
Nonlinear Studies Nonlinear Studies

Vol. 11, No. 3, pp. 319-344, 2004 c©I&S Publishers

Daytona Beach, FL 2004

The dialogue between data and model:

Passive stability and relaxation behavior

in a ball bouncing task

Tjeerd M. H. Dijkstra1, Hiromu Katsumata2,3,

Aymar de Rugy2 and Dagmar Sternad2

1Department of Psychology, The Ohio State University
1885 Neil Avenue, Columbus, OH 43210, USA.
E-mail: t.dijkstra@science.ru.nl

2Department of Kinesiology, Pennsylvania State University
266 Rec Hall, University Park PA 16802, USA.
E-mail: dxs48@psu.edu

3Department of Sports and Health Science, Juntendo University
Chiba, Japan.
E-mail: hiromu@xd6.so-net.ne.jp

Abstract We investigate the skill of rhythmically bouncing a ball on a racket
with a focus on the mathematical modeling of the stability of performance. As a
first step we derive the deterministic ball bouncing map as a Poincaré section of a
sinusoidally driven bouncing ball. Subsequently, we show the ball bouncing map
to have a passively stable regime. More precisely, for negative racket acceleration
at impact, no control of racket amplitude or frequency is necessary for stable
performance. Support for the model comes from a motor learning study, where
a decrease in variability covaries with a change of mean acceleration at impact
towards more negative values. For a more fine-grained test of the model we develop
a stochastic version of it, by adding Gaussian white noise to the dynamics. We
then test the model predictions for the correlation functions. We find that the
observed correlation functions match the theoretical ones quite well, lending new
support for the model. Lastly, we compare the observed recovery from a sudden
change with which the ball leaves the racket with model predictions. We find a
mismatch between data and model in the sense that the model is too “slow”. We
take this failure of the ball bouncing model as an impetus to further develop the
model. In the perturbation study, we observe a significant modulation of the racket
period but not of the racket amplitude. Thus, racket period seems a candidate
state variable that should be included the ball bouncing map.
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1 Introduction

Human motor behavior constitutes physical actions that are embedded in and
coupled to the physical environment. The body creates and is subject to forces
that provide constraints for the execution of actions. This behavioral level of
analysis has been one important point of entry for theorizing about the control of
human movements. While the neurophysiological substrate provides the structural
and functional underpinnings for biological systems, tasks and task performance
are typically defined at the behavioral level of analysis. For instance, hitting a
ball with a racket to strike a target requires that the ball is hit and released with
a certain velocity such that its flight trajectory travels the desired distance to the
target. Adopting this level of analysis, task performance can be understood as
a complex system which is defined over the executing limbs or chains of effectors
and the objects of the environment. Coupling between these system components is
provided by mechanical and informational links, such as contact dynamics, gravity,
ballistic flight, and visual or haptic information.

In a series of studies Sternad and colleagues investigated the simple mechanical
task of bouncing a ball rhythmically on a racket as an exemplary perceptual-motor
skill in which dynamical stability plays a central role [15, 13, 14, 9]. The actor
(or actuator) holds a racket in his/her hand and hits a ball into the air keeping
a consistent period and amplitude. Sensory information is required to adjust the
racket’s position and velocity when hitting the ball to achieve the desired target
height. Feedback information may be used to correct for errors in performance.
This “toy task” of bouncing a ball has received considerable attention in both the
robotics and the motor control literature as it poses many fundamental control
and sensory problems [1, 2].

In the applied mathematics literature the cyclic ball-racket interactions have
been modeled by a nonlinear discrete dynamical system, the ball bouncing map,
which we will rederive in the next section. There, it provided a study case to
investigate dynamical stability of different attractor states and the period-doubling
route to chaos, see [19] and the references therein. A typical experimental set-up
to study this system consists of a small ball bearing and a periodically driven loud
speaker. The model consists of a periodically moving table (speaker) impacting a
particle (ball bearing) which follows ballistic flight. Different attractor states were
indeed observed when the frequency of the speaker was manipulated.

The application of this model to human performance was first advanced by
Sternad, Schaal, and colleagues in a series of studies using an experimental set-
up that closely mimicked the physical model [15]. They showed that the ball
bouncing map had a stable period-1 attractor when the table impacts the ball
with a negative acceleration. The significance of this theoretical finding for human
performance is that humans can perform the task by choosing the right acceleration
without using any error-correction. This coordination strategy has the advantage
that perturbations of the system relax back to the stable attractor, provided they
are sufficiently small. This inherent compensatory behavior obviates the need for
active error corrections by the actor to return to and maintain stable performance.
Sternad and Schaal termed this type of stability that can be achieved without any
control passive stability. Rephrased in terms of control theory, the system has
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a parameter regime where the open-loop control is sufficient to provide stability.
In this conceptualization, active stability includes feedback information. This
distinction between active and passive stability was made by McGeer [10] in the
work on passive dynamic walking.

The experimental question addressed in the previous studies was whether hu-
mans make use of this passive stability by hitting the ball with a negative racket
acceleration. The task by no means prescribes such a strategy, since a stable
pattern can also be achieved with impacts with positive acceleration when supple-
mented by feedback information from the ball trajectory, as the robot juggler of
Koditschek and Bühler [1, 2] has shown. The hypothesis was that humans per-
ceive and attune to the fixed point attractor that specifies the period-1 solution
and thereby exploit the dynamical stability of this task. Experimental data con-
firmed these quantitative predictions in a number of different experiments. Some
of these results will be briefly reviewed below, as they motivated the present study
and provide a departure point for developing and testing more finer-grained predic-
tions of the model. These predictions will be tested against results obtained from
a virtual ball bouncing set-up where subjects hold a physical racket (that they
cannot see) and see and manipulate a virtual racket and ball on a large screen.

As a first step in the present study we derive the two-dimensional discrete
dynamical system describing the ball and racket motion, the so-called ball bouncing

map. While this model is almost identical to the one in the previous studies, it
will be derived again for three reasons: (1) The derivation introduces a different
definition of the state variables in preparation for the model extension. (2) The
derivation uses a seemingly more restricted assumption of the racket motion as
a sine wave, whereas in the older studies the racket motion was only assumed
to be periodic. However, this restriction will allow to make more quantitative
predictions about the stationary state and the relaxation behavior. (3) Overall,
the derivation is considerably more detailed and thereby presents several new facts
that allow new predictions and conclusions about human performance.

This paper is structured as follows: in section 2, the state space with its three
state variables (ball position and velocity and racket position) will be introduced
and the two-dimensional discrete map, the ball bouncing map, is derived by per-
forming a Poincaré section. In section 3, the fixed points of the map are calculated
and their domains of attraction are numerically investigated. In section 4, a linear
stability analysis of the fixed points is performed and predictions are formulated.
In section 5, experimental evidence is reviewed in support of a first set of coarse-
grained predictions from the ball bouncing map. In section 6 we compare the
fluctuations around the stationary state from a steady performance with the the-
oretical predictions. The comparison is made between the correlation functions
from the experiment and the theoretical ones. In section 7 we compare the impulse
response of the model to a perturbation of velocity just after impact with a data
set collected for this purpose. In section 8 we summarize and discuss our findings.

