ E), which has as satisfying

assignment f(C) = f(D) = TRUE. The union of the labelled edge

sets has size 26 + 17 + 11 = 54 = 12n + m + 1, with n = 4 and

m = 5.

as an anytime algorithm: if one chooses to terminate the

solving process before its completion, the system returns

the best solution found so far.

PROBLEM INSTANCE

BOOLEAN FORMULA

SAT SOLVER

SATISFYING ASSIGNMENT

SOLUTION

difficult steps

Fig. 4. The typical workflow of a SAT solver based approach.

June 22, 2013 DRAFT

8

We describe our solution in more detail in the follow-

ing sections, starting with an introduction to SAT solvers

in Section IV-A. We then describe IDP, its input and

two models in Sections IV-B to IV-D, and explore their

efficiency in practice on artificial data in Section IV-F.

A. Satisfiability and SAT solvers

The NP-complete satisfiability problem, which we

recall below for completeness, is central to the field of

computational complexity theory [5].

SATISFIABILITY (SAT)

• Instance: a Boolean formula φ in conjunctive nor-

mal form.

• Question: is there a satisfying assignment for φ?

SAT and its variants have spawned tremendous interest

among researchers, who developed a number of prac-

tical and efficient algorithms, generally referred to as

SAT solvers, for solving instances of those problems in

practice (see e.g. Gomes et al. [9] for a recent account).

A number of highly-optimised implementations exist,

which make it possible to solve several well-known hard

problems to optimality in a reasonable amount of time

in many cases. One of the difficulties lies in formulating

the problem as a satisfiability problem [13]. Luckily, the

IDP system, described in the next section, makes that

step a lot easier.

B. The IDP system

The IDP system [15] consists of two parts: a

grounder [16] and a solver [12]. The grounder (GIDL)

transforms a search or optimisation problem specified

in IDP into a propositional theory that can be solved

using the solver. The solver (MINISATID) then produces

a solution to this theory, if one exists. This provides an

easy method for declarative problem solving: all we have

to do is provide a high-level specification of our problem;

the IDP system then determines, using searches and

heuristics, a good (efficient) formulation of this problem

in propositional logic (i.e. as a satisfiability problem),

and finally runs the solver, translating upon completion

any solution it finds back to the high-level specification.

The IDP language is straightforward and easy to use,

thanks to a multitude of logical operators, the ability to

perform some arithmetic operations, and the possibility

of providing inductive definitions. The latter in particular

make it possible to define complex constraints or optimi-

sation parameters in a neat and succinct way. Although

such definitions would normally result in a blow-up of

the propositional specification of the problem, the IDP

solver contains specialised propagation mechanisms suit-

able for reasoning directly on such inductive definitions.

These mechanisms are built on top of the popular MIN-

ISAT SAT solver without sacrificing much performance.

The ability to write complex problem descriptions in just

a few lines of code makes it an ideal tool for testing

different problem specifications. In our opinion, this ease

of use is the main strength of the IDP system.

C. A basic model

Figure 5 shows an IDP model we designed to represent

the optimisation version of CS-PLT. This model is basic,

but we show it nonetheless for clarity, and will improve

it in Section IV-D. It consists of four sections:

1) the “Given:” section specifies the format in which

the data should be given (in our case, a list of

edges for each tree, along with some labels that

are already assigned to a few vertices in each tree);

2) the “Find:” section describes the format of a solu-

tion (in our case, a set of labelled edges);

3) the “Satisfying:” section specifies the constraints

edges and labels are subject to, and finally,

June 22, 2013 DRAFT

9

4) the “Minimize:” section describes which function

should be optimised when searching for a solution

(in our case, the size of the union of the completely

labelled edge sets).

Given :

t y p e i n t Tree

t y p e i n t Node

t y p e i n t Colo r

p a r t i a l P r e C o l o r (Tree , Node) : Co lo r / / some nodes a r e a l r e a d y l a b e l l e d

TEdge (Tree , Node , Node)

Find :

Co lo r (Tree , Node) : Co lo r / / l a b e l t h e r e m a i n i n g nodes i n each t r e e

Edges (Color , Co lo r)

S a t i s f y i n g :

{ Edges (n ,m) <− TEdge (t , x , y) / / once l a b e l l e d , edges a r e a s sembled

& Colo r (t , x) = n / / t o b u i l d t h e common s u p e r g r a p h

& Colo r (t , y) = m.

