
Bachelor’s Thesis Computing Science

Radboud University Nijmegen

Visualising divide-and-conquer algorithms with self-similar fractals

Author:
Artur Wiadrowski
s1090597

First supervisor/assessor:
Dr. Engelbert Hubbers

Second assessor:
Dr. Wieb Bosma

June 9, 2024

Abstract

Fractals, geometric shapes with the property of self-similarity, are ob-
jects the Hausdorff dimensions of which are of fractional values. Establishing
connections between the number of self-similar copies and the number of re-
cursive invocations of divide-and-conquer algorithms, the scaling factors of
such copies and the scaling factors within the algorithms, and further, al-
lows us to visualise divide-and-conquer algorithms with self-similar fractals.
Working with computer animations provides us with the possibility of ac-
counting in our visualisations for the operations done in any recursive call
that are not recursive calls themselves. To design such animations, we make
use of Iterated Function Systems, the application of which on a set of points
infinitely many times yields fractals. We consider not only the final fractal,
but also fractal approximations arising after finite application of the associ-
ated Iterated Function Systems. We utilize all of this and give visualisations
of divide-and-conquer algorithms whereby the input size, the scaling factor
for the input sizes passed to the recursive calls, the number of the recur-
sive calls itself, and the complexity of the operations that are not recursive
invocations, can all be inferred from our product.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Fractals . 5

2.1.1 Examples . 5
2.1.2 Affine and linear transformations 7
2.1.3 Iterated Function Systems 8
2.1.4 Fractal dimension . 8
2.1.5 Considered fractals . 9

2.2 Notation . 10
2.3 Divide-and-conquer algorithms 10

2.3.1 Examples . 11
2.3.2 Complexity of divide-and-conquer algorithms 11
2.3.3 Master Theorem . 12
2.3.4 Inadmissibility to the Master Theorem 12

3 Measure of fractals 13
3.1 Lebesgue Measure . 13
3.2 Hausdorff Measure . 14

4 Master Theorem 15
4.1 Explanation of the Master theorem 15

4.1.1 First case of the Master Theorem 15
4.1.2 Second case of the Master Theorem 16
4.1.3 Third case of the Master Theorem 16
4.1.4 Proof of the Master Theorem 16

5 Construction 18
5.1 Parameters to visualise . 18
5.2 Outline of the approach . 18
5.3 Visualisation of the parameters n, a, 1

b 19
5.3.1 Input size . 19
5.3.2 Recursive calls . 19
5.3.3 Size of subproblems 20

1

5.4 Visualisation of the term f 20
5.4.1 Time . 21
5.4.2 Overall complexity . 21

5.5 Final animation product . 21
5.6 Correctness . 22
5.7 Argumentation for choices . 22

5.7.1 Association of parameter n 22
5.7.2 Association of parameter a 22
5.7.3 Association of parameter 1

b 23
5.7.4 Association of computation time 23
5.7.5 Other possibilites . 23

5.8 Constraints . 24
5.8.1 Rounding . 24
5.8.2 Graphical constraint 25
5.8.3 Transformation time constraint 26

5.9 Example of animation-algorithm relation 27

6 Algorithms with different scaling factors 29
6.1 Generalized Master Theorem 29
6.2 Calls on input of differing size 30

7 Related Work 32

8 Conclusions 34

2

Chapter 1

Introduction

Mandelbrot, commonly regarded as the originator of the concept, coined the
term ‘fractal’ to mean a self-similar shape, necessarily of infinite detail [16].
Since then, there has been discussion on the definition as fractals might as
well display the property of self-affinity rather than self-similarity, and Man-
delbrot himself proposed using the term “without a pedantic definition” [17].
After introducing fractals as objects for study, there have been discoveries
made in the field. For instance, a generalization of the Euclidean concept of
dimensionality, one where dimensions can assume fractional values, has been
shown to be connected to fractals [10]. The values of those dimensions, as
it turns out for self-similar fractals composed of mutually disjoint parts, are
dependent on the number of the self-similar parts composing the fractal and
the scaling factors of those parts. That dimension of a fractal corresponds
to the number and size of subproblems of divide-and-conquer algorithms,
provided the fractal is self-similar.

Self-similarity, to give an intuitive explanation, is the property of an
image such that upon continually zooming-in on a part of it, one will even-
tually end up with the same image. Since divide-and-conquer algorithms
are recursive and each call looks similar, it is not surprising that there are
connections between self-similar fractals and divide-and-conquer algorithms.
There is also a connection between such fractals and the Master Theorem,
discussed in Chapter 4, for deducing the complexity of divide-and-conquer
algorithms, as is seen in Section 4.1. Given a fractal of the same number of
self-similar copies as the number of recursive calls per one algorithm invoca-
tion, and the same scaling factors of those copies as those of the input sizes
of the recursive calls, which case of the theorem is possible to apply depends
on the asymptotic behavior of the complexity of the non-recursive operations
of the algorithm compared to the Hausdorff measure of the fractal.

