
Software and Web Security

deel 1

sws1 1

About this course: people

• Pol van Aubel

• Ko Stoffelen

• Aaron van Geffen

• Erik Poll

• Peter Schwabe

sws1 2

About this course: topics & goals

• Standard ways in which software can be exploited

– understanding how such attacks work

– understanding what makes these attacks possible

– doing some attacks in practice

• Root cause analysis: why are things so easy to hack?

• This involves understanding

– programming languages, compilers, and operating systems,

and the abstractions that they provide

– the languages, representations, and interpretations involved

– the potential for trouble – in the form of software vulnerabilities -

that all this introduces

sws1 3

Software and Web Security - part 1 & 2

• part 1

– security problems in machine code,

compiled from C(++) sources (as usual),

running on standard CPU and operating system

• part 2

– security problems in software for the web,

using web browsers and web applications,

and typically some back-end database.

sws1 4

Prerequisites

• Imperatief Programmeren

– we won’t use C++, but C

– biggest change: using printf instead of >> ?

• Processoren

– what is the functionality that a typical CPU offers, on which we

have to run our software written in higher-level languages?

sws1 5

Lectures & lab sessions

• 7 lectures and 7 lab sessions

• Lab sessions Mondays 8:45-10:30 in terminal room HG00.075

• Lectures Tuesdays 13:45-15:30 in Linnaeus 4

• All course material will be on

http://www.cs.ru.nl/~erikpoll/sws1

sws1 6

Lab exercises

Weekly lab session with weekly programming/hacking exercise

• Exercises to be done in pairs

• Doing the exercises is obligatory to take part in the exam;

• Exercises will be lightly graded to provide feedback,

with nsi-regeling:

you can have only one exercise niet-serieus-ingeleverd

• But beware: exercises of one week will build on knowledge & skills

from the previous week

• Also: turning up for the lab sesions might be crucial to sort out

practical problems (with C, gcc, Linux, ...)

sws1 7

Lab exercises

We use

• C as programming language, not C++

• Linux from the command line aka shell

• the compiler gcc

So no fancy graphical user interfaces (GUIs)

for the operating system (OS) or the compiler

Why?

• GUIs are nice, but hide what OS and compiler are doing

• the command line is clumsy at first,

– using commands instead of pointing & clicking

but gives great power

– we can write shell scripts: programs that interact with the OS

sws1 8