2 The ball bouncing map

The state of the ball is specified by its position xb(t) and velocity vb(t) (see Fig-
ure 1). Both racket and ball motion are confined to the vertical dimension in order
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Figure 1: Overview of the task and the state space variables. The left panel (A)
indicates the continuous state space variables, ball position xb(t), ball velocity
vb(t) and racket position xr(t). The right panel (B) illustrates a schematized
performance with three bounces indicated at time t indexed by their iteration k.
The panel also summarizes the discrete state space variables: time of occurrence
of a bounce tk and ball velocity directly after a bounce vk.

to keep the model tractable. If we denote the time of last (k-th) impact with tk,
the ball trajectory between two bounces follows ballistic flight and the equations
can be written as:

xb(t) = xb(tk) + v+
b (t − tk) − g

2
(t − tk)2, (1)

vb(t) = v+
b − g(t − tk), (2)

with tk < t < tk+1. v+
b denotes the ball velocity just after the k-th impact

and g stands for the acceleration due to gravity. In this derivation we assumed
the friction of the air to be negligible. To go from one bounce to the next, we
need to consider what happens when the ball impacts the racket. We assume an
instantaneous inelastic impact as follows:

α(v−

b (tk) − v−
r (tk)) = −(v+

b (tk) − v+
r (tk)), (3)

with parameter α as the coefficient of restitution. The superscript − denotes
velocities before impact, the superscript + denotes velocities after impact, and vr

is the velocity of the racket. Thus, the difference in velocity between racket and ball
after impact is a fraction α of the difference before impact. The approximation
of the impact as being instantaneous is an idealization of the impact observed
in real performance. In a study of the impact dynamics in ball bouncing with
different values of α, ranging between 0.5 and 0, [9] showed that the duration of
the contact is on average 30 ms and extends up to 116 ms for completely nonelastic
ball contacts, i.e., α = 0. However, in most previous experiments α was equal or
higher than 0.5. Thus, the duration of the contact is relatively short and does
not affect the control of the racket movement. Another assumption is that α is
a constant. For a real racket, the coefficient of restitution depends on where the
ball hits the racket, being larger at the edges of the racket surface than in the
middle. These assumptions were largely satisfied by constraining the ball-racket
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contact position in the physical experimental set-ups. For the experiments run in
the virtual environment, the assumptions of instantaneous contact and constancy
of the coefficient of restitution become exact.
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Figure 2: Exemplary data. The top panel shows the continuous trajectories of
ball and racket. The middle and bottom panels show the discrete state variables
across the same 10 bounces/iterations: ball velocity after impact vk and phase of
impact θk. These variables are extracted from the continuous data as plotted in
the top panel. The dashed horizontal lines denote the sample mean values.

The state of the racket is described by its position (xr(t)) (see Figure 1). The
movement is assumed to be a sine-wave with fixed amplitude ar and constant
frequency ωr in units of rad/s. Formally:

xr(t) = ar sin(ωrt), (4)

An exemplary performance in Figure 2 illustrates that the sine-wave assumption
is reasonable. The assumption also remains tenable if one considers that the ball
impact perturbs the racket trajectory. Since these perturbations occur immedi-
ately after the impact and and die out after approximately 100 ms, far from the
next impact, they can be safely ignored. The sine-wave assumption is a change
from previous derivations of the ball bouncing map in the human motor control
context. In [15] and subsequent papers the only assumption made about the racket
trajectory was that it is periodic. That assumption turned out to be sufficient to
draw conclusions about stability (see section 4). While it is certainly elegant to
derive conclusions from minimal assumptions, it is clear that a sine wave is a good
first-order approximation for the racket trajectory. The additional advantage of
the assumption of a sine-wave with fixed parameters is that it permits the deriva-
tion of predictions about the stationary state and its domain of attraction. As a
final point, note that the velocity of the racket (vr(t)) is not an independent degree
of freedom (and thus not a dimension of state space) since vr(t) can be derived
from the racket position by differentiation with respect to time. Explicitly,

vr(t) = arωr cos(ωrt).
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We further assume that the racket is much heavier than the ball and thus the
racket velocities before and after the impact are identical, i.e. v−

r (tk) = v+
r (tk) =

arωr cos(ωrtk)
The equations 1, 2, and 4, combined with the boundary condition 3 constitute a

two-dimensional non-autonomous continuous dynamical system, i.e. a system ex-
plicitly dependent on time, which is equivalent to a three-dimensional autonomous
dynamical system [18]. We proceed by taking the Poincaré section at the time of
impact, resulting in a two-dimensional discrete dynamical system with the discrete
state variables time of impact (tk) and velocity of the ball after impact (vk), see
Figure 1 right panel. Note that the subscripts r and b are no longer necessary as
there is only one velocity. The system has four parameters: coefficient of resti-
tution (α), acceleration of gravity (g), and amplitude (ar) and frequency (ωr) of
the racket motion. By substituting the racket position eq. 4 (at times t = tk and
t = tk+1) for the ball position in eq. 1 at t = tk+1, we obtain the first equation of
the ball bouncing map, the time map:

0 = ar(sin(ωrtk) − sin(ωrtk+1)) + vk(tk+1 − tk) − g

2
(tk+1 − tk)2.

This is an implicit equation for the time of occurrence of the next impact tk+1

given the current state of the system (tk, vk). The fact that the map is implicit
poses no impediment to the theoretical analysis, since one can use the implicit
function theorem to find the derivatives of the map. In the simulations we solve
the system by using a numerical zero finder.

From the equation for ball velocity at t = tk+1 (eq. 2) and the impact equation
(eq. 3), we obtain the second equation of the ball bouncing map, the velocity map:

vk+1 = (1 + α)arωr cos(ωrtk+1) − αvk + gα(tk+1 − tk).

This is an explicit equation for the velocity of the ball directly after the impact.
The functional form of the time and velocity maps differs from the equations
presented in previous work [15, 14] since the state variable had been defined as the
velocity before impact. While the velocity before impact is easier to extract from
the experimental data, the choice of velocity after impact is mathematically more
convenient. Further, we proceed to use the phase of impact in the racket cycle as
a state variable instead of the time of impact, again for reasons of mathematical
convenience. Defining the phase of impact by:

θk = ωrtk,

we arrive at the final ball bouncing map:

vk+1 = (1 + α)arωr cos(θk+1) − αvk +
gα

ωr

(θk+1 − θk), (5)

0 = arω
2
r(sin(θk) − sin(θk+1)) + vkωr(θk+1 − θk) − g

2
(θk+1 − θk)2, (6)

where the implicit phase equation has been multiplied with ω2
r for simplification.

An exemplary series of these two discrete state variables extracted from the con-
tinuous time series of human performance is shown in Figure 2 in the middle and
bottom panel.
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3 The period-1 attractor of the ball bouncing map

In this and the following section we perform a linear stability analysis of the ball
bouncing map [16]. As the first step, we determine the fixed points, denoted by
(ṽ, θ̃), by setting:

vk+1 = vk = ṽ,

θk+1 = θk + 2π = θ̃.

