
Master Thesis

Atlantis 3D

Document : Thesis
Version : 1.0
Date : 27 March 2006
Document nr. : 546

Student
Author : Jeroen Broekhuizen
Email : j.broekhuizen@hef.ru.nl
Student nr. : 0219428
Education : Science of Informatics
Supervisor : Dr. Theo Schouten
Referent : Dr. Herman Geuvers

Experimental High Energy Physics
Supervisor : Drs P.F. Klok

Abstract

At CERN, a European laboratory for particle physics located near Geneva,
Switzerland, scientists are currently searching for the so-called Higgs particle. To
facilitate this, a circular 27km long accelerator is under construction in which
particles will collide at high speeds. During such collisions many new particles are
created. Data of collisions or events are collected by detectors and eventually
stored in XML files. To view these events for physics analysis the event-display
program Atlantis was created, to show events in various 2D specific data-oriented
projections. Atlantis is written in Java.

The question whether it is possible to embed a 3D component into the application
arose. This component should create realistic 3D images of detector elements and
events in real-time, in such a way that users can for example 'walk' through the
detector. Speed is of uttermost importance in this application, as speed is one of
the strategy points of the Atlantis development group.

Certain limitations of both Java and the existing application made it impossible to
display this data directly into the application window. One reason was that the
application expects the 3D image in its custom buffer. To solve this problem a
new algorithm has been inserted into JOGL, a graphical 3D library for Java, which
does not draw into the application window but into the applications buffer
instead. Unfortunately, custom buffers are not supported by the graphical
libraries so an intermediate buffer, also called an off-screen buffer, is used as link
between the graphical library and the applications buffer. During this research
JOGL was used as graphical library, which makes use of the graphics hardware
(via native OpenGL function calls) during the creation of the 3D images

Besides creating and displaying the images inside the application, it is necessary
to build a good hierarchical representation of the objects (detector elements and
events) so additional features can work as fast as possible. Features implemented
during this research include object picking and hiding (groups of) objects. The
hierarchical representation technique used in this research is the scene graph, a
directed graph, which in combination with the visitor pattern is a very powerful
tool for this class of visualization software. The resulting scene graph package can
also be used by other Java based applications.

Foreword

As informatics student interested in computer graphics, I welcomed this research
project about adding a fast 3D component to an existing application with open
arms. I finally had to perform actual research & development in 3D graphics for a
visualisation application.

Here I would like to take the opportunity to thank my family, girlfriend Julia and
friends for their support during this research. Their encouragements helped me a
lot to finish this research and thesis within the expected time frame. Further I
would like to thank Peter Klok, Theo Schouten and Herman Geuvers for their
help, insights and idea's during this research. Especially Peter Klok for the
amount of time he spent with helping, arguing, idea's and of course for taking me
along on business trips to Birmingham and Paris. Finally I would like to say
thanks to the guys in my room for the pleasant discussions about Windows and
Linux (and lots of other discussions!), and not to forget the rest of the people on
the EHEF department for the nice atmosphere these months.

This thesis is intended for anyone interested in creating visualisation software via
an intermediate 'buffer' in cases where it is not possible (either limited by an
existing application, or by design) to display images directly on the screen.
Knowledge about 3D graphics programming and Java is a pre, but is not required.

Table of Contents
1.Introduction...3

Objectives... 3
Method..3
Previous research..3
What's next... 4

2.About Particle Physics.. 5
CERN..5
LHC, ATLAS and Atlantis...6

3.Atlantis.. 7
User orientation.. 7
Buffered rendering..7
Geometry to render...8
Stereo rendering..9

4.Java and 3D...11
Lightweight & heavyweight Java... 11
OpenGL Java packages.. 11
Brief JOGL explanation..12
Summary...12

5.OpenGL...13
OpenGL & Extensions..13
Using OpenGL..13
Brief history of off screen rendering in OpenGL... 14
Rendering methods in OpenGL..14
Reading back rendering results...15
Summary...16

6.Performance measurements.. 17
Finding the fastest code path.. 17
Vertically flipping an image... 17
Java versus C++ benchmarking..18
Summary...18

7.Improvements of JOGL.. 19
The improvements.. 19
Ad 1. Off-screen rendering to buffered image... 19
Ad 2. Use new techniques whenever appropriate...20
Summary...21

8.Scene graph rendering...23
What is a scene graph?... 23
Existing scene graph packages... 24
Using the RUN scene graph... 24
Summary...25

9.Results...27
Future research... 29

Appendix A... 30
Appendix B... 32
Appendix C... 33
References... 34

Websites..35

1 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

2 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

1. Introduction

This thesis describes the research performed as part of obtaining a master degree
in Informatics at the Radboud University Nijmegen (RU). The research has been
performed at the Department of Experimental High Energy Physics (EHEF) of the
RU.

The supervisor from the School of Informatics is Mr. Theo Schouten and referent
Mr. Herman Geuvers. The supervisor from EHEF is Mr. Peter Klok.

Objectives
Main objective was the study of the implications, with respect to speed, of adding
a realistic 3D graphics component to an existing, basically 2D, graphics
application used in particle physics. Concerns with respect to the addition of such
a 3D view were about the negative influence it might have on the overall
application performance. High speed rendering (the method to generate and view
3D images on the screen in real-time) is the key topic of this research in order to
have a minimal impact on the overall application performance.

Besides, a natural extension of the existing user interface to use the 3D new
functionality to be added should be studied.

today to optimize the speed to display the images of which I will use and/or
combine a fraction during this research to get to the final result.

Method
Today there are numerous methods available. First existing techniques to display
3D images inside existing applications were surveyed in literature (papers and
web-sites), especially regarding rendering techniques and optimization algorithms
and eventually combinations of those.

As there was limited time available, a small selection of techniques was made
which should have the most impact on the rendering performance. This selection
not only includes techniques for rendering but also techniques important for fast
and transparent transfers of the rendering results to the application.

Various combinations of the selected techniques were tested to find an optimal
solution. Using this solution a working sample view was added to the application
to measure the impact on the performance of the application itself. This view
includes detector geometry, event data and some transforms like zooming and
rotation.

Previous research
An enormous amount of research has already been performed on the topic of 3D
rendering and methods to increase its speed. Although much of these techniques
could be used during this research, these will be not the main concern. Other
influences might have greater impact on the overall performance.

As the view must be embedded into an existing application, usual techniques for
high speed rendering can not be applied as those all render directly to the screen,

3 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

which is not possible in this case. For this application a fast method is needed for
rendering to an invisible area which later can be accessed by the existing
application to display the final image.

In this area little to no research has been done and as such the results of this
research can be used as foundation for further research in 'off-screen rendering'.

What's next
Below an overview of the upcoming chapters:

2. About Particle Physics – Gives a short introduction in particle physics and
the ATLAS project and concludes with a short explanation of the Atlantis
program.