The research question of this thesis is “How can aspects of divide-and-
conquer algorithms, including the number of recursive calls, the scaling fac-
tor for inputs, the size of the original input as well as the complexity of

3

algorithmic operations, be visualised with fractals?” Drawing inspiration
from Simant Dube’s work in [6] and [5], we present an approach to visualis-
ing divide-and-conquer algorithms with computer animations. While Dube
associates the work of an algorithm that is itself not a recursive invoca-
tion, with a part of an image, we deviate from this approach by introducing
computer animations. We construct animations such that a fractal is ap-
proximated, and the animation time from a fractal approximation to the
other, is the same as the time it takes for the associated divide-and-conquer
algorithm to combine the results of all subproblems of certain depth.

In this thesis, we will state formal connections between divide-and-
conquer algorithms and self-similar fractals. Graphics have been added
to help readers understand fractals better and make it easier to see how
fractals relate to divide-and-conquer algorithms. This thesis includes Chap-
ter 2 on all the necessary preliminaries, such as the concept of Hausdorff
dimension or the introduction of Iterated Function Systems. The prelimi-
naries also make clear the terminology employed throughout this thesis. We
then outline in Chapter 5 the portrayal of recursive algorithms with frac-
tals. There, the number of recursive calls in a divide-and-conquer algorithm
is represented with the number of self-similar copies composing the asso-
ciated fractal. The parameter b, by the reciprocal of which input size is
scaled, is associated with the contraction factor that gives the self-similar
copies. We further associate the time of algorithmic computations that are
not recursive invocations with the animation times of going from one fractal
approximation to the next one. With this, we see yet another connection
to the Master Theorem. As it turns out, the complexity of the animation
visualising a divide-and-conquer algorithm, is necessarily the same as the
complexity of the algorithm itself. All of this leads us to conclude that
fractals can be used to visualise divide-and-conquer algorithms.

4

Chapter 2

Preliminaries

To tackle our research question, we give all the necessary preliminaries in
this chapter.

2.1 Fractals

The term ‘fractal’ was coined by Mandelbrot [16]. The term was used to de-
scribe shapes exhibiting self-similarity. There are many ways of constructing
fractals. We give examples below.

2.1.1 Examples

Example 1 (Middle-thirds Cantor Set). To construct this Cantor Set, one
starts with a line, divides it into three equal parts, and removes the middle
part. Then, the same action is applied to the remaining components. The
set is the result of infinite application of this action [10, p.77-81].

Figure 2.1: Approximation of the middle-thirds Cantor set.

Example 2 (Koch Snowflake). To construct the Koch Snowflake, one starts
with an equilateral triangle, builds two more sides sticking out of the middle
one-third piece of each side thus making those form a smaller equilateral
triangle, and applies this action to all the sides again. The Koch Snowflake
is the boundary of the outcome of this action applied infinitely many times
[10, p.41-42].

5

3

Figure 2.2: Approximation of the Koch Snowflake.

Example 3 (Sierpinski Triangle). To construct the Sierpinski Triangle, one
takes an equilateral triangle, divides it into four parts, and removes the part
in the center, and then proceeds to apply the same action on the remaining
three triangles.

Figure 2.3: Approximation of the Sierpinski Triangle.

Example 4 (Dragon Curve). The dragon curve can be constructed by re-
cursively applying a rule onto a line segment [15].

Figure 2.4: Approximation of the Dragon Curve.

Example 5 (Mandelbrot Set). The Mandelbrot Set is described by points
in the complex plane for which a recurrence relation converges [3].

Example 1, Example 2, Example 3, and Example 4 are examples of fractals
that can be constructed with Iterated Function Systems, which we outline

6

Figure 2.5: Mandelbrot Set.

in Section 2.1.3. This thesis concerns only fractals for which there exist
such Iterated Function Systems. Other examples are shown for the sake
of completeness. The given fractals are just examples, and the list is non-
exhaustive. To formally define Iterated Function Systems, we first proceed
to introduce geometric transformations.

2.1.2 Affine and linear transformations

Affine and linear transformations are bijections f : V → W of a set of points
V to a set of points W that can be classified according to the properties
they preserve. Affine transformations preserve lines and parallelism, but not
necessarily Euclidean distances and angles. Linear transformations are affine
transformations between vector spaces that preserve the operations of vector
addition and scalar multiplication. Similarities are linear transformations.
A specific form of a similarity is that of uniform scaling:

Definition 1. Uniform Scaling is a linear transformation f : V → V of a
vector space V onto itself that shrinks or enlarges objects by a scale factor
that is the same in all directions.