Substitution of the variables at k and k + 1 in the ball bouncing map (eqs. 5, 6)
leads to:

ṽ =
πg

ωr

, (7)

cos(θ̃) = π
1 − α

1 + α

g

ω2
rar

. (8)

This solution defines the fixed point (stationary state) of the ball bouncing map.
Three remarks about this stationary state are in place. First, since the map is
derived by taking the Poincaré section of a continuous dynamical system, the
fixed point of the map is a period-1 or limit cycle attractor of the continuous
dynamics. From now onwards, we will use the term “fixed point”, “stationary
state” and “period-1 attractor” interchangeably. Second, the “stationary” state is
not strictly stationary since phase θk increases by 2π between each bounce. We
could have used the wrapped phase as state variable, denoted by θk mod 2π, which
has a true stationary state. However, in the analysis we will use the unwrapped
phase as it is easier to solve the implicit phase equation if the zero finder only has
to search for solutions in one direction, since the next phase has to be larger than
the current one. However, in all plots we will display wrapped phase. Third, since
g > 0 and ωr > 0, the velocity after impact at the stationary state is necessarily
positive, i.e., ṽ > 0. Given the next predictions about negative ball acceleration
that follow below, it should be kept in mind that this condition of positive ball
velocity always has to be satisfied.

The ball bouncing map possesses other attractors besides the period-1 attrac-
tor. In particular, we note the existence of “sticking solutions” [19, p 38], which
coexist with the period-1 attractor of eqs. 7 and 8. Figure 3 presents an example
of both attractors. The top panel shows the period-1 attractor, which looks sim-
ilar to the behavior displayed by human subjects as illustrated in Figure 2. The
bottom panel shows the sticking solution where the ball sticks to the racket for
at least a part of the racket trajectory. For both attractors, equations 1, 2, 3 and
4 were iterated with a fourth-order Runge-Kutta algorithm with time step of 1
ms. We used the following parameter values: α = 0.5, g = 9.81 m/s2, ωr = 2
π/0.92 rad/s, ar = 0.30 m. For both panels the initial position of the ball was
xb(0) = 0.205 m. The only difference between the two simulations were the initial
values of velocity. In the top panel the initial value of the ball velocity was vb(0)
= 4.8 m/s whereas in the lower panel it was vb(0) = 5.7 m/s. This coexistence of
solutions means that, depending on the initial condition, the system can end up
either in the period-1 attractor or in a sticking solution. For the understanding of
human behavior, this points to an interesting conclusion: since sticking solutions
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Figure 3: A period-1 attractor (top panel) and a sticking solution (bottom panel)
coexist for the same parameter values. However, the initial conditions were differ-
ent (see text).

have only rarely been observed in experiments, it can be inferred that subjects are
able to avoid such sticking solutions. At the same time, though, subjects are able
to parameterize the ball bouncing system to establish the stable regime (as will
be reviewed below). This means that they are sensitive to how they initialize the
performance. For example, when starting periodic bouncing with the ball resting
on the racket, the actor not only creates a parameterization of the racket that
affords stability, but also establishes the correct initial conditions to avoid sticking
solutions.

Given the dependency on initial conditions, one would like to know for which
initial values (v0, θ0) the system ends up at the period-1 attractor. This region
of initial conditions is called the domain of attraction of the period-1 attractor.
Since there is no analytical route to calculate the domain of attraction, numerical
simulations have to be performed. Figure 4 shows the domain of attraction of the
period-1 attractor as a function of the initial phase θ0 and and velocity v0. When
the initial conditions are in the white region, the system ends up at the period-1
attractor which is denoted by a black dot. In particular, for the initial condition
of the black cross just above the dot, the system ends up at the period-1 attractor.
This particular condition is plotted in the top panel of Figure 3. When the initial
conditions are in the gray region, the system ends up at a sticking solution. In
particular, for the initial conditions of the top black cross, the system ends up
in the sticking solutions illustrated in Figure 3 bottom panel. The black region
denotes the area below the racket which is inaccessible for initial values above the
racket. Above the black region we find a region of sticking initial conditions: here
the initial velocity is too low and the ball ends up sticking to the racket. Above
that region we find a band of period-1 initial conditions: the ball ends up at the
period-1 attractor within a few dozen bounces. For higher initial velocities the
domain of attraction has a complicated structure.

The details of the simulation were as follows. The simulation was implemented
in Matlab 6.5. As zero finder we used Matlab’s built-in “fzero”, which is based
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Figure 4: Domain of attraction of period-1 attractor. For an initial condition in
the white region the system ends up at the period-1 attractor, for the gray region
it ends up at a sticking solution. The black region is inaccessible since it is below
the racket. The black dot denotes the period-1 attractor ṽ, θ̃ as defined in eqs. 7
and 8 and the two crosses denote the initial conditions used in Figure 3.

on the van Wijngaarden-Dekker-Brent method [12], with a tolerance set to 10−12.
We iterated the ball bouncing map (eqs. 5 and 6) for 100 iterations, stopping the
iteration when one of three conditions occurred: (1) both the velocity and the
phase were within 10−3 of the period-1 attractor. In this case we colored the
starting condition white in Figure 4. (2) The time between bounces was less than
10−3 s. In this case we colored the starting condition grey in Figure 4. (3) The
velocity with which the ball leaves the racket is lower than the racket velocity. In
this case we colored the starting condition black in Figure 4. The simulation never
ran to the maximum of 100 iterations, showing that the system had relaxed to one
of the attractors within the tolerances used. The results depend very weakly on
the various tolerances used. We used the same values for the parameters as for
the simulations plotted in Figure 3. Explicitly: α = 0.5, g = 9.81 m/s2, ωr = 2
π/0.92 rad/s, ar = 0.30 m.

4 Linear stability of the ball bouncing map

In order to analyze the linear stability of the period-1 attractor (eqs. 7 and 8) the
Jacobian has to be derived. To this end the partial differentials of the two state
variables vk+1, θk+1 have to be calculated. Since the phase map eq. 6 is implicit,
the implicit function theorem can be used to calculate the partial derivatives of
phase with respect to the two state variables [7]. Denoting the right-hand side of
the phase map by F (θk+1, θk, vk), the differential dF is:

dF =

(

−ar cos(θk+1) +
vk

ωr

− g

ω2
r

(θk+1 − θk)

)

dθk+1+

(

ar cos(θk) − vk

ωr

+
g

ω2
r

(θk+1 − θk)

)

dθk +
1

ωr

(θk+1 − θk)dvk.
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The partial derivatives of θk+1 evaluated at the fixed point (ṽ, θ̃) are:

∂θk+1

∂θk

∣

∣

∣

∣

(ṽ,θ̃)

= −
∂F
∂θk

∂F
∂θk+1

∣

∣

∣

∣

∣

(ṽ,θ̃)

= 1,

∂θk+1

∂vk

∣

∣

∣

∣

(ṽ,θ̃)

= −
∂F
∂vk

∂F
∂θk+1

∣

∣

∣

∣

∣

(ṽ,θ̃)

= (1 + α)ωr/g.