3. Atlantis – Atlantis is the package in which the new three dimensional view
was added. In this chapter a more technical description and its limitations
are explained.

4. Java and 3D – Java does not directly support native 3D libraries. Using
special libraries makes it possible to use those 3D libraries. This chapter
explains how and what implications this has for the application. Also JOGL
is introduced as library for accessing OpenGL from Java applications.

5. OpenGL – The native library for 3D used during this research is OpenGL.
An introduction of this library is given in this chapter. Besides, also a few
OpenGL rendering techniques necessary for this research are explained.

6. Performance measurements – As explained before tests have been used to
find the optimal rendering solution. This chapter explains the tests which
were performed and gives the results.

7. Improvements of JOGL – The results of the previous chapters have been
used to modify JOGL to use the techniques which resulted in the highest
performance. In this chapter is explained which modifications have been
performed.

8. Scene graph rendering – Having hardware support is important, but a good
geometry hierarchy is equally important. This chapter introduces scene
graphs and lists advantages it has for the application (and extensibility).

9. Results – Finally the results of this research and points for future research
are listed.

4 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

2. About Particle Physics

Particle physics explores what matter is made of and what forces hold it together.
The necessary tools for this exploration are accelerators, which accelerate
particles to almost the speed of light, and detectors to measure what happens
when such particles interact during collisions.

CERN
Late 1949 the French scientist Louis de Broglie proposed that the countries of
Europe would collaborate and set up an European research facility for particle
physics to achieve together what none off the countries could have achieved
alone. As a result the “Centre Européenne de Recherche Nucléaire” (CERN) came
into existence on September 29, 1954 [13]. Currently CERN is one of the worlds
leading laboratories in the field of particle physics. It is located near Geneva on
the Swiss-French border.

The research performed at CERN is pure scientific, probing the innermost
constituents of matter to find out how our world and the whole of the Universe
work. The aim is to understand the world around us in a better way; there are no
direct technological or commercial objectives. However, the demanding research
in this field pushes the borders of technology further and further and generates
lots of “spin-off” technology.

5 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

Figure 1: The ATLAS detector (currently under construction at CERN)

LHC, ATLAS and Atlantis
In the Large Hadron Collider (LHC) is a colliding accelerator currently under
construction. When it is operational (expected end 2007) at the CERN laboratory,
experiments will take place by colliding particles at extremely high speeds. During
these collisions many other particles are formed and ultimately one hopes to find
the Higgs particle [12] proposed by theoreticians, but so far never “seen”. Special
detectors positioned around the LHC collision points register these collisions and
save the enormous amount of data collected into a database, from which via
intermediate steps XML files are generated for later analysis. One of the main
detectors in LHC is ATLAS, built by the ATLAS collaboration. EHEF is involved in
this experiment as member of the collaboration. This collaboration consists of
international groups (~100 groups and ~1000 scientists), including from The
Netherlands (EHEF), United Kingdom and Switzerland.

During this experiment data of collisions and their decay products are stored for
later analysis and visualisation. Since recorded collision are called events,
programs to visualize event data are called an Event Displays. For the ATLAS
detector the event display package Atlantis is used.

This package was originally developed in Fortran but was recently ported to the
more flexible, modern and object-oriented Java, which also is platform
independent. With Java more modern techniques became available like XML for
data storage. As such this research will be limited to the Java language.

6 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

3. Atlantis

In the previous chapter the purpose of Atlantis was explained. In this chapter
technical details and user perspectives of this application related to the research
described in this thesis will be described. All details presented here where already
implemented before this research started.

User orientation
Atlantis is written for physics analysis with it's users in mind. The strategy behind
Atlantis is that it should work fast and consistently. This means that it should
start up quickly and immediately respond to user input in a consistent manner.
Different views of the event data must be controlled in the same way, including
zooming, rotating and panning of the view. Also human perception is considered
to facilitate an intuitive way of working with the program.

Atlantis currently provides seven types of two dimensional (2D) and three types
of three dimensional (3D) projections of the data collected by the detectors.
These 3D projections are non-typical and do not provide realistic images of the
detector system and the event particles, but are very efficient for viewing specific
physics properties in physics analysis. Figure 2 shows an example of one of the
2D projections and the user interface.

The Atlantis display area can be subdivided into a number of subwindows. Thus it
is e.g. possible to view different projections of the same scene simultaneously. It
also facilitates picking an element in one projection and showing this element in
other projections.

An independent software review advised the Atlantis development group to
integrate realistic 3D support into the application, meaning an insightful three
dimensional representation of the detector and particles in such a way that
images may be used for outreach and for analysis.

For ease of use and installation the new projection should be integrated and
behave the same way as other existing projections do.

Buffered rendering
Certain events in Swing, a lightweight window environment for Java, require a
redraw of the screen contents. In Atlantis this would mean that all visible
geometry and event data must be detected and displayed every time such an
event is received. Doing this would slow down the responsiveness on slower
computer machines which does not comply with the original strategy.

The solution used is a buffered rendering technique. With this technique only in
certain cases the visible geometry and event data have to be redrawn, like after a
rotation of the projection or if an object's display property changes (for example
its visibility). If a redraw is necessary, drawing is performed on an image located
in memory instead of directly on screen. After the redraw the resulting image is
displayed. This technique might seem slower at first, but the advantage of this
technique is that in the cases where no complete redraw is necessary, only the
image has to be displayed without performing any other operations.

7 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

Geometry to render
Atlantis uses an XML based storage system for initial settings, detector geometry
and event data. At start-up the application loads this data into internal data
containers (lists). This data later can be accessed by the different projections to
be displayed. Usage of XML in combination with schema's can be used for
automatic class generation, which currently is not used yet, but could eventually
be used for automated loading and construction of the detector element instances
and event data instances instead of manual parsing and instance construction.

The container interfaces supply methods to retrieve projection specific geometry
lists to be rendered by that projection. These methods take into consideration if
the data is/should be visible and compose a minimal list. For the new 3D
projection a new method to these interfaces must be added to allow this
projection to query the data. For this research no spatial subdivision algorithms,
or any other techniques, were used to minimize the number of objects in the list.
This kept the interface clean and simple to understand for the testing purposes.

Some types of data are stored with only 2D information. This data can thus not
be displayed in the new projection as the third dimension is not yet available.
When this information becomes available the changes necessary in order to
display this new data should be kept to a minimum.

8 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

Figure 2: The final 3D detector as implemented according the changes in this thesis

Stereo rendering
Three dimensional objects are seen differently through the two different human
eyes. This cue is called stereo parallax [5]. Together with other cues people are
better able to distinguish objects in a three dimensional environment. Stereo
parallax is used in most stereo rendering algorithms.