Uniform scaling results in objects that are geometrically similar to their
original. Of particular interest are transformations that result in a shrunken
image. This is because those transformations allow us to construct fractals,
which are composed of self-similar smaller copies.

Definition 2 (Contraction). Let X be a subset of Rn, n ≥ 1. The transfor-
mation f : X → X is called a contraction if there is some constant c ∈ [0, 1)
such that

|f(x)− f(y)| ≤ c|x− y| for all x, y ∈ X. (2.1)

7

The number c is a contraction factor of f . If a set of points is scaled by the
same value along every axis, we call c the contraction factor of f .

2.1.3 Iterated Function Systems

Iterated Function Systems are tools for building fractals. An Iterated Func-
tion System F of t contractions is defined as a union of contractions

F =

t⋃
i=1

fi, (2.2)

where each contraction is a function from X to X for some compact metric
space (X, d) [8]. We say that any contraction function has an associated
contractivity factor. This factor is the value by which any passed object is
scaled in one of the directions. In this thesis, we only consider contractions
scaling objects by the same factors in all directions. It is shown that for any
Iterated Function System, given some set, there exists a unique fractal that
is the result of applying the Iterated Function System on that set infinitely
many times [8]. Hence, given an Iterated Function System and such a set,
there must exist a fractal associated with it. In this thesis, we use the
notation

Fk(A) = F(Fk−1(A)) =
t⋃

i=1

fi(Fk−1(A)) (2.3)

for all t ∈ N.

2.1.4 Fractal dimension

Observe that for D-dimensional figures, scaling the length of their sides by r
results in multiplying their D-dimensional measures by rD. We notice that
for the Sierpinski Triangle, scaling its sides by 2 produces three copies of the
Triangle. We thus obtain 3 = 2D, which gives dimension D = log2 3. While
this approach is not formal, we see that fractals necessitate the introduction
of fractional dimensions. Dimensions are descriptors of how geometrical
shapes fit in space. Extending the notion of dimension to fractional val-
ues can be done in many ways. The focus of this thesis for measuring the
dimension of a fractal is the Hausdorff dimension, which we define in Defi-
nition 4. It is necessary to use an approach differing from that of Lebesgue.
For example, trying to use the Lebesgue measure for fractals often yields no
meaningful descriptors of fractals, as shown in Section 3.1.

Hausdorff dimension

The Hausdorff dimension of a fractal is a descriptor of how such a fractal
fits in space. Definition 4 is the definition of the Hausdorff dimension. First,
we define the Hausdorff measure.

8

Definition 3. Let X be a metric space. Let d ∈ [0,∞) and S ⊂ X. Then
let

Hd
δ (S) = inf

{ ∞∑
i=1

diamd(Ui)

∣∣∣∣∣
∞⋃
i=1

Ui ⊃ S, diam(Ui) < δ

}
, (2.4)

where the infimum is the smallest element of the set. Given this, the Haus-
dorff measure is given by

Hd(S) = lim
δ→0

Hd
δ (S). (2.5)

This allows us to give a definition of the Hausdorff dimension as in [9].

Definition 4. The Hausdorff dimension dimH of S is given by

dimH(D) = inf{d ≥ 0 | Hd(S) = 0}. (2.6)

Chapter 3 shows that the Hausdorff measure of a self-similar fractal must
be positive and finite.

2.1.5 Considered fractals

The focus of this thesis remains on self-similar fractals for which certain
conditions hold. Intuitively, we only consider fractals made up of copies of
itself scaled by certain factors, where the fractal parts do not overlap. To
give a formal definition, we first require that there must exist an Iterated
Function System the infinite application of which on a set of points yields a
fractal. From there, we can define the Open Set Condition.

Definition 5. We say that the components fi(A) of A satisfy the Open Set
Condition if there exists a non-empty bounded open set V such that

V ⊃
a⋃

i=1

fi(V) (2.7)

with the parts fi(X) being mutually disjoint. An open set is one where for
every point in such a set, a neighbourhood of positive radius of this point is
contained in this set.