Calculation of the partial derivatives of vk+1 is straightforward since the velocity
map (eq. 5) is explicit. Using these results, the Jacobian of the ball bouncing map
can be determined and evaluated at the fixed point (ṽ, θ̃):

J(ṽ, θ̃) ≡
(

∂vk+1

∂vk

∂vk+1

∂θk

∂θk+1

∂vk

∂θk+1

∂θk

)

=

(

α2 − (1 + α)2arω
2
r sin(θ̃)/g −(1 + α)arωr sin(θ̃)

(1 + α)ωr/g 1

)

,

(9)
where sin(θ̃) depends on α, ωr, ar and g through eq. 8. The Jacobian can be
simplified by noting that −arω

2
r sin(θ̃) equals the racket acceleration at impact.

Denoting the racket acceleration at impact in units of g by AC ≡ −arω
2
r sin(θ̃)/g,

the eigenvalues of the Jacobian are given by the solutions λ± of the characteristic
equation:

λ2 − ((1 + α2) + (1 + α)2AC)λ + α2 = 0.

We note that linear stability is determined by the pair (α, AC), where AC depends
on the four parameters of the ball bouncing map. Substituting for sin(θ̃), the racket
acceleration at impact AC is written in explicit form:

AC = −

√

(

arω2
r

g

)2

− π2

(

1 − α

1 + α

)2

.

Continuing the calculation of the eigenvalues, one more definition is introduced
for simplification c ≡ ((1 + α2) + (1 + α)2AC)/2. Hence, the two eigenvalues are
expressed as:

λ± = c ±
√

c2 − α2. (10)

The condition for stability of the period-1 attractor is that the absolute value of
both eigenvalues must be smaller than 1 (see [16, p 126]). We first consider the
case of the eigenvalues forming a complex pair, i.e., c2 < α2. The boundaries of
the regime where the eigenvalues are complex can be obtained from the condition
c2 = α2 and lead to:

−
(

1 − α

1 + α

)2

< AC < −1. (11)

Figure 5 shows the ball bouncing stability diagram, i.e., the region in parameter
space where the ball bouncing map has a linearly stable period-1 attractor. As
the eigenvalues only depend on α and AC, the conditions for stability can be
visualized as a region in a two-dimensional plot. The boundaries defined by the
complex eigenvalues are indicated by grey lines. Since the eigenvalues form a
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complex pair, their absolute values are identical, i.e., |λ+| = |λ−|. Furthermore,
since λ+λ− = (c +

√
c2 − α2)(c −

√
c2 − α2) = c2 − (c2 − α2) = α2, we have:

|λ+| = |λ−| = |α|. (12)

Thus, when the eigenvalues are complex, their absolute value equals the coefficient
of restitution. From the condition that the absolute values of the eigenvalues have
to be smaller than 1, we obtain two stability boundaries as follows:

|α| < 1. (13)
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Figure 5: Left panel: Stability diagram of the ball-bouncing map (eqs. 5, 6). The
boundaries of stability indicated in black are given by eq. 14 and eq. 13. Also
indicated are the boundaries between the real and complex regions, as given by
eq. 11 and indicated by grey curves. The eigenvalues are also complex in the
region between the grey curves between −0.2 < α < 0, which was too small to
label. Right panel: eigenvalue with the largest absolute value, plotted as a function
of AC and α. The eigenvalue is only plotted as long as its absolute value is smaller
than 1, i.e., within the stability boundaries.

We now consider the case when the eigenvalues are real, i.e., c2 > α2. Straight-
forward but tedious algebra yields the following stability boundaries:

−2

(

1 + α2

(1 + α)2

)

< AC < 0. (14)

In Figure 5 left panel, the curves of the stability boundaries defined by real eigen-
values are plotted as black curves. These boundaries encompass the ones found
before for complex eigenvalues (eq. 11). Thus, the boundaries of stability are given
by eq. 14 and eq. 13. The right panel of Figure 5 affords another view of the sta-
bility diagram. Here, the eigenvalue with the largest absolute value is plotted, i.e.,
the one that determines stability, as a function of AC and α. The eigenvalue is
only plotted where it is smaller than 1 in absolute value. Only the stable regime
of the ball bouncing map is plotted, such that the top rim corresponds to the
boundary of the stable regime. For a fixed α the figure shows a flat region flanked
by slopes of increasing absolute eigenvalue, indicating less stability. We also ob-
serve that the flat surface rises with increasing α. This flat surface corresponds to
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the region labeled “complex” in the left panel Figure 5 and we know from eq. 12
that the absolute values of both eigenvalues equal the value of the coefficient of
restitution α.

The comparison of the behavior of human subjects and the fine-grained model
predictions in section 7 will reveal that the absolute values of the eigenvalues of
the model are too large. This raises the question for which parameter values
the eigenvalues are the smallest. Since the experiments are performed at a fixed
coefficient of restitution α, we answer the question for which values of AC are the
absolute values of the eigenvalues minimal. We aim to show that, for a given α,
the minimum absolute value of the larger of the two eigenvalues is larger than, or
equal to α. Formally:

min
AC∈S

max(|λ+|, |λ−|) ≥ α,

with S denoting the stable regime in Figure 5 left panel. These minimal absolute
eigenvalues are realized in part of Figure 5 where the eigenvalues are complex, or
alternatively where eq. 11 holds. In the right panel of Figure 5 these eigenvalues
are realized on the flat inclined planar section. We now proceed with a formal
proof.

In the region in Figure 5A labeled “complex” both eigenvalues are equal to
α in absolute value (eq. 12). Hence, only the sections labeled “real” need to be
considered. The top section labeled “real” of Figure 5 has boundaries 0 < AC <

−
(

1−α
1+α

)2

. It follows that:

c = ((1 + α2) + (1 + α)2AC)/2 ≥ 0,

with c as the parameter introduced above in eq. 10. Thus:

|λ+|2 = 2c2 + α2 + 2c
√

c2 − α2 ≥ 2c2 − α2 + 2c
√

c2 − α2 = |λ−|2.

Thus, the + eigenvalue (λ+) has the largest absolute value in this region. We
now show that the absolute value of λ+, considered as a function of AC, increases
monotonically with AC in the top section labeled “real” of Figure 5. Thus, we
want to show that:

d|λ+(AC)|2
dAC

≥ 0.

Substitution of λ+ from eq. 10 leads to:

d|λ+(AC)|2
dAC

= (1 + α)2
(

2c +
√

c2 − α2 +
c2

√
c2 − α2

)

≥ 0,

since c > 0. Thus, λ+ increases monotonically in the region −
(

1−α
1+α

)2

< AC < 0.

Since |λ+| = α at the lower boundary AC = −
(

1−α
1+α

)2

it follows that |λ+| >= α in

the top section labeled “real” of Figure 5. We can perform a similar argument for
the lower section labeled “real” of Figure 5. In summary, the dominant (largest)
eigenvalue of the ball bouncing map for a given coefficient of restitution α has the
value α.
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The formal derivation that the ball bouncing map is fastest in the region labeled
“complex” in the left panel of Figure 5 is illustrated in Figure 5, right panel. The
region labeled “complex” in the left panel corresponds to the flat region in the
middle of the range of AC values. This flat region rises with increasing α. Indeed
we know from the derivation above that the height equals α.