Edges (n ,m) <− Edges (m, n) . / / edges a r e u n d i r e c t e d

}

! t n : Co lo r (t , n) = P r e C o l o r (t , n) . / / e x t a n t l a b e l s must n o t be changed

! t c : ?1 n : Co lo r (t , n) = c . / / use each l a b e l e x a c t l y once i n each t r e e

Minimize :

#{ x [Co lo r] y [Co lo r] : Edges (x , y) } / / t h e s i z e o f t h e s u p e r g r a p h

Fig. 5. The code used by the IDP system to model the optimisation

version of CS-PLT.

Specifying an instance of CS-PLT in that format is

easy, and Figure 6 shows an example of a valid input,

which consists of the following parts:

1) the Tree line specifies the unique indices from

{1, 2, . . . , t} summarising our input (n, k)-trees

T1, T2, . . ., Tt;

2) the Node and Color lines specify the set

{1, 2, . . . , n} of indices and labels used to refer

to vertices;

3) the PreColor set specifies the labellings L1, L2,

. . ., Lt, where i, v -> b means that vertex v

in tree Ti has label b, and

4) the TEdge section specifies the set of edges in

each tree, where i, u, v means that {u, v} ∈

E(Ti).

Tree = { 1 ; 2 ; 3 ; 4 ; 5 } / / ID ’ s used f o r t h e t r e e s

Node = { 1 . . 8 } / / ID ’ s used f o r t h e v e r t i c e s

Co lo r = { 1 . . 8 } / / t h e r a n g e used f o r l a b e l s

P r e C o l o r = { / / t h e l a b e l l e d nodes i n each t r e e

1 , 1−>4; 1 , 5−>2; 1 , 7−>1; 1 , 8−>3;

2 , 1−>1; 2 , 5−>2; 2 , 6−>3; 2 , 8−>4;

3 , 1−>4; 3 , 2−>2; 3 , 4−>1; 3 , 8−>3;

4 , 1−>4; 4 , 3−>2; 4 , 4−>1; 4 , 8−>3;

5 , 1−>3; 5 , 3−>1; 5 , 7−>2; 5 , 8−>4;

}

TEdge = { / / t h e s e t o f edges i n each t r e e

1 , 1 , 3 ; 1 , 6 , 7 ; 1 , 2 , 8 ; 1 , 1 , 4 ; 1 , 1 , 6 ; 1 , 2 , 4 ; 1 , 3 , 5 ;

2 , 1 , 2 ; 2 , 4 , 6 ; 2 , 4 , 8 ; 2 , 5 , 7 ; 2 , 2 , 3 ; 2 , 3 , 7 ; 2 , 2 , 4 ;

3 , 4 , 7 ; 3 , 6 , 7 ; 3 , 5 , 7 ; 3 , 3 , 8 ; 3 , 1 , 5 ; 3 , 3 , 6 ; 3 , 2 , 5 ;

4 , 1 , 2 ; 4 , 4 , 7 ; 4 , 5 , 6 ; 4 , 5 , 7 ; 4 , 3 , 6 ; 4 , 2 , 5 ; 4 , 7 , 8 ;

5 , 2 , 7 ; 5 , 2 , 6 ; 5 , 4 , 8 ; 5 , 4 , 5 ; 5 , 1 , 5 ; 5 , 3 , 6 ; 5 , 2 , 5 ;

}

Fig. 6. An example of an instance of our problem formatted for use by

the IDP system; in this case, the instance consists of five (8, 4)-trees.

The output of the IDP system, which takes as input our

model and a data file representing an instance, consists

of a list of edges expressed as pairs of vertex indices,

together with complete labellings for each input tree. The

union of those edges constitutes a (minimum) common

supergraph of the input trees.