We only consider fractals that satisfy this condition. Such fractals are com-
posed of mutually disjoint self-similar copies. That is to say, given some set
of points A and an Iterated Function System with contractions f1, ..., fa, the
generated fractal F∞(X) is given by F∞(X) = f1(F∞(X))∪...∪fa(F∞(X))
where for any i, j, i ̸= j,

fi(F∞(X)) ∩ fj(F∞(X)) = ∅. (2.8)

9

With the Open Set condition, it is shown in [12] that for any fractal A, the
Hausdorff dimension of the fractal A is equal to s, where

a∑
i=1

csi = 1, (2.9)

where ci is the contraction factor of fi and the parameter a is the number
of self-similar copies composing the fractal [12]. We mostly focus on fractals
where all the scaling factors are the same. For such a fractal A, it holds that

number of copies = (scaling factor)−dimHA, (2.10)

where the number of copies in question is the amount of self-copies compos-
ing the fractal. Now, the Hausdorff dimension of the fractal A can be given
explicitly as

dimH(A) = − log number of copies

log scaling factor
. (2.11)

Unless stated otherwise, the fractals considered in this thesis have their
Iterated Function Systems defined with the same contraction factors per
fractal.

2.2 Notation

Throughout this thesis, the symbols O, Ω, and Θ are used. They mean the
following.

Definition 6. If there exist constants c, N ∈ R and a function g such that
∀n > N | f(n) < cg(n), then f(n) = O(g(n)). In other words, f is said to
be upper-bounded by g.

Definition 7. If there exist constants c, N ∈ R and a function g such that
∀n > N | cg(n) < f(n), then f(n) = Ω(g(n)). In other words, f is said to
be lower-bounded by g.

Definition 8. If there exist constants c1, c2, N ∈ R and a function g such
that ∀n > N | c1g(n) < f(n) < c2g(n), then f(n) = Θ(g(n)). In other
words, f is both upper- and lower-bounded by g.

We also use [·] to indicate the rounded value of ·. We use ⌈·⌉ and ⌊·⌋ to
indicate the rounded up and rounded down value of · respectively.

2.3 Divide-and-conquer algorithms

Divide-and-conquer algorithms are algorithms that invoke themselves recur-
sively on parts of the original input [2, p.76]. For algorithms where the parts

10

of the original input are of the same size, they must adhere to the template
shown in Algorithm 1:

Algorithm 1 Divide-and-Conquer
Data: A of size n
Check whether A is sufficiently small to apply a base case. If so, apply an
action of complexity O(1).

For every i = 1, 2, ..., a do:
Invoke this algorithm on a part of A that is of size n

b .

Perform an action on A of complexity f(n).

Unless stated otherwise, we consider divide-and-conquer algorithms fol-
lowing the template in Algorithm 3. Throughout this thesis, we use the
variable a to describe the number of recursive calls of any divide-and-
conquer algorithm that is invoked in an algorithmic call. Each of those
calls is invoked on input of size scaled by the variable 1

b as compared to the
original input. Throughout this thesis, f(n) describes the complexity of all
actions performed in a call of an algorithm to which input of size n was
passed, that themselves are not recursive invocations of the algorithm. The
parameter n always refers to the size of the input passed to a first call of
any divide-and-conquer algorithm.

Here, we also introduce the notion of depth of a divide-and-conquer algo-
rithm.

Definition 9. Let the ratio of the size of the input to the immediate recursive
call be b. A recursive call is said to be of depth k if the divide-and-conquer
algorithm was called on input of size n, and the recursive call is called on
input of size n

bk
.

2.3.1 Examples

Examples of divide-and-conquer algorithms are Binary Search [13, p.132-
134], Merge Sort [13, p.120-122], and Strassen’s Matrix Multiplication algo-
rithm [14].

2.3.2 Complexity of divide-and-conquer algorithms

From the above template for divide-and-conquer algorithms, we deduce that
the complexity function is given recursively by

T (n) = aT
(n
b

)
+ f(n). (2.12)

11

This is because T (n) gives the time it takes for the algorithm to process
input of size n, and we see that such a call is comprised of other a calls on
input of size n

b , plus the non-recursive part that takes f(n) time.

For relatively simple relations, one can continue replacing the T
(
n
b

)
factor

recursively to see what the pattern for that particular relation is. However,
the Master Theorem defined in Theorem 1 allows one, under certain condi-
tions, to deduce the complexity of such algorithms much more efficiently.

2.3.3 Master Theorem

This theorem states the bounds of the above recurrence relations for divide-
and-conquer algorithms [2, p.112].

Theorem 1. Let a ≥ 1, b > 1. Then T (n) has the following bounds:

1. If f(n) = O(nlogb a−ϵ) for some ϵ > 0, then T (n) = Θ(nlogb a).

2. If f(n) = Θ(nlogba logk n), then T (n) = Θ(nlogb a logk+1 n). This thesis
only considers the k = 0 case.

3. If f(n) = Ω(nlogb a+ϵ) for some ϵ > 0, and af
(
n
b

)
≤ cf(n) for some

c < 1 and sufficiently large n, then T (n) = Θ(f(n)).