5 Coarse-grained predictions from the ball bounc-

ing map and their experimental support

From the analysis of the ball bouncing map above several predictions can be ex-
tracted for human performance. The first set of predictions is called “coarse-
grained” and does not depend on the numerical values of the eigenvalues. The
first coarse-grained model prediction is that the stable regime of the ball bouncing
map affords a stable solution for subjects performing rhythmic ball bouncing. For
example, for α = 0.5, AC should be between 0 and -1.11 g. If subjects chose to
perform within the stable regime, small perturbations of the ball trajectory need
not be compensated for by the racket.

Stability of performance was tested in a series of previous experiments [15, 13,
14, 9]. The first support was presented in a study by Schaal et al. [15]. In a
constrained task, experienced subjects moved a handle that was linked through a
pantograph to a paddle which confined its motion to the vertical dimension and
ensured that the surface of the racket remained strictly horizontal, in close analogy
to the model. The ball was suspended on a boom and thereby also constrained
to a one-dimensional flight trajectory. Subjects were instructed to contact the
ball rhythmically to achieve a constant self-chosen target height. The primary
dependent measure was the acceleration of the racket just before the impact AC,
reflecting how subjects controlled the racket’s movement for the ball contact. Av-
erages and standard deviations were calculated over all ball-racket contacts of one
trial which consisted of approximately 40 consecutive bounces. Several trials were
performed for each of three target amplitude conditions and two gravity condi-
tions. Results showed that the means of racket acceleration were negative and
within the predicted range of [-0.5 g, -0.3 g] which is squarely in the stable regime
as depicted in Figure 5. Importantly, some subjects showed positive AC values,
indicating that negative acceleration is not a necessary solution.

In a subsequent study, relatively inexperienced subjects performed a sequence
of 40 trials (40 s each) of the same condition [13]. We calculated means of racket
acceleration at impact (AC) and standard deviations of ball amplitude (SDA)
from each trial. Figure 6 combines the results of both dependent measures of a
single subject, plotted as a function of trial number. The values of racket ac-
celeration again support that subjects chose to hit the ball with negative racket
accelerations. The variability of ball amplitude decreased significantly over prac-
tice, indicating improving performance. Further, this impact parameter showed a
systematic trend towards more negative values in the same range as in the pre-
vious experiment, i.e., the range which is squarely in the stable regime. In this
region, larger fluctuations are less likely to perturb the system. This trend pro-
vides support that human actors are not only sensitive to dynamical stability but
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Figure 6: Results from a learning study of ball bouncing across a sequence of 40
trials, shown for a single subject. Black curve: Trial means of racket acceleration
at impact in units of g. Grey curve: Standard deviation of ball amplitude.

also optimize their performance to exploit the advantages that this regime offers.
It is worth pointing out that the most energy efficient way of performing the

task is to hit the ball with zero acceleration because at this moment the racket
has the highest velocity leading to a given amplitude with least effort. Further,
the strategy of exploiting the stable regime can also be contrasted with the control
strategy implemented in a robotics study by Bühler and Koditschek [1]. They con-
structed an actuator which controlled the rhythmic racket movements that tracked
the ball velocity in a continuous fashion. The velocity of the racket mirrored the
one of the ball leading to ball-racket contacts with positive racket acceleration.
According to the analysis above, this corresponds to an unstable regime. As a
consequence, all perturbations need to be corrected for, which makes control com-
putationally more expensive.
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Figure 7: Trial means of racket amplitude regressed on the square of the trial mean
of racket period.
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The second coarse-grained model prediction derives from the dependence of
the stationary state eqs. 7 and 8 on the four parameters. In their 1996 study [15],
Schaal et al. reported a linear relationship between the period between bounces
τ = 2π/ωr and the racket amplitude ar, when subjects were instructed to bounce
the ball to different target heights. This observed relationship between racket
period and amplitude can be formally derived by rewriting eq. 8:

ar =
1

4π

1 − α

1 + α

g

cos(θ̃)
τ2, (15)

Assuming θ̃ to be independent of target height, this predicts a linear relationship
between racket amplitude ar and period squared τ2.

Katsumata and Sternad (in preparation) tested this model prediction in an
experiment comparing performance with and without visual information, where
each visual condition was performed at three different ball target heights. For
each 40 s trial, the average racket amplitude (ar) and period (τ) were calculated.
The trial estimates of ar were regressed against the square of the trial estimates
of τ . Figure 7 shows the linear regression performed for all trials of six relatively
inexperienced subjects, pooled over vision and no-vision conditions. The R2 values
for the vision and no-vision condition were 0.98 and 0.90, respectively. While a
scaling of the racket amplitude with the bouncing period or ball amplitude is not
counterintuitive, the exact scaling of the two parameters is not trivial. Two further
predictions can be derived from eq. 15: (1) the slope of the relation between ar

and τ can be computed from the data as all parameters are known and θ̃ can
be calculated from the data. (2) The intercept of the regression is zero. While
prediction 1 has not been tested for the data, inspection of Figure 7 shows that
the intercept is indeed close to zero.

In sum, these selected data of steady state performance of human actors provide
support that the model captures a set of basic components of human behavior. In
order to develop a finer-grained set of tests for the presence of stability in human
ball bouncing, we proceed to examine the model’s behavior with noise.

6 Finer-grained predictions: correlation structure

in a stochastic model and data

In this and the following section, we look at predictions of the model that depend
on the numerical values of the eigenvalues. Before we dive into the details of these
comparisons we want to convey to the reader an intuition about the meaning of
the eigenvalues. One can think of a single eigenvalue as specifying the “speed” of
the system (ignoring the fact that we have two eigenvalues for now). By speed
we mean two things, depending on whether the dynamics is probed with pertur-
bations or noise. (1) When we are looking at deterministic perturbations, the
eigenvalue quantifies how long the system takes to return to the period-1 attrac-
tor. An example of this is plotted in Figure 3 where both eigenvalues equal 0.5
in absolute value. (2) When we are looking at noise, the eigenvalue quantifies
how fast the autocorrelations go to zero as a function of the lag. For instance an
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eigenvalue of 0.9 is considered slow, since for lag 1 the system has an autocorrela-
tion 0.9 (it has an autocorrelation 1 at lag 0 by construction). At lag 2 it has an
autocorrelation of 0.92 = 0.81 etc. Taking a spurious correlation level of 0.1 this
means that the system has an autocorrelation that is non-zero for many bounces.
Consider in contrast a system with an eigenvalue of 0.1: The lag-1 autocorrelation
is 0.1 which is already at the spurious level. Thus, the smaller the eigenvalue the
faster the correlations decay to zero. Things stay essentially the same when we
consider both eigenvalues. In that case, the autocorrelations are dominated by
the largest eigenvalue since its correlations take longest to decay. Things also stay
essentially the same when we consider complex eigenvalues. In that case we get
oscillations between the state variables but the autocorrelation still decay to zero
as the eigenvalue to the power of the lag.

