Some Probabilistic Riddles and Some Logical Solutions

Radboud University Nijmegen
Dedicated to Herman Geuvers，May 29， 2024
Bart Jacobs
bart＠cs．ru．nl

Outline

Introductory remarks

Distributions and updating

One riddle from the paper

Conclusions

Where we are，so far

Introductory remarks
Distributions and updating

One riddle from the paper

Conclusions

Geuvers on the future of maths
＂We believe that these systems will become the future of math－ ematics，where definitions，statements，computations and proofs are all available in a computerized form．＂

From：Herman Geuvers．Proof assistants：History，ideas and future， 2009
－Geuvers＇work concentrates on the formalisation techniques
－less on actual formalisations

An area that urgently requires such formalisation is probability theory －much decision making is now left to AI，based on correlations
－whether you get a mortgage，or medical treatment
－clear need for explainable AI（XAI），with a＂logic＂

Challenges in probabilistic logic (from Pearl'89)
To those trained in traditional logics, symbolic reasoning is the standard, and nonmonotonicity a novelty. To students of probability, on the other hand, it is symbolic reasoning that is novel, not nonmonotonicity. Dealing with new facts that cause probabilities to change abruptly from very high values to very low values is a commonplace phenomenon in almost every probabilistic exercise and, naturally, has attracted special attention among probabilists. The new challenge for probabilists is to find ways of abstracting out the numerical character of high and low probabilities, and cast them in linguistic terms that reflect the natural process of accepting and retracting beliefs.

Embarrassingly, there is still no probabilistic logic for symbolic reasoning. Probabilistic updating will have to be crucial, non-trivial ingredient.

Aside about Wittgenstein

In 1992 Herman and I tried went looking for Wittgenstein's grave in Cambridge

It took us a whole afternoon to find it. Nowadays there is a website with a nice video: britishwittgensteinsociety.org/wittgensteins-grave

Own Festschrift paper

- Six riddles in (discrete) probability theory, as reasoning tests
- copied from website briddles.com, many with updating
- Not in the language of a symbolic probabilistic logic (yet)
- but in an interpreted mathematical language
- with explicit operations on distributions: products, updating
- Inspiration comes from categorical probability theory
- new, refreshing, more structured approach, with string diagrams
- traditional probabilistic language is confusing (and untyped!)
- it is a hindrance to progress
- Own opinion: a new formalism is badly needed for probability theory
- Wittgenstein: "The limits of my language mean the limits of my world"
- See also recent artile: Getting Wiser from Multiple Data:

Probabilistic Updating according to Jeffrey and Pearl, on ArXiv

- Big differences in answers of 17 experts on standard question
iCIS | Digital Security Radboud University

Where we are, so far

Introductory remarks

Distributions and updating

One riddle from the paper

Conclusions

Coins and dices

- I write a fair coin as a distribution $\frac{1}{2}|H\rangle+\frac{1}{2}|T\rangle$
- Similarly, a dice is: $\frac{1}{6}|1\rangle+\frac{1}{6}|2\rangle+\frac{1}{6}|3\rangle+\frac{1}{6}|4\rangle+\frac{1}{6}|5\rangle+\frac{1}{6}|6\rangle$
- Suppose I roll this dice behind my hand and ask you the probability of each number / pip...
- of course, you will say: $\frac{1}{6}$
- Suppose I tell you that the outcome of the roll is even
- what probability will you assign to each of the pips $1,2,3,4,5,6$?
- that is, what is the resulting, updated distribution?
- It is: $\frac{1}{3}|2\rangle+\frac{1}{3}|4\rangle+\frac{1}{3}|6\rangle$.

A physical model of probabilistic updating III

To make it more interesting, suppose the pipes can be closed by taps:

The numbers left of the taps are the fractions of openness

1 liter per second

- The normalisation factor is: $\frac{1}{2} \cdot \frac{2}{3}+\frac{1}{3} \cdot \frac{1}{3}+\frac{1}{6} \cdot \frac{1}{2}=\frac{19}{36}$
- The updated distribution is:

$$
\omega^{\prime \prime}=\frac{1 / 2 \cdot 2 / 3}{19 / 36}|L\rangle+\frac{1 / 3 \cdot 1 / 3}{19 / 36}|M\rangle+\frac{1 / 6 \cdot 1 / 2}{19 / 36}|R\rangle=\frac{12}{19}|L\rangle+\frac{4}{19}|M\rangle+\frac{3}{19}|R\rangle
$$

General formulations

- A distribution over a set X is a finite sum $\sum_{i} r_{i}\left|x_{i}\right\rangle$
- where $x_{i} \in X$ and $r_{i} \in[0,1]$ with $\sum_{i} r_{i}=1$
- A (fuzzy) predicate is a function $p: X \rightarrow[0,1]$
- think of it as a collection of taps
- The validity (or expected value) $\omega \models p$ of predicate p in distribution ω is $\sum_{i} r_{i} \cdot p\left(x_{i}\right)$.
- The updated distribution $\left.\omega\right|_{p}$ is the renormalisation:

$$
\left.\omega\right|_{p}=\sum_{i} \frac{r_{i} \cdot p\left(x_{i}\right)}{\omega \models p}\left|x_{i}\right\rangle
$$

- Basic fact: $\left(\left.\omega\right|_{p} \models p\right) \geq(\omega \models p)$
- Slogan: updating (learning) makes you wiser
- The inequality does not occur in the literature - since distributions are left implicit in the traditional language

Life or death (from briddles.com)

You are a prisoner sentenced to death. The Emperor offers you a chance to live by playing a simple game. He gives you 50 black marbles, 50 white marbles and 2 empty bowls. He then says, 'Divide these 100 marbles into these 2 bowls. You can divide them any way you like as long as you use all the marbles. Then I will blindfold you and mix the bowls around. You then can choose one bowl and remove ONE marble. If the marble is WHITE you will live, but if the marble is BLACK ... you will die.' How do you divide the marbles up so that you have the greatest probability of choosing a WHITE marble?

Solution: Put one white marble in the first bowl and all other marbles in the second bowl

- Chance of survival: $\frac{1}{2} \cdot 1+\frac{1}{2} \cdot \frac{49}{99}=\frac{148}{198}=\frac{74}{99} \approx 0.747$

Life or Death，formalisation II
－The predicates $p_{1}, p_{2}: M D \rightarrow[0,1]$ give the probability of drawing white from the first，resp．second bowl
－Explicitly，for $(w, b) \in M D$ ，
$p_{1}(w, b):=\frac{w}{w+b} \quad p_{2}(w, b):=\frac{50-w}{(50-w)+(50-b)}=\frac{50-w}{100-w-b}$
－There is $\frac{1}{2}$ to choose each bow
－So we use predicate $p:=\frac{1}{2} \cdot p_{1}+\frac{1}{2} \cdot p_{2}$
－We then form the update $\left.\omega\right|_{p}$
－Interpretation：given that we have drawn white（and survived） what are the probabilities？

Where we are，so far

Introductory remarks

Distributions and updating
One riddle from the paper

Life or Death，formalisation III
Plot of updated distribution $\left.\omega\right|_{p}$ on $M D$

Highest probabilities for white，black in first bowl：$(1,0)$ and $(49,50)$ ．

Suggestions and wishes

Developing a formal，symbolic logic and type theory for probability theory has scientific and societal urgency
－it should include non－trivial rules for updating

Conclusions