Rendering in stereo most of the time needs special hardware to be usable. For
instance special glasses have been developed to make stereo viewing work. Other
techniques require very high frame rates (>100 frames per second) of the screen
it is displayed on. Overall these techniques require rendering in full screen as
otherwise the brain can not interpret the stereo pictures correctly. Bottom line is
that expensive special hardware or a full-screen application is needed to make
stereo rendering useful.

Both of these points do not fit within the strategy of the Atlantis development
group to keep Atlantis simple and consistent. Therefore stereo rendering will not
be investigated and used during this research.

9 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

10 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

4. Java and 3D

As stated in the Introduction, the main objective of this project is to research the
implementation of a realistic 3D projection into the Atlantis application. To do this
there are several possibilities available:

1. Write a custom 3D software library or

2. Use an existing Java package for 3D rendering.

The first option, writing a software renderer, is not feasible any more. Current
desktop computers, in particular the graphics hardware, are often optimized for
3D rendering using for example OpenGL or DirectX. These graphics libraries make
optimal use of hardware transformations and rasterization, as will be discussed
later. In case hardware is not available, optimized software drivers will
transparently take over the tasks which otherwise would have been performed by
the graphics hardware.

Currently there exists numerous packages which add hardware optimized 3D
support to the Java platform, including Java3D, JOGL and GL4Java.

Lightweight & heavyweight Java
Java GUI components can be classified as either lightweight or heavyweight. A
heavyweight component is associated with its own screen resources also known
as a peer. The lightweight components “borrows” its resources of its ancestors,
and thus has no resources of its own and thus “lighter”. Swing is a library
consisting of only lightweight components written entirely in the Java Application
Programming Interface (API).

It is possible to mix both kinds of components but this has some drawbacks like
z-order fighting between components which heavyweight components always win.
For a good integration in Atlantis this drawback is unacceptable as other
subwindows must be able to draw its contents on top of the 3D projection.

To fully support the lightweight Swing components and it's z-order (the order in
which the child-windows are drawn on the screen) one may not directly render
OpenGL scenes to the screen like the heavyweight AWT components, a collection
of classes to create user interfaces, do as discussed above. To circumvent this
problem an off screen buffer must be used in which all rendering takes place.

The functionality of the heavyweight components is not relevant for this research
and as such will not be discussed in this thesis.

OpenGL Java packages
Java3D is a well known package among 3D Java Game programmers. It offers a
complete set of classes to ease the development of 3D graphics applications.
Advantage of using Java3D over the other packages is the availability of ready-
to-use functionalities. Main disadvantage of the package is little to no custom
optimization possibilities and dependency on the developers of Java3D for new
features to become available.

11 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

These two disadvantages can be fairly easily overcome by using the Java binding
for OpenGL (JOGL) library. This library offers low level access to the graphics
package OpenGL in Java, so program specific optimizations can be easily
implemented. A drawback of JOGL is the lack of helper functionalities which are
provided in Java3D.

Both packages have support for heavyweight and lightweight environments by
using respectively an AWT canvas component or an off screen buffer. Recent
versions of Java3D and JOGL support the pbuffer extension for off screen
rendering.

Off screen rendering has many usages in today's applications. Sample usages are
reflections by rendering the inverted world, procedural textures, blurring, etc.
Though it is not yet used as necessary for this research.

As JOGL provides low level and flexible access to all OpenGL features necessary
for this research, features which were not fully supported in Java3D at the time of
this research, therefor the JOGL package has been chosen as underlying 3D
library. This low-level interface also allowed to easily perform comparisons
between the different methods for off-screen rendering.

Brief JOGL explanation
As Java is a platform independent programming language it has no direct access
to the OpenGL function library available on most platforms. The Java Native
Interface (JNI) framework can be used to invoke methods written in another
native language like C/C++ while maintaining platform independency. With JNI it
is thus possible to integrate OpenGL in Java and this is exactly the way JOGL has
implemented it.

To support platform independent OpenGL access the developers of JOGL used the
bridge pattern [9] to separate the platform dependent code from the actual Java
code. A concrete factory class (abstract factory pattern [9]) is used to create the
OpenGL context for each supported platform.

The solution JOGL provides for the lightweight swing environment can be
accessed through the GLJPanel class. This panel can be added to an existing
window enabling OpenGL support to the application. When the panel is created
the programmer can invoke the same OpenGL commands as for a heavyweight
environment. Underwater the panel uses an off-screen surface as it may not
access the window frame buffer directly (would be heavyweight otherwise).

As explained above Atlantis uses a buffered rendering strategy. The JOGL panel
class does not recognize this method and directly outputs it's data to the window.
However, Atlantis also outputs it's buffered image to the window, thus
overwriting the generated 3D event data. To prevent this, new methods have
been implemented in JOGL as part of this research to support rendering to a
buffered image, like the one used in Atlantis (see chapter 6).

Summary
The decision to use JOGL was based on its flexibility with respect to being able to
easily add new functionality to the library, which is more difficult for Java3D.
Besides, it supports the lightweight component interface Swing.

12 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

5. OpenGL

In this chapter OpenGL is described. Knowledge of this topic is necessary for a
better understanding of the rest of this document. However, only the parts that
are of interest for this research are discussed. For a complete reference of the
OpenGL API see [1,2].

OpenGL & Extensions
Open Graphics Library (in short OpenGL) is a platform independent library of
functions used by graphical applications, mostly for 3D imaging and CAD
programs, to draw objects. It functions as a software layer on top of the graphics
hardware. As time moves on, graphics hardware grows more sophisticated and
gets more useful features. To keep up with these new improvements the OpenGL
Architecture Review Board (ARB) tries to add new functionalities to OpenGL either
through directly changing the API or by adding extensions.

Extensions mostly start as vendor specific extensions like the SGIS_multitexture
extensions, which makes it possible to apply multiple images at the same time to
an object. When multiple vendors agree to support an extension it will most likely
be named EXT_multitexture (EXT may only be used when at least two vendors
support the extension). In case the ARB approves the extension it will be named
ARB_multitexture. With new revisions of OpenGL some widely used (and
hardware supported) extensions will be integrated in the API. For example, the
OpenGL Shader Language (GLSL) extensions were recently incorporated in
OpenGL version 2 (specifications appeared in October 2004).

To use an extension in applications one must verify that the extension is available
on the current hardware. This can be done using a standard OpenGL API function
call which queries the graphics driver for a list of available extensions. As
developer you are thus dependent on the extensions a graphics hardware vendor
puts in their drivers. It is not possible to add your own extensions to these
drivers. During this research I noticed this also with the PBO extension (will be
explained later in this chapter) which is not available on ATI graphics hardware.