In order to make model predictions about fluctuations, the model is extended
by adding a stochastic component. Adding noise introduces small perturbations
to the state variables that die out due to the stability properties of the map, al-
beit with specific relaxation behavior. This behavior is captured in the correlation
functions of the state variables of the ball bouncing model. When the same corre-
lation functions are determined for the data, model predictions can be tested. The
strategy for this stochastic expansion of the deterministic ball bouncing map is to
collect all influences occurring on a time scale faster than the time scale of the
map into a noise term [17]. The mathematics is somewhat complex as the phase
map is implicit. We introduce an intermediary state variable φk+1, which can be
thought of as the noiseless phase of the next impact. This avoids a duplication of
the noise effect due to the coupling of the equations. φk+1 is the solution of the
implicit phase map and is the state variable that couples into the velocity map.
The next iterate of the phase map θk+1 equals φk+1 plus noise term. Thus, we
propose the stochastic ball bouncing map:

vk+1 = (1 + α)arωr cos(θk+1) − αvk +
gα

ωr

(φk+1 − θk) + qvξk, (16)

0 = arω
2
r(sin(θk) − sin(φk+1)) + vkωr(φk+1 − θk) − g

2
(φk+1 − θk)2,(17)

θk+1 = φk+1 + qθξk. (18)

The noise process ξk ∼ N(0, 1) is normally distributed with zero mean and unit
variance. The noise process is white, meaning that subsequent samples are serially
independent. The extra model parameters qv and qθ denote the noise strengths of
the velocity and phase dynamics respectively.

We compare experiment and model in terms of the correlation structure of the
state variables. In order to understand how the correlation structure is reported,
the so-called vector autoregressive systems of order one (VAR(1)) are briefly re-
viewed. For ease of notation, we denote the state of the system by yk:

yk =

(

vk − ṽ

θk − θ̃

)

.

Note that the stationary state is subtracted, thus ỹ = 0, i.e., the fixed point of
the state variable yk is at zero. The covariance matrix Ryy(l) as a function of lag
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l is obtained as:

Ryy(l) = E[yk+ly
T
k ] =

(

E[(vk+l − ṽ)(vk − ṽ)] E[(θk+l − θ̃)(vk − ṽ)]

E[(vk+l − ṽ)(θk − θ̃)] E[(θk+l − θ̃)(θk − θ̃)]

)

.

with E[] denoting the expectation operator and T the matrix transpose. When
the noise strengths qv and qθ are small, yk is subject to the linearized dynamics:

yk+1 = Jyk + ǫk, (19)

with J the Jacobian of eq. 9. The noise vector ǫk has covariance matrix:

Rǫǫ(0) =

(

q2
v 0
0 q2

θ

)

,

Rǫǫ(l) =

(

0 0
0 0

)

l > 1.

The covariance matrix of the linearized system can be found from eq. 19 by mul-
tiplying both sides of the equation with yT

k and taking the expectation:

Ryy(1) = E[yk+1y
T
k ] = JE[yky

T
k ] = JRyy(0),

where we used the fact that the noise has a zero-mean, i.e., E[ǫk] = 0. It follows
by iteration:

Ryy(l) = J lRyy(0).

The essence of this result is that the covariance function as a function of lag l
behaves like the linearized dynamics as a function of iteration in that the covariance
is reduced by the Jacobian J for every unit increase in the lag. Since the size
of J is determined by the eigenvalue with the largest absolute value this means
that the covariance is reduced by the absolute value on each lag. One minor
detail in how the covariance structure is reported should be mentioned: since the
units of the covariance matrix are the units of the state variables squared, it is
customary to normalize them by the standard deviations. Therefore, the resulting
correlation matrix has values that are necessarily between -1 and 1 and the lag-0
autocorrelations of each of the state variables equals 1.

In order to compare the model’s autocorrelation functions to data, an experi-
ment was performed in which experienced subjects performed rhythmic bouncing
movements in the physical set-up of Sternad et al. [14]. Three trials of 40 s each
were recorded. The coefficient of restitution was 0.42 and the acceleration of grav-
ity was 5.8 m/s2 (because the ball was suspended from a boom g was lower than
9.8 m/s2). The average racket amplitude was 0.076 m and the racket period was
0.53 s. From the recorded time series of racket and ball position we extracted the
ball velocity just after impact vk and the racket phase of impact θk and calcu-
lated the autocorrelation functions. They are plotted in Figure 8 as grey curves.
The top left panel shows the autocorrelation function of the velocity after impact,
with the error bars denoting the standard deviations calculated across the three
repetitions. As can be seen only the lag-0 autocorrelation of velocity after impact
is different from zero. The bottom right panel shows the autocorrelation func-
tion of phase, with essentially the same finding as for the velocity after impact.
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Figure 8: Observed (grey lines), theoretical (black circles) and sample (black x’s)
autocorrelation functions (ACF) of ball velocity after impact and racket phase of
impact. Error bars denote standard deviation.

The two other panels show the crosscorrelation functions. The bottom left panel
shows the correlation from velocity to phase. There is a significant negative lag-0
crosscorrelation and a significant positive lag-1 crosscorrelation. The negative lag-
0 crosscorrelation can be understood as follows: imagine the phase is by chance
increased relative to the stationary value (θ̃), then the racket velocity will be lower
(because acceleration is negative), thus imparting a lower ball velocity. Similarly,
if the phase is by chance decreased, then the racket velocity is higher, impart-
ing a higher ball velocity. In short, increased phase leads to lower velocity and
vice-versa, thus the lag-0 crosscorrelation is negative. The positive lag-1 crosscor-
relation can be understood similarly: if the velocity of the ball is by chance higher
than the stationary value (ṽ), then on the next cycle it will arrive later, implying
an increased phase of the racket. The same logic holds for a lower velocity. The
top right panel shows the correlation from phase to velocity, i.e., a fluctuation in
phase leads to a later fluctuation in velocity. Only the lag-0 crosscorrelation is
significantly different from zero, a fact that was already discussed above.