D. An improved model

The model described in Section IV-C can be used to

solve CS-PLT instances, but lacks efficiency. We identify

two reasons for this lack of speed: differently coloured

solutions can yield isomorphic supergraphs, and the

definition of edges produces an unnecessarily difficult

SAT instance. We solve these issues by adding symmetry

breaking predicates, and by defining the supergraph

edges per tree instead of overall.

a) Symmetry breaking: Labellings are merely a

way of identifying vertices in different trees; the actual

labels do not matter, and permuting the labels assigned to

the initially unlabelled vertices in any tree will not affect

the size of the solution if we permute the corresponding

labels in the other trees accordingly. Therefore, we can

safely choose an arbitrary labelling for the unlabelled

June 22, 2013 DRAFT

10

vertices of any one tree in our instance, thereby reducing

the search space by a factor of (n− k)!.

b) Supergraph edges per tree: The way edges are

defined in the model of Figure 5 results in an instance

that is difficult to solve, which makes the model ineffi-

cient. The reasons why a particular model is inefficient

are unfortunately not always obvious; models that yield

SAT instances with fewer clauses are usually regarded

as more efficient, but sometimes larger models and

redundant clauses have a positive effect on the runtime

of a SAT solver. We identified by trial-and-error three

inefficiencies in the definition of edges in the model of

Figure 5, which we list and address below.

1) A first cause of inefficiency is the way in which

the edges of the supergraph are specified as being

undirected. In Figure 5, this is specified using the

colours of nodes, and in an inductive way. Since

these colours are free variables, and the nodes in

a tree are fixed by the model input, it is more

efficient to specify this property using these nodes

instead of their colours. We do so by adding an

additional declaration for undirected edges:

UEdge(i,u,v), which is TRUE if and only

if TEdge(i,u,v) or TEdge(i,v,u) is

TRUE.

Constraints are then specified using the UEdge

variables instead of the TEdge variables.

2) A second cause of inefficiency that we discovered

is related to the way in which MINISATID makes

use of the clauses. For reasons that remain to be in-

vestigated (likely due to propagation mechanisms),

MINISATID is able to find satisfying assignments

much more quickly when the edges of the common

supergraph are specified per tree:

TreeEdge(i,n,m), which is TRUE

if UEdge(i,u,v) is TRUE and

Color(i,v)=n and Color(i,u)=m.

An element of Edges is then TRUE if and only if

there exists a corresponding TreeEdge.

3) A third and final cause of inefficiency is already

visible in the TreeEdge definition. Instead of

an equivalence constraint (if and only if), we

require an implication (if). This means that a

TreeEdge(i,n,m) can be TRUE even though

the nodes with colours n and m are not joined by

an edge in tree i. However, since the aim is to

minimise the number of Edges and therefore the

number of TreeEdges, this constraint is implicit

in the model. Requiring TreeEdges (or Edges)

to be false when there is no corresponding edge in

a tree is redundant information. In our experience,

removing this information results in an improved

performance of MINISATID.

Figure 7 shows the improved model that we used in

the experiments.

Given :

t y p e i n t Tree

t y p e i n t Node

t y p e i n t Colo r

p a r t i a l P r e C o l o r (Tree , Node) : Co lo r / / some nodes a r e a l r e a d y l a b e l l e d

TEdge (Tree , Node , Node)

Find :

Edges (Color , Co lo r)

Co lo r (Tree , Node) : Co lo r / / l a b e l t h e r e m a i n i n g nodes i n each t r e e

S a t i s f y i n g :

! t x y n m : (x < y & n < m & TEdge (t , x , y) & Colo r (t , x) = n

& Colo r (t , y) = m) => Edges (n ,m) .

! t x y n m : (x < y & n < m & TEdge (t , x , y) & Colo r (t , x) = m

& Colo r (t , y) = n) => Edges (n ,m) .

! n m : n >= m => ˜ Edges (n ,m) .

! t n : Co lo r (t , n) = P r e C o l o r (t , n) . / / e x t a n t l a b e l s must n o t be changed

! t c : ?1 n : Co lo r (t , n) = c . / / use each l a b e l e x a c t l y once i n each t r e e

Minimize :

#{ x [Co lo r] y [Co lo r] : Edges (x , y) } / / t h e s i z e o f t h e s u p e r g r a p h

Fig. 7. An improvement over the model shown in Figure 5.