Using OpenGL
The model used for interpreting OpenGL commands is based on the client-server
model. When a client program issues an OpenGL command it will be executed by
the OpenGL server located in the graphics hardware driver. On both sides state
variables are used to keep track of the current OpenGL state, of which most
reside on the server side. These states together form the OpenGL rendering
context (context in short).

Creation of such a context must be done by the window manager of a platform
which manages the framebuffer. Window managers that are OpenGL compatible
supply a small API to control the creation of this context. For example MS
Windows has the WGL extension and the X Window System has support for
OpenGL through GLX. During the creation of the context the complete or part of
the framebuffer will be assigned to the context for rendering. Generally this is the
client area of a window.

13 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

All contexts reside on the OpenGL server and thus a program must connect to it,
which can also be done via the window manager. The server can have any
number of contexts available, but one thread may only have one active context at
a time and vice versa. Only after creation and connection to a context, issuing
OpenGL commands will have effect on the state and/or the output.

Brief history of off screen rendering in OpenGL
In the early years of OpenGL rendering to an off-screen buffer was not possible.
These days a programmer had to render the scene to the fixed-size frame buffer
and perform a slow copy operation from this frame buffer to for example a
texture object.

Soon it became apparent that this method was not sufficient for real-time
applications like games or simulation software. For this reason the pixel buffer
(pbuffer) and soon thereafter the bind-to-texture extensions were invented. The
combination of these two extensions allowed an application to render directly to
an off-screen pbuffer and use it as an image, all completely hardware
accelerated.

Unfortunately the pbuffer has never been very popular among the OpenGL
programmers for several reasons. One of these reasons was the requirement of
unique contexts for every pbuffer. As explained above OpenGL maintains all of its
states in contexts. Switching between different contexts is an expensive operation
as the current state must be saved and is overwritten by the new state. Another
problem with pbuffers is that they can get lost, for example during screen
resolution changes. When this happens the application has to recreate the buffers
and switch contexts again. For cross-platform applications another reason is the
fact that the pbuffer extensions are not platform independent. It started on Linux
as an GLX extension which later was ported to Windows and extended with the
bind-to-texture extension. Thus using pbuffers leads to writing different code
paths for each supported platform.

As a solution to these problems several vendors released the Framebuffer Object
(FBO) extension [5]. At creation time one or more logical buffers, like the colour
and depth buffers, are attached to a framebuffer object. After binding a
framebuffer object to the current context the attached buffers will be used as
source and destination during rendering operations. This new extension solves
most of the problems related to the pixel buffers, including context switching and
platform dependent code paths.

Rendering methods in OpenGL
When there is an active context, a program can render scenes to the buffer
associated with this context. OpenGL supports only simple primitives: points,
lines, triangles and polygons. By combining these primitives complex three
dimensional representations can be created.

Rendering scenes involves sending information about the primitives to the
graphics hardware which then can process it to output a representation of the
primitives to the framebuffer. A primitive is built up from one or more points with
several attributes, like position, normal, colour, etc. Sending this information
about the primitives to the graphics hardware can be done using several methods
which range from slow to very fast.

14 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

The first method, generally learned first, is the use of the Begin/End pair, also
called immediate mode rendering. The Begin command takes one argument: the
type of the primitives (point, line, etc.) which are described till the next End
command. Inside the Begin/End pair you can use other OpenGL commands to set
attributes of the points describing the primitive. Since these attributes must be
set again for every frame, this method can be slow compared to other techniques
depending on that specific situation (static or dynamic attributes, amount of
attributes, etc.).

A (possibly slightly) faster way of rendering is the use of display lists. When a
new display list is created you can fill it with a batch of OpenGL commands.
Current video drivers tend to optimize them which results in high frame rates.
Due to the overhead of setting up display lists it is not always a faster technique
compared to immediate mode. Display lists also describe static primitives only.
So for a dynamic scene the display lists must be recreated completely whenever
a change occurs. Therefore this method is only useful in static scenes.

A faster way of rendering is the use of so called vertex arrays and its range
extension (VAR). In a preprocessing step the vertices of the scene are stored in
an array in RAM. Rendering of all the primitives stored in this array can be
invoked with only one function call. As current GPU's work asynchronous, they
can process the primitives while the CPU can continue processing the application,
for example update the array for the next frame (the contents of the array are
copied into the memory of the graphics hardware). VAR's can greatly speed up
rendering of a scene and fully support dynamic scenes.

Although VAR's can speed up rendering, this method still has some important
draw-backs. For example using a VAR requires a semaphore-like construct to
perform efficient memory management. Recently a new method was introduced
which handles the VAR and memory management for the programmer: vertex
buffer object (VBO). Memory allocation and management are now completely
implemented and optimized in OpenGL drivers and reside either in video memory
or in RAM depending on how it is set up. Rendering from a VBO is invoked the
same way a vertex array is. It has the additional advantage over VAR that you
can specify that the VBO contains static only or dynamic data. Based on this
information OpenGL can improve performance even better.

Reading back rendering results
As discussed before, rendering takes place on an off screen surface. In order to
display the results there must be a way to read information back from these
surfaces. In OpenGL this is implemented in the glReadBuffer function. This
function reads all pixel colour values from the surface and stores it in a buffer
supplied as argument to this function.

Based on the current platform, hardware and internal surface format this function
can be very slow and stalls the graphical processing unit (GPU) from performing
other 3D related operations until the read back has been finished. Transfer rates
are dependent on the used hardware, for example the PCI-Express bus reaches
much higher transfer rates then the AGP bus [6].

NVidia wrote the OpenGL extension 'Pixel Buffer Object' (PBO) [17] supporting
asynchronous read backs from surfaces without any stalls. This way a program
can request a read back and in the meantime perform some other processing

15 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

jobs until it really needs the pixel data. The extension guarantees that at that
moment the pixel data is necessary, it will be available for use. However, it still
may stall in case the operation was not finished yet.

Summary
OpenGL is a widely known graphics library used for visualisation and simulation
software. With OpenGL complex scenes can be rendered by combining a
multitude of primitives. A sample scene, as used in this research, would contain
the detector elements and event data.

Graphics hardware vendors make new functionalities of their hardware available
to the programmers through OpenGL extensions. During this research a selection
of these extensions were measured for their influences on rendering speed,
including the FBO as off-screen rendering surface and the PBO for a (potential)
faster read-back from this off-screen surface.

16 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

6. Performance measurements

During this research the performance of a selected set of important techniques
necessary for the new 3D projection has been tested. The techniques and the
corresponding test results are listed in this chapter.

Finding the fastest code path
As speed is on of the most important concerns for Atlantis, multiple speed tests
have been performed to determine which technique or combination of techniques
results in the fastest rendering path. A specific test program has been written to
perform these tests.