The correlation functions from the model were obtained in two ways: First,
we sampled from the stochastic ball bouncing model (eqs. 16, 17 and 18) and
calculated sample correlation functions. These sampled correlation functions are
indicated in Figure 8 with crosses. Second, we calculated the autocorrelations of
the linearized model (eq. 19) in closed form [11, p 21]. These linearized correlation
functions are indicated in Figure 8 with circles. Note that the theoretical (cir-
cles) and sampled (crosses) autocovariance functions are so close that it is hard
to discriminate the symbols. As deterministic parameters for the theoretical pre-
dictions the following values were used: α = 0.42, g = 5.8 m/s2, racket amplitude
ar = 0.065 m, and racket frequency ωr = 2π/0.55 rad/s. The value of the racket
amplitude was slightly tweaked from its observe value of 0.076 m in order to get
a better fit between observed and theoretical autocorrelation functions. For the
stochastic parameters the following values were used: qv = 0.04 m/s and qθ = 0.05
rad. These parameters were adjusted to get an agreement between observed and
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theoretical standard deviations of the state variables. More precisely, we observed
0.07 m/s and 9.2 deg as standard deviations of velocity and phase resp. Theoret-
ically, we obtained standard deviations of 0.068 m/s and 8.4 deg for velocity and
phase, respectively. Returning to Figure 8, a close agreement between theory and
experiment can be discerned. All predicted correlations are within one standard
deviation from the experimentally observed ones. These new data underscore the
previous finding that human actors exploit the stable regime. One last remark is
in place: the linearized stochastic ball bouncing map (eq. 19) does an excellent
job of describing the correlation functions. This can be seen from the close corre-
spondence of the sampled correlations and the ones obtained in closed form from
the linearized map. This means that the noise strengths qv and qθ are so low that
the system stays close to the fixed point. Thus, the fluctuations during a steady
state performance are so small that only linear behavior is observed. In order to
force the system further away from the period-1 attractor, larger perturbations
are needed, which will be the topic the next section.

7 Finer-grained predictions: relaxation behavior

after perturbations

To force the system further away from the period-1 attractor, we proceed to exam-
ine the relaxation behavior of the model after introducing short perturbations to a
state variable. This so-called impulse response is compared with data from an ex-
periment with perturbations. In the experiment, experienced subjects performed
rhythmic bouncing movements in the virtual set-up [4]. With the coefficient of
restitution α set to 0.5, the ball was perturbed at every fifth bounce by transiently
setting α to a higher or lower value than 0.5, randomly chosen from the range 0.3-
0.4 or 0.6-0.7. Thus, the time of the perturbation was predictable, but the sign
and the size were not. A change of α is equivalent to changing the ball velocity
after impact, as will be shown below.

Figure 9 illustrates the outcome of the perturbation experiment for a single
subject, shown by the black line. The data are the average values of velocity and
phase for the impacts at and following the two types of perturbations. The ball
velocity after impact relaxes back to the stationary value (indicated by the dashed
line) after the first iteration. The phase of impact is similarly perturbed away
from the stationary state in iteration 1, but relaxes back to the stationary value
by iteration 2.

How does the model compare with these new data? For the theoretical analysis
perturbations were applied to the initial value of the ball velocity after impact,
denoted by v0. Since the velocity was perturbed by perturbing the value of the
coefficient of restitution, we need to express the perturbation of velocity in terms
of the perturbed coefficient of restitution. Denoting the perturbed value of the
coefficient of restitution by αp, we find the initial velocity of the ball after impact:

v0 = (1 + αp)arωr cos(θ̃) − αpvk +
gαp

ωr

(2π).

Substituting the stationary values of impact velocity ṽ and phase θ̃ from eqs. 7
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Figure 9: Average relaxation (impulse response) of phase and velocity after per-
turbation. The grey curves show the model, the black curves show the data for a
single subject. Error bars denote the standard deviations and the dashed curves
denote the stationary values of ṽ = 4.5 m/s and θ̃ = 42 deg, averaged for each
bounce after the perturbation. Left panels: Perturbation with a coefficient of
restitution α in the range 0.3-0.4, leading to a lower velocity after impact. Right
panels: Perturbation with α in the range 0.6-0.7, leading to a higher velocity after
impact.

and 8, we find:

v0 =
1 + 2αp − α0

1 + α0
ṽ,

with α0 denoting the value of the coefficient of restitution for the preceding steady
state behavior. Note that for this analysis we return to the deterministic model
for simplicity. For the simulations of the impulse response, α0 was set to 0.5. The
values for frequency and amplitude of the racket were chosen to be identical to
the ones of the corresponding experiment: ωr = 2π/0.92 rad/s and ar = 0.3 m.
The value of the acceleration of gravity was g = 9.81 m/s2. The impulse responses
of the model for αp = 0.4 and αp = 0.6 are shown in Figure 9 as grey curves.
Iteration (impact) 0 denotes the perturbed impact, the following 4 iterations refer
to the subsequent impacts. Explicitly, the ball velocity after impact is decreased
when α is lower (left panels) and increased when α is increased (right panels).

Comparing these model predictions to the data, the qualitative features are
similar, especially for the direction of perturbations at iterations 1 and 2 (see
Figure 9). But there are also discrepancies. For αp = 0.6 (right panels) the
model shows larger deviations than the data, whereas the deviations are relatively
minor for αp = 0.4 (left panels). Furthermore, the model takes longer to settle to
the stationary values. Where the subject recovers from the perturbation in one
iteration the model takes much longer for the αp = 0.6 (right panels). In fact, it
is not even back at the stationary value at iteration 4. We interpret these data to
mean that the relaxation behavior of the model is too slow. Expressed in modeling
terms, the eigenvalues of the ball bouncing map are too large. From the stability
analysis we know the eigenvalues are equal to α0 = 0.5 in absolute value. Judging
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from the observed relaxation it seems that the observed eigenvalues are less than
0.2.
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Figure 10: Comparison of the impulse response of the full ball bouncing model
and the linearized model with identical Jacobians.

There are two other properties of the model that should be highlighted. The
first property pertains the actual values of the perturbed coefficient of restitution
αp of 0.4 and 0.6 used in the simulation. These values of αp are closer to the base
value α0 than the average values of αp used in the experiment, which are 0.35 and
0.65. One can observe these smaller than average perturbations in Figure 9 in
the iteration 0 values of the velocity: the theoretical curves always undershoot the
experimental ones, meaning that the initial perturbation is smaller. We choose
to deviate from these values since perturbations with αp ¿ 0.65 take the system
out of the domain of attraction of the period-1 attractor. In particular, αp = 0.7
corresponds to an initial velocity v0 of 5.7 m/s, which is the value used in the
bottom panel of Figure 3. Thus, besides being to slow, the ball bouncing model
predicts a domain of attraction that is smaller than observed. This supports the
notion that there are additional control mechanisms that keep the system in the
stable state.

A second property pertains to the sign of the perturbation. Looking at the
model relaxations in Figure 9, it seems that the relaxation takes longer in the
right panels (αp = 0.6) as compared with the left panels (αp = 0.4). In a linear
system there should be no difference in relaxation time for different signs of the
perturbation. This difference in relaxation time is a consequence of the nonlinear-
ity of the ball bouncing map. In Figure. 10 the relaxation of the full ball bouncing
map (grey curve) is compared with its linearization (black curve) such that the
Jacobians (eq. 9) of both models are identical. As one can see, the relaxation
time of the linearized system is equally fast for both signs of perturbation. This
shows that the asymmetry of the relaxation time of the model for the sign of
the perturbation is a consequence of the nonlinearities in the dynamics. Put in
modeling terms, this means that the linearized system that was used to determine
linear stability is not a good approximation for perturbations of the size used in
the experiment. This is in contrast to the previous section, where the linearized
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system was found to give a very accurate description of the system for the noise
levels observed in an experiment.
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Figure 11: Modulation of racket period (top panel) and amplitude (bottom panel)
in response to a perturbation of the coefficient of restitution α. The back curves
indicate an increase in α, the grey curved a decrease. Each data point was calcu-
lated as the mean value of each post-perturbation impact across 10 perturbations
applied within one 40 s trial. Error bars denote standard deviations.