Throughout this thesis any references to the Master Theorem pertain exclu-
sively to these three cases. Other cases are possible, as seen in [1].

2.3.4 Inadmissibility to the Master Theorem

There are inadmissible cases to the Master Theorem. Among others, they
include the following constraints.

1. The variable a must be a constant, hence a growing number of sub-
problems is not covered.

2. The ϵ constants in the theorem state that there must be a polynomial
difference between f(n) and nlogb a. Hence examples where it is not the
case are inadmissible.

3. The time of computation must be positive, hence f(n) > 0.

4. One should also notice that f should reflect the fact that computation
of a divide-and-conquer algorithm must always be faster for smaller
inputs. Hence examples where it is violated, for instance f(n) = 1

n ,
are inadmissible.

The Master Theorem is further investigated in Chapter 4.

12

Chapter 3

Measure of fractals

In this chapter, we discuss ways of describing how much space a fractal
occupies.

3.1 Lebesgue Measure

Consider the Sierpinski Triangle. Let the area of its fractal basis be a0. The
first fractal approximation’s area is of value 3

4a0. In general, to find the area
value ak of the k-th fractal approximation of the Sierpinski Triangle, we use
the equation

ak =

(
3

4

)k

a0. (3.1)

The area of the Sierpinski Triangle is therefore 0. In this approach, we im-
plicitly used Lebesgue measure. Definiton 10 gives the definition of Lebesgue
measure taken from [17].

Definition 10. Given a set Y of finite size containing integers and an open
set S =

⋃
k∈Y (ak, bk), its Lebesgue measure is defined by µ(S) =

∑
k∈Y (bk−

ak). For any closed set S′ = [a, b] −
⋃

k∈Y (ak, bk), its Lebesgue measure is
given by µ(S) = b− a−

∑
k∈Y (bk − ak).

Each approximation of the Sierpinski Triangle is defined as a sum of dis-
joint intervals. The lengths of those intervals are getting smaller for every
approximation. For the fractal itself, the lengths are 0, hence the Lebesgue
measure of this fractal is 0. This is to be expected, as this Lebesgue measure
is taken implicitly in dimension 2, but the fractal itself is of dimension log2 3,
which is lower. With this example we see that using Lebesgue measure is
generally not a meaningful descriptor of how much space a fractal occupies.

13

3.2 Hausdorff Measure

The D-dimensional Hausdorff measure describes how a D-dimensional ob-
ject fits in space. For self-similar fractals F∞(X) of dimension D that we
consider, the D-dimensional Hausdorff measure is always positive and finite.
In other words,

0 < M < ∞, (3.2)

where M = HD(F∞(X)).

Because of the imposed Open Set Condition given in Equation 2.7, our
fractals are contained within some space that is not stretched infinitely in
any direction. This already shows that our D-dimensional fractals cannot
have infinite D-dimensional Hausdorff measures.

To show the strict positivity of the D-dimensional Hausdorff measures of
any considered fractal of dimension D, we note the following. Each of those
fractals is constructed by an Iterated Function System applied infinitely
many times onto a non-empty set of points. Hence any such fractal is
non-empty. By the Open Set Condition, there must exist in our fractal a
point with neighbourhood of positive radius such that this neighbourhood is
contained within this fractal. Hence the diameter of this fractal, which is the
largest distance between any two points within this fractal, must be positive.

From there, it follows that the Hausdorff measure must be positive and
finite. The D-dimensional Hausdorff measure of an object is the smallest
element of the set of the sums of the diameters raised to the power of D of
some coverings of this set as the diameters of those coverings approach 0.
This is by definition of the Hausdorff measure. The diameters are positive
and finite by the property of self-similarity. We can cover our fractal with
its self-similar copies. We always obtain a positive and finite D-dimensional
Hausdorff measure if this D matches the dimension of our fractal.

From this, we can derive Equation 2.9. The D-dimensional Hausdorff mea-
sure of a D-dimensional fractal is the sum of the D-dimensional Hausdorff
measures of its a copies, which are scaled versions of the original fractal.
With ci being the contractivity factors, we obtain

M = McD1 +McD2 + ...+McDa =⇒
a∑

i=1

cDi = 1. (3.3)

It might be the case that the Hausdorff measure of a shape is unknown
even if its Hausdorff dimension is known. This is the case for the Sierpinski
Triangle, where currently only an interval of values containing the measure
of the Triangle is known [11].

14

Chapter 4

Master Theorem

In this chapter, we give an explanation of the Master Theorem as well as its
proof, and show a generalized version of the Master Theorem.