June 22, 2013 DRAFT

11

E. The greedy approach

In addition to the IDP model, we implemented the

following greedy approach:

1) find a minimum common supergraph for every pair

of trees using IDP;

2) merge the two trees that yield the smallest common

supergraph G, and replace them with G;

3) for every remaining tree T , use IDP to compute a

minimum common supergraph of T and G;

4) merge G with the tree that yields the smallest

common supergraph G′, and replace G and T with

G′;

5) go back to step 3 if any tree remains.

The greedy method focuses on merging single trees

with the current common supergraph one at a time,

which greatly reduces the search space. The idea of

carrying out the merging process in a way that minimises

the number of edges added at each step seems sensible,

but it is not necessarily optimal: Figure 8 shows a small

example where this approach performs suboptimally. An

interesting open question is whether the ratio between

the solution found using an optimal pairwise merging

strategy and the optimal solution is bounded. In our

experiments, the greedy method performed very well,

significantly outperforming the exact approach on larger

problem instances where the solver timed out before

reaching an optimal solution.

F. Experimental results

For our experiments1, we generated random CS-PLT

instances of varying difficulty. We generated four differ-

ent instances for every setting of the following parame-

ters: 5, 10, or 20 trees; 10, 20, or 50 nodes per tree; and

1Experiments run on a desktop machine equipped with an Intel(R)

Core TM i7 CPU 870 2.93GHz CPU (64bits) with 8GB of RAM.

T1 T2 T3

1

3

2

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

G1 G2 G3

Fig. 8. An instance on which the pairwise approach performs

suboptimally. The first step creates a minimum common supergraph

G1 of T2 and T3 that only requires a single additional edge, then

creates a minimum common supergraph G2 of G1 and T2 with 10

edges. However, G3 is a common supergraph of T1, T2 and T3 with

only 9 edges.

5, 10, or 25 labelled nodes per tree. Unlabelled trees are

generated by randomly adding edges between a growing

connected component and an isolated vertex; since the

number of leaves in the resulting tree may exceed the

number of labels, we then modify it by repeatedly

connecting random pairs of leaves (after disconnecting

one leaf from each pair) until we have enough labels,

which we then add, again randomly, starting with leaves

and ending with internal nodes.

We tried to solve every generated instance using both

the exact method and the greedy method. The exact

method was given 2000 seconds of maximum runtime.

Furthermore, since even pairwise merges can take a long

time, the greedy method was given at most 10 seconds

for every pairwise merge. Table I reports on the average

sizes per parameter setting of the solutions found by both

June 22, 2013 DRAFT

12

methods.

solution sizes

#trees #nodes #labels exact greedy

5 10 5 17.50 18.00

10 10 5 19.50 21.50

20 10 5 23.00 25.25

5 20 5 34.75 32.50

5 20 10 53.00 46.00

10 20 5 38.75 35.25

10 20 10 64.25 56.50

20 20 5 42.25 42.25

20 20 10 75.50 71.75

5 50 5 130.00 131.25

5 50 10 128.00 132.75

5 50 25 207.75 184.75

10 50 5 183.75 154.50

10 50 10 177.75 154.75

10 50 25 270.00 269.25

20 50 5 241.50 171.75

20 50 10 232.00 152.25

20 50 25 346.25 279.00

TABLE I

AVERAGE SOLUTION SIZES OBTAINED BY THE EXACT AND THE

GREEDY METHODS ON RANDOM INSTANCES WITH VARIOUS

PARAMETERS AND PRESCRIBED TIMEOUTS. THE GREEDY

APPROACH WAS ABLE IN SOME CASES (SHOWN IN BOLD) TO

OUTPERFORM THE EXACT APPROACH.