Vertex buffers have been excluded from the tests as all geometry is static (which
is also true for the Atlantis geometry), which means that the geometry will not
change during the run of the application. Therefore there will be no speed
improvements compared to display lists (which can only contain static geometry).
So, only display lists are used during the tests.

The test application is written in Java and uses either the modified or unmodified
(see chapter 7) version of JOGL to render two Stanford models: a bunny and a
dragon. The test application allows a user to configure the (combination of)
techniques to be used during the upcoming test. The following techniques are
supported by this application: pbuffer, FBO and PBO (only available on NVidia
hardware). During the test the selected model is rendered 500 or 1000 times to
the window via the off-screen buffer. At the end of the test the best, worst and
average rendering- and read back times are displayed.

The results of the tests are listed in appendix A. These results show that using a
framebuffer object is slightly faster than using a pbuffer even though both are
hardware accelerated. An interesting point is that the use of a PBO can even slow
down rendering considerably on fast graphics hardware instead of improving. This
probably is caused by the fact that the test application immediately expects the
pixel data after invoking the read call. The overhead of the synchronization plus a
stall for immediate reading results in a slight performance worsening.

So, the best off-screen solution for Atlantis is the use of an FBO as framebuffer
and a synchronized read back of the pixel data (thus not using the PBO
extension).

Vertically flipping an image
In hardware the images are drawn up-side-down (e.g. the top of the image is at
the lower left corner). Unfortunately in the Java environment this is the other way
around: the image starts in the upper left corner. To display the image in a
correct manner the program has to flip the image vertically. Flipping images can
be implemented with different algorithms:

1. inverse scale using matrix, very slow,

2. up-side-down drawing of picture, faster,

3. copying buffer with for-loop, fastest.

17 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

Method 1 uses the AffineTransform class which transforms images using affine
matrices while preserving image quality and correctness. Applying such a matrix
involves a lot of matrix computations which in this case degrades performance.
Using this method with the bunny test with FBO takes 33.7 seconds for 500
frames.

A considerably faster method uses the Canvas.drawImage method to flip the
image. Flipping the image is done by supplying the function with two rectangular
regions. The first region contains the region of the screen where the image should
be drawn. In this case this region was supplied in an up-side-down manner
<0,height,width,0>. The second region contains the part of the image that should
be displayed on screen. The complete picture must be visible, thus the region will
be <0,0,width,height>. The combination of these two regions make drawImage
paint the image in the upper left corner of the window and correctly flipped. This
method is much faster than method 1 and only takes 11.9 seconds for the bunny
test of 500 frames.

The last method uses a for-loop to flip the image and then draws it also with the
drawImage method. Instead of directly reading the pixel data to the image it will
be stored in a temporary buffer. The loop then copies the data row wise from this
buffer to the image in opposite direction and thus flipping the image. This is the
method already used in JOGL. During the test this method needs 10.3 seconds.

Java versus C++ benchmarking
Early versions of the Java runtime environment were slow when compared to
other languages like C++. Since that time a lot has changed and Java programs
became much faster. Unfortunately a lot of people still assume Java to be slow.
Numerous benchmarks [8] have been performed which show that recent Java
versions can compete or are faster than C++ when used for certain algorithms.
Mainly this is caused by the Just-In-Time (JIT) compilation to native code that is
done in real time. This JIT compiler can generate code for the processor it is
currently running on, while a C++ compiler has to generate native code at
compile time with support for various hardware architectures.

The above mentioned benchmarks are mostly related to numerical aspects and do
not address the Java Native Interface (JNI) which is used by the JOGL package.
The use of native code inside Java programs could influence the code generated
by the JIT compiler. To test if a wrapper around native OpenGL indeed slows
down Java a benchmark has been run. The results of this benchmark are listed in
appendix B. These show that C++ is indeed slightly faster, but this difference in
speed is negligible.

Summary
Results from the tests performed for this research, showed that using a FBO in
combination with synchronized read-back to a Java image has the best
performance. As hardware stores its images in bottom-up manner, this image
must be flipped in order to show up correctly in the Swing environment. The
fastest way to do this is using the row-wise copying method as explained above.

The last test showed that using C++ instead of Java shows only negligible
improvement. Therefore it is not recommended to use C++ and make the
application more complex and platform dependent.

18 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

7. Improvements of JOGL

To enable JOGL to render to an image and improve its performance, some
changes to the JOGL library have been made as part of this research. The how
and why of these improvements are discussed in this chapter.

The improvements
To improve the standard JOGL distribution with off-screen facilities the following
adjustments have been made:

1. off-screen rendering to buffered image,

2. use new techniques whenever appropriate.

Ad 1. Off-screen rendering to buffered image
As described in an earlier chapter, JOGL must be adapted to store its rendering
result in an external image, instead of writing it directly to the window. To solve
this problem a new class in the JOGL class hierarchy has been added with this
functionality. At start-up the program can tell JOGL which image to use for
storing rendering results.

In chapter 4 was explained how OpenGL is used to read back pixel information to
an image. However, one small remaining problem is that off-screen buffers,
pbuffers and FBO's have different locations in memory. So, there must be a way

19 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

Figure 3: UML diagram of the GLDrawable Implementation

to tell OpenGL where to look for the pixel information. Therefore an abstract
function setReadBuffer has been added that inheriting classes must implement,
as can be seen in figure 3. The only task of this function is to give OpenGL the
location of the pixel information of this class framebuffer. The X11FboGLDrawable
class for example tells OpenGL to use its FBO as framebuffer for reading back the
pixel information.

Atlantis may use the factory class to create an off-screen buffer class (it does
does not know whether it is a pbuffer or a FBO). This factory automatically is
supplied with the image where the result of the rendering process must be
stored.

Figure 4 schematically shows the image data flow throughout the application and
OpenGL to finally appear on screen. As will be discussed in the next chapter, the
detector elements and event data will be stored in a scene graph. First these
objects are rendered via OpenGL in an off-screen image resulting in a full 3D
representation of the detector with the event data. This image is then read back
into Atlantis' own buffered image till the application has drawn everything. Finally
this buffered image is displayed on screen (under water graphics cards reserve a
special area of the video memory in which applications can write their images,
which is then send to the monitor).

Ad 2. Use new techniques whenever appropriate
The first title of this section was 'Use new techniques whenever possible' but that
is not true. Sometimes older techniques are still fast enough and easier to
implement. An example is the use of a VBO or the older display list. As described
above, Atlantis only uses static data, so display lists are as fast or faster then
using VBO's. This is partially caused by the necessary state changes in OpenGL to
make a VBO active. The code required for creating and using VBO's is also
substantially more complex to write. Thus for Atlantis pre-generated display lists
are used for rendering all geometry. Another example we've seen before is the
PBO extension which in our case is slower than the original synchronous method.