4.1 Explanation of the Master theorem

We give an explanation of the Master Theorem given in Section 2.3.3. In
Section 4.1 we observe that the obtained asymptotic times include the term
nlogb a, which is asymptotically the same as the logb a-dimensional Hausdorff
measure of any self-similar fractal composed of a copies of itself scaled by 1

b .

4.1.1 First case of the Master Theorem

The condition for applying the first case is a polynomial difference between
f(n) and nlogb a such that f(n) must be the smaller function, that is to say,

lim
n→∞

f(n)

nlogb a
= 0. (4.1)

Because any divide-and-conquer algorithm calls itself recursively finitely
many times, one will obtain a finite sum with terms each smaller than nlogb a,
plus nlogb aT (1) by expanding Equation 2.12. This is why this yields

T (n) = Θ(nlogb a). (4.2)

It should also be noted that the greatest value of f(n), f
(
n
b

)
, ... is f(n)

as per Section 2.3.4, hence it makes sense to compare the number of base
cases to f(n). The term determining the complexity here can either be the
number of base cases or f(n), and since in this case it is the number of
base cases that grows faster than f(n), the complexity is dependent only on
nlogb a.

15

4.1.2 Second case of the Master Theorem

The penultimate case concerns f that are polynomially the same as nlogb a.
This means that

0 < lim
n→∞

f(n)

nlogb a
< ∞. (4.3)

If it is so, then we apply the following reasoning. We can sum up all the f
occurring in the recurrence-representing tree. Since the height of the tree
is logarithmic, nlogb a must be multiplied by the logarithm. Moreover, f(n)
being proportional to the number of base cases means that it is the sum of
all the terms that determines the complexity, and hence T (n) is described
by a growing function dependent on the number of base cases. Thus it gives

T (n) = Θ(nlogb a log n). (4.4)

4.1.3 Third case of the Master Theorem

This case concerns functions f that are polynomially greater than nlogb a,
meaning

lim
n→∞

f(n)

nlogb a
= ∞. (4.5)

If that is the case, one obtains a finite sum with terms greater than nlogb a,
one of which will be f(n), plus nlogb a itself. Hence the f(n) term will
dominate and thus

T (n) = Θ(f(n)) (4.6)

in such cases. Moreover, since nlogb a is the number of base cases, it means
that all the base cases together are still less significant than f(n), and hence
f determines the complexity in such cases.

4.1.4 Proof of the Master Theorem

Let f(n) be bounded by Θ(Cnd) for some d, C. Then

T (n) = aT
(n
b

)
+ Cnd

= a

(
aT
(n

b2

)
+ C

(n
b

)d)
+ Cnd

= a2T
(n

b2

)
+ Cnd

(
1 +

a

bd

)
= a3T

(n

b3

)
+ Cnd

(
1 +

a

bd
+
(a

bd

)2)
...

= akT
(n

bk

)
+ Cnd

(
1 +

a

bd
+ ...+

(a

bd

)k−1
)
.

(4.7)

16

Now, one can see that the value of this expression depends on what value a
assumes. Setting k = logb n, we obtain

T (n) = alogbnT (1) +

Θ(nd) if a < bd,

Θ(nd log n) if a = bd,

Θ(f(n) if a > bd.

(4.8)

which completes the proof. Setting k = logb n is justified because n
bk

is 1 at
this k, thus indicating a base case in which the algorithm will cease calling
itself recursively. It should be noted that taking f to be bounded by a mono-
mial is allowed because the Master Theorem case distinction is only made
on the basis of polynomial differences as described in Sections 4.1.1, 4.1.2,
and 4.1.3. For general f , one should choose a case depending on the value
of the limit of the ratio of f to nlogb a, just as described in those respective
Sections.

Impact of rounding

It should be noted that the Master Theorem is proven by comparing f
to monomials, as seen in Section 4.1.4. That is to say, to Cnd for some

constants C, d. One should notice that either C[nb]
d = C

⌊
n
b

⌋d
or

C
[n
b

]d
= C

(⌊n
b

⌋
+O(1)

)d
= C

⌊n
b

⌋d
+O

(⌊n
b

⌋d−1
)

= O

(⌊n
b

⌋d) (4.9)

by the well-known binomial theorem [7, p.380]. Hence the rounding of the
sizes of subproblems does not impact the complexity of divide-and-conquer
algorithms.

17

Chapter 5

Construction

Settling for certain choices in interpretation, such as ascribing meaning to
the function representing the time of work done in each call of a divide-
and-conquer algorithm that itself is not an invocation of the algorithm, we
will give, using fractals, a geometrical visualization of divide-and-conquer
algorithms. Our visualisations are computer animations.