Having identified that the ball bouncing map is too slow, the logical question
is what kind of control do human actors apply to quickly equilibrate the system
back to its steady state? Looking at Figure 11, we can glean further insight from
additional analyses of the perturbation data. This figure shows the modulation in
period and amplitude of the racket movement after a perturbation. Plotted are the
differences in period and amplitude at each post-perturbation impact compared to
the average period and amplitude computed over all cycles. Note that the racket
period and amplitude are parameters in the model (2π/ωr and ar) and should in
principle be constant. However, the data show that the racket period is increased
or decreased at the first and second impact in response to the perturbation. The
period modulation is such that the next impact occurs at a phase closer to the
stationary value. This can be understood as follows: for an increase in αp, the
velocity with which the ball leaves the racket is higher and thus the ball flight time
is longer. Therefore, the racket cycling period is increased. Hence, at the next
bounce the ball hits the racket at the correct stationary phase, re-establishing the
stationary state. Interestingly, the amplitude does not show similar modulations.

In a different context of modeling de Rugy et al [4] already showed that explicit
period control can reproduce the basic features of these data. In the present model
period control could be accommodated by making the racket frequency a third
state variable. As such, frequency is no longer a fixed parameter but would obey
its own dynamic state equation like the velocity after impact vk and phase of
impact θk. This extension, however, is left for future study.
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8 Discussion

Research on human motor behavior has for a long time sought to understand co-
ordination in terms of control mechanisms embedded within the biological system.
This approach, however, has been recently augmented by the study of the dynam-
ics of the interaction of the biological system with the environment. For instance,
the simple task of freely oscillating a limb in the gravitational field revealed that
subjects tend to oscillate at the resonant frequency [6]. Support for the ability to
attune to dynamical properties of the actor-environment system is further supplied
by its relatively early appearance in child development. Indeed, babies proved to
be capable to quickly find the resonant frequency of an elastic bouncing support
[5]. Not only does the resonant frequency offer the maximum response to a given
level of applied torque, it also provides more stable behavior than when moving
at different frequencies [5, 20].

Such stability issues become crucial for the coordination of more complex move-
ments that involve control of many joints as in walking or running. Dynamical
analysis of legged locomotion has revealed that a completely passive mechanical
system can exhibit stable locomotion when solely subject to the force of gravity
[10]. This phenomenon, known as passive dynamic walking, provides a good ex-
ample of a stable regime that exists at the interaction of the individual with the
environment. From a control point of view, such a passively stable regime has the
advantage that it maintains stability with no or minimal feedback.

While this issue is intuitive, to date only few studies in motor control have
pursued this hypothesis that humans take advantage of an identified stable regime
and analyzed this with a formal task analysis. The present line of experiment
provides an attempt to do this. More specifically, we developed a model of the ball
bouncing task that is completely open-loop, i.e., with no feedback control. From
this model, we derived predictions and opened the dialogue with experimental
data. This dialogue confirmed that humans indeed exploit the stable regime that
exists in the dynamics of the task. But it also revealed that this regime had to be,
and is de facto, supported by an explicit control mechanism.

Sternad and colleagues have provided evidence for the presence of dynamical
stability in a ball bouncing task [15, 13, 14, 9]. Central to their argument was the
model’s prediction that a passively stable regime is obtained with negative racket
acceleration at impact. This prediction was confirmed in several studies using
different conditions and experimental set-ups. In the present study we detailed
the stability analysis, extracting new predictions, and extended it by a stochastic
component. Among the new features explored with the model is the coexistence
of a sticking solution together with the period-1 attractor that is established to
achieve the task. While the conditions for period-1 attractor are potentially sat-
isfied, the sticking solution may occur depending on the initial conditions. This
highlights that a model that is totally free of control of the racket trajectory can-
not guarantee that the period-1 attractor will be reached. This finding lead to the
conclusion that a certain form of control cannot be avoided, i.e., at least during
the beginning of the task when the period-1 attractor is established. It raises the
important question of how passive stability is combined with control mechanism
and how it adjusts with respect to perceptual information available to establish
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and maintain this stability.

Exploitation of this stable regime by human actors was further confirmed in
a new set of experimental data that revealed a decrease in the variability of the
bouncing behavior simultaneous with a trend toward more negative values of the
racket acceleration at contact. Specific to the present model is the derivation of
the relation between racket amplitude and the period of the bouncing behavior.
This relation was evaluated with a new set of experimental data. The stochastic
version of the model permitted to derive predictions about the covariance structure
of the state variables. The predicted covariance structure closely mimicked the
experimentally observed one, providing more support for the ball bouncing model.

Indication for an additional control mechanism came from the relaxation be-
havior following a perturbation. Comparison of the model with experimental data
for the velocity of the ball after impact and the phase of the impact revealed that
the relaxation was slower in the model than in the experiment. This fact parallels
other findings on fast relaxation after perturbations. Jindrich and Full [8] observed
that walking cockroaches are able to recover from lateral perturbations and regain
their heading direction faster than would be expected if neural feedback correc-
tions were assumed. The neural reflex delay was estimated to be considerably
faster than the observed corrective behavior. The authors hypothesized that this
fast recovery to be caused by “preflexes”, i.e. passive stabilization by means of the
visco-elastic properties of the musculo-tendinous tissues. In a task where human
subjects balance a pole on their finger Cabrera and Milton [3] observed control on
all time scales, including corrections that were faster than the shortest feedback
delays. They hypothesized this fast control to be due to parametric noise. Both of
these explanations, parametric noise and passive visco-elastic properties, are pos-
sible routes for extending the ball bouncing model. We pursued a third route by
examining whether the parameters of the model are constants in the experiment.
We found that subjects modified the racket period in relation to the perturbation
applied, while leaving the amplitude largely unchanged. This represents an impor-
tant indication for a possible control of racket period or frequency. De Rugy et al.
[4] proposed a neuro-mechanical model to account for this experimental feature.
The period of the neural oscillator that drives a mechanical limb (forearm holding
a racket) for bouncing the ball was regulated on the basis of the ball trajectory, in
order to supplement the stable regime and ensure that it was maintained despite of
the perturbation. This model added to the behavioral level by incorporating neu-
rophysiological and mechanical features. But at the same time, it became more
complex and difficult to analyze. In this respect, the implementation of a con-
trol mechanism within the framework developed in the present study constitutes
a more economical route. One suggestion comes to mind at this point: earlier
we rejected the control-theoretic approach of Bühler and Koditschek [1, 2] who
suggested the mirror algorithm, where ball and racket velocity were controlled in
a mirror-like fashion leading to positive racket accelerations at impact. However,
the mirror algorithm does achieve stable bouncing from a wide range of inital con-
ditions. As an extension to passive stability strategy, a period-controller based on
the mirror algorithm might be a fruitful extension of the current research.
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