20 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

Figure 4: Data flow between buffers

For rendering to an off-screen surface JOGL uses the FBO extension by default if
it is supported on the current platform. If this is not the case a pixel buffer (or on
very old hardware the good old bitmap) is used as an alternative. As can be seen
in figure 3 a derived class XGLFboDrawable is created to add support for FBO's in
JOGL, which is totally transparent to the JOGL user as the factory returns a
reference to the GLOffscreenDrawableImpl base class.

The tests in the chapter 6 have shown that using a PBO can slow down the
reading of pixel data from the off-screen surface to an image. For this reason,
and the fact that it is not a widely supported extension, the modified JOGL does
not use it.

Summary
By inserting a new off-screen class into the Drawable class hierarchy full off-
screen rendering support was added to the JOGL package. This new class uses
the best solution found during the tests: FBO whenever available on this current
platform and definitely no PBO will be used, even if it is available (could be made
as an user option later), as it may slow down the application. In case a newer
technique is not available on the hardware, a fall-back mechanism is used
(implemented during this research) for selecting an older technique which is
supported by the hardware for usage during rendering.

21 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

22 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

8. Scene graph rendering

In the previous chapter is explained how JOGL was improved to render as fast as
possible in the Atlantis environment. To facilitate the rendering of 3D scenes, a
scene graph package has been developed for this research. In this chapter the
usage and implementation of the scene graph is discussed.

What is a scene graph?
The scene graph implemented during this research is a directed graph. This kind
of graph is a data structure with exactly one parent and an arbitrary number of
children. The top node is called the root and a node without children is called a
leaf. Numerous nodes can be used to form a hierarchical representation of the
scene [15].

Often a car is used to explain the use of a scene graph. The frame of the car is
the root of the car. The four wheels are children of the car and are thus stored in
a group node with as parent the car. This way a complete representation of the
car can be build. In the following picture a scene graph is shown more specifically
for this thesis subject.

In computer graphics, scene graph nodes can have different types. For every
attribute or object a new node is constructed, for example light, geometry and
transform nodes as can be seen in figure 5. Both 'Root' (it is just another name)
and 'Atlantis-group' are group nodes; the only nodes in a scene graph which may
have [0..n] children as described above (group nodes are the composite nodes of
the Composite Pattern [9]), all other nodes are leafs. The 'Detector' and 'Event'
nodes in this figure contain the geometry of this scene graph, which are lit by the
'Light' node.

The visitor pattern [9,16] is a widely used pattern in scene graphs because it is
useful for separating algorithms from the nodes. Using several implementations
of a visitor, multiple algorithms can be executed on nodes without any necessary
changes to the node interfaces. To use the visitor pattern only one function must
be added to the node, a function that accepts the current visitor (this is possible
as all visitors should be inherited from the abstract base class Visitor). This
pattern is used for example to implement geometry picking in Atlantis. A
PickVisitor is implemented which traverses the scene graph in search of the
node which has been clicked on.

23 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

A disadvantage of using scene graphs is that they must be generated manually.
There is not yet an algorithm which determines what hierarchical structure is
necessary for a given implementation. This is also the case for the Atlantis
package, so the graph hierarchy is built manually.

Existing scene graph packages
Currently there are only a few alternative scene graph packages available for
Java. The two best known packages are Java3D and Open Inventor (OI) where OI
is mostly targeted at scientific solutions.

Both packages offer a rich set of classes for rendering geometry, lights and a
multitude of other types of objects using a scene graph. Both packages have their
advantages, but also some disadvantages. Advantages include ready to use
classes for all kinds of operations including rendering, object culling and picking.
When speed is involved both packages have to perform redundant calculations as
they are written for usage by all kinds of application types. Therefore, the
decision to implement a custom scene graph library which is focused on speed
only, was made as part of this research.

Using the RUN scene graph
The separate RUN package that has been developed during this research contains
a functional (but still far from complete) and optimized scene graph library
developed for use in the Atlantis software, although other Java based programs
should be able to use it too. In appendix C an UML class diagram of the RUN
package is included. In that diagram only the important classes and methods are
included to simplify the understanding of the behaviour of this package.

The Node class is the base class for scene graph nodes. The inherited nodes
Group and Geode are currently the only node types necessary to build the
complete Atlantis scene graph.

The group node is not a visible entity in the projection but is used to group
certain child nodes. As an example all box detectors are grouped together in one
group. Advantage of this kind of grouping is the ability to easily hide or perform
an operation on a group of nodes. Hiding all box detectors can thus be done by
simply hiding their group node, instead of iterating over all nodes in the scene
graph to hide the box detectors.

Geometry of the event data and detectors are stored in geode nodes (geode is an
abbreviation for 'geometry node'). Construction of this geometry is encapsulated
in the Shape class hierarchy. Due to the lack of 3D information of certain
detectors and event data in the Atlantis package currently only box- and
trapezoidal shape detectors and simple event tracks are supported.

During the creation of a shape only the geometry is created. After the scene
graph is fully created, the graph can be compiled. During this compilation process
the geometry is stored in a display list for fast rendering (see chapter 5 for the
reason). The result is that per geode only one function call is necessary to display
the geometry.

Picking objects, like detector elements, is an important tool in the Atlantis
application during analysis. Picking can be implemented in different ways. For
example the build in OpenGL selection mechanism can be used for selecting

24 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

geometry sent to the graphics hardware. Unfortunately this mechanism only
supports a maximum of 64 objects which is far from enough (typically there are
>1000 detector elements). Another method is to pick objects based on colours.
Every object should be rendered with a unique colour after which OpenGL can be
queried to determine which colour is under the mouse pointer (this all happens in
a special OpenGL buffer, so those coloured objects will not be visible for the
user). Unfortunately this technique also can not be used. It only works for
screens with a resolution of at least 24 bits. Otherwise the colours returned by
OpenGL might not be the same as the ones originally supplied with the object.
The method which works and is used in the RUN package shoots a ray from the
mouse pointer into the scene. Using [11] we can determine if the ray hits the
object and determine the distance. The object with the closest distance must
have been the object which the user wanted to select.

Summary
A scene graph is a data structure used often for a hierarchical representation of
objects, in this case the detector elements and event data, to display. Already
existing scene graph libraries offer a rich set of classes, but as they are written
with all sorts of applications in mind, they regularly have to perform unnecessary
operations and thus waste valuable CPU time. During this research a custom
scene graph (as a directed graph with 1 parent and [0..n] children) is
implemented. This scene graph eases development of certain additional features,
like object picking, object hiding, through the use of the Visitor Pattern. These
features are implemented as different visitor classes which can all be applied on
the scene graph nodes. This method makes it possible to easily traverse the
graph and perform operations on (a subsection of the) nodes.