IDP was able to solve all instances with 10 nodes

per tree to optimality. In fact, all of these instances are

solved optimally within approximately 10 seconds. No

timeout occurs either in the pairwise greedy merges of

these problems. As Table I shows, the greedy method

performs worse on these instances, yielding solutions

with two additional edges on average. None of the other

instances are solved to optimality by IDP; the solver

either times out (using all 2000 seconds), or runs out of

memory. Interestingly, the greedy method performs very

well on these larger instances, and we also investigated

how the loss of quality evolves with the number of trees

in the input. Figure 9 compares the sizes of the solutions

obtained by the exact method and the greedy methods

on random instances made of (12, 6)-trees, without any

timeout. It can be seen that solutions obtained by the

greedy method were at most 13% larger than those

obtained by the exact method.

3 4 5 6 7 8 9
16

18

20

22

24

26

28

number of trees on 12 vertices with 6 labels

si
ze

of
so

lu
tio

ns

greedy

optimal

Fig. 9. Number of edges obtained by the exact and the greedy methods

on random instances as the number of trees increases (no timeouts).

The greedy approach produced solutions that were at most 13% larger

than the optimal solution.

The quality of the solutions obtained by the greedy

approach vastly exceeds that of the solutions obtained

by the exact solver on the largest instances of Table I.

Part of the reason for this is the memory required by

IDP, due to the fact that the SAT solver keeps learning

clauses while it runs. The solver eventually runs out of

memory and returns the best solution found so far. Since

this occurs frequently, even after running IDP for only

300 seconds, these solutions are worse than what IDP

would have found in 2000 seconds. However, this only

partially explains the differences: on some instances (e.g.

those with 20 trees with 5 coloured nodes), IDP does

reach the 2000 second time limit and still performs a lot

worse than the greedy method. We therefore conclude

that on large instances the pairwise approach is a very

promising method for solving CS-PLT.

Figure 10 concludes our experiments and shows how

June 22, 2013 DRAFT

13

2 4 6 8 10

0

500

1,000

1,500

1 minute

10 minutes

25 minutes

30 minutes

number of trees on 12 vertices with 6 labels

ru
nn

in
g

tim
e

in
se

co
nd

s

4 5 6 7 8 9 10

0

0.5

1

1.5

2

·104

1 minute
20 minutes

5 hours

number of unlabelled vertices in 3 trees

ru
nn

in
g

tim
e

in
se

co
nd

s

Fig. 10. Growth of the running time for finding an optimal solution

(averages over 20 runs) with respect to the number t of trees or the

number k of unlabelled vertices. Note that the search space has size

O((n− k)!t−1).

the running time of the exact solver grows with respect

to the instance size, measured on the one hand by the

number of trees in the instance and, on the other hand,

by the proportion of unlabelled nodes in those trees.

V. CONCLUSIONS

In this work, we showed that the decision version

of the problem of finding a minimum common super-

graph of a given set of partially labelled trees is NP-

complete. This negative result justifies and magnifies

the importance of good approximate solutions to the

original optimisation problem, as well as fast heuristics

and exact algorithms for solving it in practice. In that

regard, we investigated how promising the popular SAT

solver-based approach could be in our case; we bypassed

the difficulties that arise when trying to encode instances

and problem descriptions as Boolean formulas by relying

on the IDP system to handle the translation to a SAT

instance and then to solve instances of our problem

using a SAT solver. We proposed an optimised model

that allowed us to obtain both an exact solution to our

problem and a greedy approach that proved very useful

in practice, yielding very high quality solutions much

faster than the exact approach.

Several interesting theoretical questions arise. Most

notably, the complexity of CS-PLT on two partially

labelled trees remains open. Moreover, the computational

complexity classification of CS-PLT could perhaps be

further refined: in particular, does the problem admit

a c-approximation algorithms for some constant c? Are

there nice parameterisations of the problem that could

prove useful in practice? The excellent performance of

the greedy method justifies the importance of finding

efficient algorithms for the pairwise case, since merging

partial solutions in a greedy fashion usually gives solu-

tions of high quality to the general problem. In addition,

it would be interesting to further investigate the case

where at least one of the input graphs is a graph instead

of a tree, both from a complexity point of view and from

an approximation point of view.