5.1 Parameters to visualise

Divide-and-conquer algorithms are defined by multiple parameters. There
is the number of subproblems in a call, which we call a. Data of different
sizes is passed to each of those calls. The data passed to the first algorithm
call is said to be of size n. The ratio of the size of the input of a call to
the size of the input to the immediate recursive call is b, the reciprocal of
which is another parameter to visualise. The computation time of the work
done in all subproblems of the same depth that are not recursive algorithm
invocations also needs to be visualised. We proceed to give a visualisation
that incorporates all of the above.

5.2 Outline of the approach

To visualise any divide-and-conquer algorithm, we first note that for
computer visualisations, there is the process of animating, and the final
result of such an animation. We first tackle visualising the parameters
a, 1

b , n. Because our approach is to give a visualisation, we can choose our
animation times. The time of the entire animation per algorithm, as well
as the intermediate animations that all constitute the entire animation, are
chosen such that the animation time corresponds to the computation time
of the associated algorithm.

18

For the purposes of constructing our animations, we introduce the notion of
fractal bases and fractal approximations.

Definition 11. A fractal basis is said to be a set of points to which no rule
to transform it into a fractal was applied. We call this X.

Definition 12. The k-th fractal approximation is a fractal basis onto which
an Iterated Function System F was applied k number of times. We denote
this as Fk(X).

Our computer animations start with a fractal basis that is then approxi-
mated into a fractal. Our animations show the fractal basis X, then F(X),
then F2(X), and so on. Our animations include intermediate animations
transforming one approximation into the next one. The choice of animation
effects is arbitrary and is not covered by this thesis. Going from one fractal
approximation to the next takes time, which we set in Section 5.4. How
closely we are able to approximate any fractal depends on the constraints
explained in Section 5.8.

5.3 Visualisation of the parameters n, a, 1
b

In a single algorithmic call, there are a invocations of the same divide-
and-conquer algorithm that are of the next depth. The data passed to the
original call is of size n. The size of the data passed to the recursive calls is
scaled by 1

b . In this section, we link these numbers to our visualisations.

5.3.1 Input size

In Definition 11, we defined X as a set of points. To construct our anima-
tions, we choose X to be a geometric figure of equal side lengths. We give
an analog of the input size of an algorithm as the length of a side of a fractal
basis. This fractal basis is the starting point of our animations.

5.3.2 Recursive calls

The analog of a recursive call of a divide-and-conquer algorithm shall be a
self-similar copy that composes the associated fractal. The analog of the
number of recursive calls of an algorithm shall be the number of self-similar
copies composing the associated fractal. In line with Equation 2.2, this
means that the Iterated Function System defining that fractal, such that
infinite application of this iterated function system on a fractal basis gives
that fractal, is given by

F(X) =
a⋃

i=1

fi(X). (5.1)

19

Existence

For any positive integer a, an iterated function system of mutually disjoint
contractions as given in Equation 5.1 must, if applied infinitely many times
onto a fractal basis, yield a fractal as explained in Section 2.1.3.

5.3.3 Size of subproblems

We portray the size of the subproblems of depth k of a divide-and-conquer
algorithm as the length of the sides of the scaled fractal bases composing
the k-th fractal approximation Fk(X). We therefore give the contractivity
factor ci of the contraction fi as

ci =
1

b
(5.2)

for all fi in Equation 5.1. This means that, for any fractal basis X, Fk(X)
is composed of ak mutually disjoint scaled fractal bases, the sides of which
are of length n

bk
.

5.4 Visualisation of the term f

The term f(n) denotes the time of the computation it takes in an algorithm
call with input size n to combine the results of the subproblems. We give
an analog to this in the form of the transformation time it takes for a set of
points to transform, in a computer animation, into a closer approximation
of a fractal. In this thesis, we operate on the assumption of the unit of time
being the same for both the animations and the corresponding algorithms.
From Definition 12, we can define the notion of transformations.

Definition 13. Transformation is the process of applying F onto a fractal
approximation.

With this in mind, we proceed to define transformation time for the purpose
of utilizing it in our computer animations.

Definition 14. The transformation time of a fractal approximation is the
time it takes in a computer animation to transform this fractal approxima-
tion into the next fractal approximation.

In other words, in the computer animation used to portray a divide-and-
conquer algorithm we have intermediate animations that start at a fractal
approximation and result in the next one. Each of those takes some anima-
tion time, which we choose in Section 5.4.1.

20

5.4.1 Time

We give an analog of f in the form of transformation time that depends on
the depth of a recursive call as outlined in Definition 9.