25 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

26 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

9. Results

Using the results and implementations of the previous chapters the new realistic
3D projection has been embedded into Atlantis and can be seen in figure 6 on the
next page, reusing the existing functionality and user interface to simplify the
usage of this projection for users. With this projection it is possible to view the
ATLAS detector and simple event data. Using the POV-Ray program high
resolution images of 3D scenes can be generated which can be used for PR, other
public events and websites.

After a discussion with Julius Hrivnac (LAL, Orsay, France) was decided to display
the geometry in two passes. The first pass renders solid geometry and during the
second pass a wireframe (only the edges of the detector) is rendered on top of
the solid geometry. The result is a much clearer image of the detector in which
the detector elements can be distinguished better then without the additional
wireframe. This extra pass does incur a slight penalty to the rendering speed, but
does not outweigh the better visual perception.

This projection uses the scene graph and improved JOGL for rendering the
detector and event data geometry to the off-screen buffer of Atlantis. After
rendering Atlantis can display its custom interface widgets on top of this image
the same way it is done on the existing projections.

Due to the current data layout used in Atlantis it is not yet possible to quickly
detect which detector elements are hit by an event. It is thus not yet possible to
hide all nodes without a hit. On the other hand it is possible to select a subset of
the detector elements and hide the rest. This functionality can be easily extended
in the future with other operations.

The tests and implementations have shown that it is possible to render fairly
quickly to off-screen buffers, but it will stay slower than directly rendering to a
window for the next couple of years although most graphics card vendors spent
more time on off-screen rendering during the last five years. The modifications
done inside JOGL resulted in a JOGL implementation which is at least 5 times as
fast as the standard Java3D implementation. Without usage of the new FBO
feature, it still is 4.7 times as fast. It is also more generally usable in other
(scientific) applications which need 3D graphics embedded into it then the original
JOGL implementation.

As little to no research has been performed in the area of off-screen rendering
this thesis can be used as foundation for future research. After more investigation
perhaps off-screen rendering can be used much easier and better then it is
currently possible.

27 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

28 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

Figure 6: The final 3D detector as implemented according the changes in this thesis

Future research
Much research still can be performed in order to improve the performance or
applicability of this new 3D projection. Below a few points are listed which might
improve the performance of the 3D projection or its usage and can be topics of
further research.

– Scene graph serialization: currently the scene graph is constructed every time
Atlantis is started. Serialization of this scene graph to and from a file can
speed up the construction, as lots of calculations can be skipped. Result of this
can be a shorter start-up time of the application.

– Automatic scene graph generation – using XML with schema's allows a
program to automatically generate instances of certain classes defined in the
XML file. This way it will be possible to define the scene graph in the XML data
file combined with a schema. Then no manual Java coding process is
necessary any more and the scene graph can be changed without recompiling
the application.

– General scene graph – currently only the new 3D projection uses the scene
graph to represent the data. It is also possible to use the same kind of graph
for the other 2D projections, resulting in a common application structure.
Though such a change would have a tremendous effect on the complete
application structure.

– Culling techniques: culling techniques can speed up rendering tremendously if
used correctly. These techniques try to cull away as much invisible geometry
as possible leaving us with as less geometry as possible to render.

– Clipping geometry: with clipping techniques (for example the build-in clip
planes in OpenGL) geometry can be cut in such a way that the inner detectors
become better visible.

– Using transparency: allowing users to make detectors with a hit transparent
would result in better insight where exactly this hit was detected inside the
detector.

29 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

Appendix A
Benchmark: JOGL versus modified JOGL

In this test various rendering techniques are tested to determine which
combination is the fastest way for off screen rendering. The measurements are
performed and listed in milliseconds. Please consult the legend on the next page
for explanations of the table headers. JOGL used for these tests was downloaded
at October 14, 2005.

Test
Framework

Triangle
model

Total
time

Min.
time

Max.
time

Avg.
time

Fps

System: ATI Mobile x300 PCI-E, Intel Centrino 1,6GHz
512x512, fbo 1 B 10,312 15 32 20 49
512x512 1 B 10,424 15 32 20 48
512x512, fbo 2 B 10,219 15 32 20 49
512x512 2 B 10,312 15 32 20 49
512x512, fbo 2 D 41,312 15 32 20 24
512x512 2 D 41,390 31 47 41 24

System: NVidia 7800GT PCI-E, AMD64 3200+
512x512, fbo 1 B 2,531 0 16 4 198
512x512, fbo,pbo 1 B 2,578 0 16 4 194
512x512 1 B 2,563 0 16 4 195
512x512, pbo 1 B 2,641 0 16 5 189
512x512, fbo 2 B 2,390 0 16 4 209
512x512, fbo,pbo 2 B 2,438 0 16 4 205
512x512 2 B 2,391 0 16 4 209
512x512, pbo 2 B 2,437 0 16 4 205

512x512, fbo 1 D 7,719 0 16 7 130
512x512, fbo,pbo 1 D 7,671 0 16 7 130
512x512 1 D 7,781 0 16 7 129
512x512, pbo 1 D 7,719 0 16 7 130
512x512, fbo 2 D 7,375 0 16 7 136
512x512, fbo,pbo 2 D 7,484 0 16 7 134
512x512 2 D 7,422 0 16 7 135
512x512, pbo 2 D 7,500 0 16 4 133

30 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

Test
Framework

Triangle
model

Total
time

Min.
time

Max.
time

Avg.
time

Fps

NVidia 6800 AGP 8x, AMD 2600XP
512x512, fbo 2 B 6,953 0 16 13 72
512x512, fbo,pbo 2 B 2,438 0 16 4 205
512x512 2 B 6,964 0 16 13 72
512x512, pbo 2 B 2,437 0 16 4 205

512x512, fbo 2 D 20,031 15 32 19 50
512x512, fbo,pbo 2 D 7,484 0 16 7 134
512x512 2 D 20,075 15 32 19 50
512x512, pbo 2 D 7,500 0 16 4 133

Legend:

Test Framework 1 : standard JOGL code
2 : changed library

Triangle Model B: Bunny model with 69451 triangles (with 500 tests)
D: Dragon model with 202520 triangles (with 1000 tests)

Total time Total time necessary for both rendering to the off screen buffer and
capturing/displaying image on screen.

Min. time Minimum time necessary for capturing and displaying one frame.
Max. time Maximum time necessary for capturing and displaying one frame.
Avg. time Average time necessary for capturing and displaying one frame.
Fps Average frames per second displayed during test.

31 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

Appendix B
Benchmark: Java versus C++

The results below are from a speed comparison between Java Swing and C++
using the Windows GDI platform. JOGL used for these tests was downloaded at
November 23, 2005 (uses the JSR 231 specification).

