
BliStr: The Blind Strategymaker

Josef Urban
Radboud University Nijmegen

June 18, 2014

1 / 23



Introduction: Large-theory Automated Reasoning

I Reason automatically in large formal theories
I Since 2003: ATP translation of the Mizar Mathematical

Library (ca 50k theorems/proofs in 2014)
I Since 2005: Isabelle-HOL - ca 20k theorems/proofs, ca

40k in AFP in 2014
I Since 2012: HOL Light/Flyspeck - ca 23k theorems/proofs

in 2014
I More corpora in 2014: HOL4, ACL2, Coq?

2 / 23



Introduction: Large-theory Automated Reasoning

I Useful for ITP - Sledgehammer, MizAR, HOL(y)Hammer
I Interesting AI research:
I We can try to learn how to prove theorems from many

related proofs and proof developments
I Hopefully closer to how we learn math and science than

solving small isolated problems
I Data-driven AI algos vs. theory-driven AI algos:
I Do not design very complex algos completely manually, but

learn their parts from large amount of data
I Used to build self-driving cars, recent machine-translation

systems, etc. - scary AI?

3 / 23



Large-theory Benchmarks/Competition

I Suitable benchmarks and competitions to foster the
large-theory research:

I 2006: the MPTP Challenges
I Since 2008: Large-Theory Batch category of the CADE

Automated System Competition (CASC)
I 2010: Judgement Day, 2011: MPTP2078, 2013: HH 7150
I Performance on the benchmarks/competitions

corresponds to performance in the ITP deployment

4 / 23



The Mizar@Turing 2012 large-theory competition

I Sponsored by 3000 GBP by Google at the Turing100
conference

I The MPTP2078 benchmark: 2078 related Mizar problems
in general topology

I 1000 allowed for pre-competition training with their Mizar
and Vampire proofs

I 400 unknown would be used for the competition
I Just a concrete example on which the Blind Strategymaker

(BliStr) was developed
I Later used also to develop ATP strategies for Flyspeck

problems

5 / 23



Initial ATP performance in May 2012

I Measured on the 1000 training problems
I Vampire solves 691 of them with 60s time limit (a bit my

fault)
I E 1.6pre in auto-mode solves 519 of them with 60s time

limit
I E clearly needed to improve on the problems - but how?

6 / 23



ATP Search Strategies

I Automated Theorem Provers (ATPs) are programmed
using complex search strategies

I E prover has a nice language for strategy specification

7 / 23



The E strategy with longest specification in Jan 2012

G-E--_029_K18_F1_PI_AE_SU_R4_CS_SP_S0Y:

--definitional-cnf=24 --simplify-with-unprocessed-units --tstp-in
--split-aggressive --split-clauses=4 --split-reuse-defs
--simul-paramod --forward-context-sr --destructive-er-aggressive
--destructive-er --prefer-initial-clauses -winvfreqrank -c1 -Ginvfreq
-F1 --delete-bad-limit=150000000 -WSelectMaxLComplexAvoidPosPred
-H’(
4 * ConjectureGeneralSymbolWeight(

SimulateSOS,100,100,100,50,50,10,50,1.5,1.5,1),
3 * ConjectureGeneralSymbolWeight(

PreferNonGoals,200,100,200,50,50,1,100,1.5,1.5,1),
1 * Clauseweight(PreferProcessed,1,1,1),
1 * FIFOWeight(PreferProcessed))’
-s --print-statistics --print-pid --resources-info --memory-limit=192

8 / 23



Its clause evaluation heuristic

G-E--_029_K18_F1_PI_AE_SU_R4_CS_SP_S0Y:

4 * ConjectureGeneralSymbolWeight(
SimulateSOS,100,100,100,50,50,10,50,1.5,1.5,1),

3 * ConjectureGeneralSymbolWeight(
PreferNonGoals,200,100,200,50,50,1,100,1.5,1.5,1),

1 * Clauseweight(PreferProcessed,1,1,1),
1 * FIFOWeight(PreferProcessed)

9 / 23



ATP Search Strategies - continued

I Different strategies fit different mathematical problems
I But most of the lemmas proved by (formal) mathematicians

are not so new
I Problems often share some structure, particularly in large

formal libraries
I So let us group the “similar” problems together and find

good strategies for such groups
I But how again? - Certainly not manually for all of math!

10 / 23



Dawkins - cumulative selection (Blind Watchmaker)

I The strategy space is very large
I Guessing a good strategy at random is hopeless
I (a bat sonar “cannot be developed by a random mutation,

right??”)
I It needs an “intelligent designer” (Watchmaker)!?
I But if there is a selection function that chooses the most

fitting mutations
I Then the iterative process can converge very fast
I “Methinks it is like a weasel” found in 40 iterations by

Dawkins’ program
I Compare it to the chance of hitting one of 2728 sentences

at random

11 / 23



The Blind Watchmaker, a.k.a. Cumulative Evolution

www.personal.psu.edu/drs18/blogs/screaming_red_ass_sock_monkey/2009/06/post-8.html

12 / 23

www.personal.psu.edu/drs18/blogs/screaming_red_ass_sock_monkey/2009/06/post-8.html


The Blind Watchmaker, a.k.a. Cumulative Evolution

I The strategies are like giraffes, the problems are their food
I The better the giraffe specializes for eating problems

unsolvable by others, the more it gets fed and further
evolved

13 / 23



The Main Idea

I Evolve faster strategies on groups of similar solvable and
easy problems.

I If they get much faster some more (related but harder)
problems might become solvable.

I What are similar problems? Problems that behave similarly
wrt. existing strategies (this is evolving!)

I What are easy problems? Problems that are quickly
solvable by some strategy (this concept is evolving too!)