As far as practical aspects are concerned, fast and

accurate solutions for real-world instances with actual

data are still needed, especially in light of the problem’s

complexity. Future work will in particular investigate

how the SAT solver-based approach proposed in this

paper applies and scales in practice.

Finally, other considerations might need to be taken

into account in order to assess the relevance of the results

yielded by the UMP method in practice, which will

require input from biologists. Are there other parameters

that should be taken into account when searching for a

June 22, 2013 DRAFT

14

minimum common supergraph? Which criteria should

be used to discriminate between nonisomorphic optimal

solutions? We note that additional criteria could be easily

incorporated directly into IDP, using the multitude of

available logical operators and arithmetic operations.

ACKNOWLEDGMENTS

We wish to thank Broes De Cat and Johan Wittocx

for explanations about the IDP system and for their help

in improving the model shown in Figure 5.

REFERENCES

[1] H. J. BANDELT, P. FORSTER, B. C. SYKES, AND

M. B. RICHARDS, Mitochondrial portraits of hu-

man populations using median networks, Genetics,

141 (1995), pp. 743–753.

[2] A. BIERE, M. HEULE, H. VAN MAAREN, AND

T. WALSH, Handbook of Satisfiability, IOS Press,

2009.

[3] H. BUNKE, X. JIANG, AND A. KANDEL, On the

minimum common supergraph of two graphs, Com-

puting, 65 (2000), pp. 13–25.

[4] I. CASSENS, P. MARDULYN, AND M. C.

MILINKOVITCH, Evaluating intraspecific “net-

work” construction methods using simulated se-

quence data: Do existing algorithms outperform the

global maximum parsimony approach?, Syst. Biol.,

54 (2005), pp. 363–372.

[5] S. A. COOK, The complexity of theorem-proving

procedures, in Proc. 3rd STOC, Shaker Heights,

Ohio, USA, 1971, ACM, pp. 151–158.

[6] R. DIESTEL, Graph theory, vol. 173 of Gradu-

ate Texts in Mathematics, Springer-Verlag, Berlin,

third ed., 2005.

[7] J. FELSENSTEIN, Inferring Phylogenies, Sinauer

Associates, Sunderland, MA, 2004.

[8] P. GAMBETTE, Who is who in phylo-

genetic networks: Articles, authors and

programs. Published electronically at

http://www.atgc-montpellier.fr/phylnet.

[9] C. P. GOMES, H. KAUTZ, A. SABHARWAL, AND

B. SELMAN, Handbook of Knowledge Representa-

tion, Foundations of Artificial Intelligence, Elsevier

Science, 2007, ch. Satisfiability Solvers.

[10] D. H. HUSON, R. RUPP, AND C. SCORNAVACCA,

Phylogenetic Networks: Concepts, Algorithms and

Applications, Cambridge University Press, Nov.

2010.

[11] A. LABARRE, Combinatorial aspects of genome re-

arrangements and haplotype networks, PhD thesis,

Université Libre de Bruxelles, Brussels, Belgium,

Sept. 2008.

[12] M. MARIËN, J. WITTOCX, M. DENECKER,

AND M. BRUYNOOGHE, SAT(ID): Satisfiability of

propositional logic extended with inductive defi-

nitions, in Proc. 11th SAT, vol. 4996 of Lecture

Notes in Computer Science, Guangzhou, China,

May 2008, Springer, pp. 211–224.

[13] S. PRESTWICH, Handbook of Satisfiability, IOS

Press, 2009, ch. CNF encodings.

[14] T. J. SCHAEFER, The complexity of satisfiability

problems, in Proc. 10th STOC, San Diego, Califor-

nia, USA, May 1978, ACM, pp. 216–226.

[15] J. WITTOCX, M. MARIËN, AND M. DENECKER,

The IDP system: a model expansion system for an

extension of classical logic, in Proc. 2nd LaSh,

Leuven, Belgium, Nov. 2008, pp. 153–165.

[16] J. WITTOCX, M. MARIËN, AND M. DENECKER,

Grounding FO and FO(ID) with bounds, J. Artifi-

cial Intelligence Res., 38 (2010), pp. 223–269.

June 22, 2013 DRAFT