Test
Framework

Triangle
model

Total time Fps

System: ATI Mobile x300 PCI-E, Intel Centrino 1,6GHz, 1.25GB RAM
512x512, fbo Java B 7,328 49
512x512 Java B 9,375 53
512x512, fbo C++ B 6.766 (6,640) 74
512x512 C++ B 9.375 (7,125) 53
512x512, fbo Java D 21,859 46
512x512 Java D 22,140 45
512x512, fbo C++ D 21,094 (20,906) 49
512x512 C++ D 21,719(37,486) 46

Legend:

Test Framework Java : compiled Java code (JBuilder 2005 Foundation)
C++ : compiled C++ code (Microsoft VS.NET 7.1, Standard)

Triangle Model B: Bunny model with 69451 triangles (with 500 tests)
D: Dragon model with 202520 triangles (with 1000 tests)

Total time Total time necessary for both rendering to the off screen buffer and
capturing/displaying image on screen.

Fps Average frames per second displayed during test.

32 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

Appendix C
UML Schema of RUN package

33 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

References

Articles & books
[1] Mark Segal and Kurt Akeley,The OpenGL Graphics System: A specification (version 2.0,
October 22, 2004), http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf

[2] Tom Davis, Jackie Neider and Mason Woo, OpenGL Programming Guide, Second Edition (also
called the Redbook), Addision-Wesley Publishing Company,
http://www.gamedev.net/download/redbook.pdf

[3] Louis Bavoil, OpenGL VBOs vs Display Lists: Data Types, November 4, 2005,
http://www.sci.utah.edu/~bavoil/opengl/vbo/data_types/

[4] Ikrima Elhassan, Fast Texture Downloads and Readbacks using Pixel Buffer Objects in OpenGL,
Technical brief, Nvidia,
http://download.nvidia.com/developer/Papers/2005/Fast_Texture_Transfers/Fast_Texture_Transfer
s.pdf

[5] Emil Person, Framebuffer Objects, ATI Technologies Inc. (included in the ATI SDK Oktober
2005)

[6] J.M. Bull, L.A. Smith, L. Pottage and R. Freeman, Benchmarking Java against C and Fortran for
Scientific Applications, Edinburgh Parallel Computing Centre, 2001

[7] Trail: Java Native Interface (September,2005),
http://java.sun.com/docs/books/tutorial/native1.1/

[8] J.P. Lewis and Ulrich Neumann, Java versus C (January 2005),
http://www.idiom.com/~zilla/Computer/javaCbenchmark.html

[9] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Professional Computing Series, Addison-Wesley, 1995

[10] Neil A. Dodgson, Autostereoscopic 3D Displays, August 2005, IEEE Computer Society

[11] Thomas Möller and Ben Trumbore, Fast, minimum storage Ray/Triangle Intersection, Journal of
Graphics tools, 2(1):21-28, 1997

[12] Simon Hands, Ripples at the Heart of Physics, Theory Division, CERN, 1993,
http://www.phy.uct.ac.za/courses/phy400w/particle/higgs5.htm

[13] LHC Large Hadron Collider, Cern Publication, June 1990

[14] Tomas Möller and Eric Haines, Occlusion Culling Algorithms, November 9, 1999, Gamasutra,
http://www.gamasutra.com/features/19991109/moller_haines_01.htm

[15] Avi Bar-Zeev, Scenegraphs: Past, Present and Future (Januari 31, 2006),
http://www.realityprime.com/scenegraph.php

[16] Jeremy Blosser, Java tip 98: Reflect on the Visitor design (January 31, 2006),
http://www.javaworld.com/javaworld/javatips/jw-javatip98.html

[17] NVidia, White Paper, Using Pixel Buffer Objects (PBO) (October 15, 2006),
http://developer.nvidia.com/attach/6427

34 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf
http://developer.nvidia.com/attach/6427
http://www.javaworld.com/javaworld/javatips/jw-javatip98.html
http://www.realityprime.com/scenegraph.php
http://www.gamasutra.com/features/19991109/moller_haines_01.htm
http://www.phy.uct.ac.za/courses/phy400w/particle/higgs5.htm
http://www.idiom.com/~zilla/Computer/javaCbenchmark.html
http://java.sun.com/docs/books/tutorial/native1.1/
http://download.nvidia.com/developer/Papers/2005/Fast_Texture_Transfers/Fast_Texture_Transfers.pdf
http://download.nvidia.com/developer/Papers/2005/Fast_Texture_Transfers/Fast_Texture_Transfers.pdf
http://www.sci.utah.edu/~bavoil/opengl/vbo/data_types/
http://www.gamedev.net/download/redbook.pdf

Websites
Atlantis - http://atlantis.web.cern.ch/atlantis/
ATLAS – http://atlas.ch/
CERN - http://public.web.cern.ch/Public/Welcome.html

JOGL - https://jogl.dev.java.net/
Java3D - https://java3d.dev.java.net/
Open Inventor - http://www.tgs.com/

OpenGL in Java - http://csdl.computer.org/dl/mags/cs/2005/01/c1051.pdf
OpenGL extensions - http://www.opengl.org/resources/features/OGLextensions/
GLX Specifications - http://www.opengl.org/documentation/specs/glx/glx1.3.pdf

Poseidon for UML - http://gentleware.com/index.php

35 - Master Thesis – Atlantis 3D - Jeroen Broekhuizen

http://gentleware.com/index.php
http://www.opengl.org/documentation/specs/glx/glx1.3.pdf
http://www.opengl.org/resources/features/OGLextensions/
http://csdl.computer.org/dl/mags/cs/2005/01/c1051.pdf
http://www.tgs.com/
https://java3d.dev.java.net/
https://jogl.dev.java.net/
http://public.web.cern.ch/Public/Welcome.html
http://atlas.ch/
http://atlantis.web.cern.ch/atlantis/

	Abstract
	Foreword
	1.Introduction
	Objectives
	Method
	Previous research
	What's next

	2.About Particle Physics
	CERN
	LHC, ATLAS and Atlantis

	3.Atlantis
	User orientation
	Buffered rendering
	Geometry to render
	Stereo rendering

	4.Java and 3D
	Lightweight & heavyweight Java
	OpenGL Java packages
	Brief JOGL explanation
	Summary

	5.OpenGL
	OpenGL & Extensions
	Using OpenGL
	Brief history of off screen rendering in OpenGL
	Rendering methods in OpenGL
	Reading back rendering results
	Summary

	6.Performance measurements
	Finding the fastest code path
	Vertically flipping an image
	Java versus C++ benchmarking
	Summary

	7.Improvements of JOGL
	The improvements
	Ad 1. Off-screen rendering to buffered image
	Ad 2. Use new techniques whenever appropriate
	Summary

	8.Scene graph rendering
	What is a scene graph?
	Existing scene graph packages
	Using the RUN scene graph
	Summary

	9.Results
	Future research
	Appendix A
	Legend:

	Appendix B
	Legend:

	Appendix C
	References
	Articles & books
	Websites