I So we need a loop that co-evolves the strategies and the
concepts of similar and easy problems

14 / 23



The Main Strategymaking Loop

I Interleave fast strategy improvement (by Iterated Local
Search) on its “similar easy” problems with the evaluation
of the strategy on all problems

I That way, the notions of “similar” and “easy” evolve, and
the strategies are invented on harder and harder problems

I The giraffes are getting taller and taller, covering more and
more resources

15 / 23



ParamILS - Iterated Local Search

I Start with an initial configuration θ0

I Loop between two steps:
I (i) perturbing the configuration to escape from a local

optimum,
I (ii) iterative first improvement of the perturbed

configuration.
I The result of step (ii) is accepted if it improves the previous

best configuration.

16 / 23



17 / 23



Governing the Iterated Local Search
1. Start with an initial set of E strategies
2. Evaluate them with high time limit (5s) on all problems
3. For each strategy collect its best-solvable problems
4. This partitions the set of all solvable problems
5. Remove from such sets the problems that still take too

much time
6. Run ParamILS on each strategy with low time limit (1s) on

its set of cheap best-solvable problems
7. After ParamILS invents a new strategy S, evaluate S with

the high time limit on all problem
8. Recompute the problem partitioning (goto 2), some

problems might have become cheaper (eligible for the
training phase)

9. End when there is no more improvement
10. Variations: make even smaller clusters of problems

randomly - risk of overfitting
18 / 23



Two BliStr runs and a union of 6 runs done within 30
hours (on the 1000 Mizar@Turing training problems)

description iterations best strat. solved

BliStr400
1 37 569 648

BliStr2500
3 23 576 643

Union of 6 runs 113 576 659

description tlow TParamILS real time user time

BliStr400
1 1s 400s 593m 3230m

BliStr2500
3 3s 2500s 1558m 3123m

Union of 6 runs 1800m

19 / 23



More Results

I The best BliStr strategy on the 1000 training problems: 598
problems solved

I 6 best E1.6pre strategies could solve only 597 together (in
60s)

I 6 best BliStr strategies could solve 653 together (in 60s)
I The Turing100 competition (400 problems for evaluation):
I 257 MaLARea/E/BliStr vs 248 Vampire/SInE
I MaLARea/E without the new strategies: only 214
I 14195 Flyspeck/HH problems (2012):
I E1.6pre: 32.6%, using BliStr strategies: 38.4% (in 30s)

20 / 23



The E strategy with longest specification in May 2014
atpstr_my_c7bb78cc4c665670e6b866a847165cb4bf997f8a:

6 * ConjectureGeneralSymbolWeight(PreferNonGoals,100,100,100,50,50,1000,100,1.5,1.5,1)
8 * ConjectureGeneralSymbolWeight(PreferNonGoals,200,100,200,50,50,1,100,1.5,1.5,1)
8 * ConjectureGeneralSymbolWeight(SimulateSOS,100,100,100,50,50,50,50,1.5,1.5,1)
4 * ConjectureRelativeSymbolWeight(ConstPrio,0.1, 100, 100, 100, 100, 1.5, 1.5, 1.5)
10 * ConjectureRelativeSymbolWeight(PreferNonGoals,0.5, 100, 100, 100, 100, 1.5, 1.5, 1)
2 * ConjectureRelativeSymbolWeight(SimulateSOS,0.5, 100, 100, 100, 100, 1.5, 1.5, 1)
10 * ConjectureSymbolWeight(ConstPrio,10,10,5,5,5,1.5,1.5,1.5)
1 * Clauseweight(ByCreationDate,2,1,0.8)
1 * Clauseweight(ConstPrio,3,1,1)
6 * Clauseweight(ConstPrio,1,1,1)
2 * Clauseweight(PreferProcessed,1,1,1)
6 * FIFOWeight(ByNegLitDist)
1 * FIFOWeight(ConstPrio)
2 * FIFOWeight(SimulateSOS)
8 * OrientLMaxWeight(ConstPrio,2,1,2,1,1)
2 * PNRefinedweight(PreferGoals,1,1,1,2,2,2,0.5)
10 * RelevanceLevelWeight(ConstPrio,2,2,0,2,100,100,100,100,1.5,1.5,1)
8 * RelevanceLevelWeight2(PreferNonGoals,0,2,1,2,100,100,100,400,1.5,1.5,1)
2 * RelevanceLevelWeight2(PreferGoals,1,2,1,2,100,100,100,400,1.5,1.5,1)
6 * RelevanceLevelWeight2(SimulateSOS,0,2,1,2,100,100,100,400,1.5,1.5,1)
8 * RelevanceLevelWeight2(SimulateSOS,1,2,0,2,100,100,100,400,1.5,1.5,1)
5 * rweight21_g
3 * Refinedweight(PreferNonGoals,1,1,2,1.5,1.5)
1 * Refinedweight(PreferNonGoals,2,1,2,2,2)
2 * Refinedweight(PreferNonGoals,2,1,2,3,0.8)
8 * Refinedweight(PreferGoals,1,2,2,1,0.8)
10 * Refinedweight(PreferGroundGoals,2,1,2,1.0,1)
20 * Refinedweight(SimulateSOS,1,1,2,1.5,2)
1 * Refinedweight(SimulateSOS,3,2,2,1.5,2)

21 / 23



Current Limitations and Future Work

I Term orderings and weighting schemes are another
important problem-specific parameters to explore - not
done yet

I Even then the E strategy language is likely not expressive
enough

I Particular subproblems might benefit from very different
targeted search strategies

I More difficult problems might benefit from splitting into
smaller ones where a good strategy is known

I Similar to splitting ITP proofs into smaller lemmas
discharged by different tactics

I Such process will likely again be highly parameterized and
subject to such data-driven programming

22 / 23



Thanks for your attention!

Questions?

23 / 23