Recall that any divide-and-conquer algorithm’s time to process input of size
n is given by Equation 2.12. Expanding it, we obtain

T (n) = alogb nT (1) +

logb n−1∑
i=0

aif
(n
bi

)
= O

logb n∑
i=0

aif
(n
bi

) . (5.3)

We give an analog of f in the form of transformation time. For a fractal
approximation Fk(X), its transformation time shall be akf

(
n
bk

)
. This way,

the transformation time of a k-th fractal approximation Fk(X) corresponds
to combining the results of ak subproblems of depth k.

5.4.2 Overall complexity

Because our approach associates transformation times with the terms of the
sum in Equation 5.3, and because a computer animations consist of fractal
approximations with animations that take akf

(
n
bk

)
time to transform Fk(X)

into Fk+1(X), we see that the asymptotic time it takes for a computer an-
imation representing a divide-and-conquer algorithm to run is the same as
the asymptotic time it takes for this algorithm to run. This is subject to
the constraint described in Section 5.8.3. Moreover, the Master Theorem, as
outlined in Section 2.3.3, gives the asymptotic time it takes to run the com-
puter animation. This is because the Master Theorem gives the asymptotic
time it takes to run the visualised algorithm, and this visualisation now has
the same asymptotic running time.

5.5 Final animation product

Our computer animations consist of fractal approximations. Under our as-
sumptions, such as the existence of an Iterated Function System generating
that fractal, this fractal must always exist. By Equation 2.9, the fractal
F∞(X) that is approximated is of Hausdorff dimension

dimH(F∞(X)) = logb a. (5.4)

We note, also, that under our requirements, there are infinitely many frac-
tals that can be approximated such that the animation still corresponds
to the same divide-and-conquer algorithm. This is a feature of our design.
This is because the fractal self-similar copies can always be arranged in dif-
ferent ways. For example, a fractal might consist of its self-similar copies

21

stack on top of each other, or such copies placed horizontally. Also, the
fractal self-similar copies do not have to stick to each other, they can be
further apart. This leaves room under our approach for visualising divide-
and-conquer algorithms in many ways while still adhering to the presented
method.

5.6 Correctness

We outlined our requirements in Section 5.1. Of all of the listed parame-
ters, we succeeded in visualising them. Divide-and-conquer algorithms can
be represented with fractals such that their bases have sides that are of the
same length as the size of the input for the algorithm. We see that frac-
tals defined with Iterated Function Systems of a contractions correspond
to algorithms where there are a recursive calls per call. We see that in
divide-and-conquer algorithms where input size is scaled by 1

b before being
passed onto the immediate recursive call, the parameter 1

b corresponds to
the contractivity factors of the contractions composing the Iterated Func-
tion System that generates the associated fractal. By introducing the notion
of transformation time in computer animations, we succeeded in visualising
the asymptotic time of combining the results of subproblems of depth k as
the transformation time of the k-th fractal approximation Fk(X). We gave
a visualisation of divide-and-conquer algorithms that inform the user of the
parameters n, a, 1

b , and f .

5.7 Argumentation for choices

In this section, we give reasons for the visualisation choices we made.

5.7.1 Association of parameter n

We chose to associate the size of the original input with the length of the
sides of fractal bases. This is design choice. We could have decided that for
fractals the bases of which are D-dimensional, the D-dimensional measures
of those bases would have to be n. This would have entailed changing our
approach to the contractivity factors.

5.7.2 Association of parameter a

We chose to associate the number of recursive calls invoked within a single
algorithmic call with the number of the self-similar fractal copies compos-
ing the fractal that is approximated within our computer animations. The
reason for this is the structure of divide-and-conquer algorithms. Each call,
apart from the computation that is not recursive algorithm invocation, is
necessarily composed of algorithmic calls of the same structure. Self-similar

22

fractals have the same structure. By choosing to associate the parameter a
with the number of self-similar fractal copies composing it, we reflect in our
visualisations the structure of the associated divide-and-conquer algorithms
correctly.

5.7.3 Association of parameter 1
b

We chose to associate the number that scales the input size before this input
is passed to a recursive call of incremented depth, the parameter 1

b , with the
contractivity factors of the contractions composing the Iterated Function
System that yields the associated fractal. We chose the self-similar copies of
a fractal to represent recursive algorithmic calls. We chose the side lengths of
the fractal basis of the fractal representing a divide-and-conquer algorithm
of input size n, to also be of the value n. We observe that by choosing
the contractivity factors for our computer animations to be 1

b , we ensure
that the self-similar fractal copies represent not only the same algorithmic
structure, but also provide information on the size of the input passed to
the represented algorithmic calls.

5.7.4 Association of computation time

We chose to associate the time of computation that is not itself recursive
algorithmic invocation, with transformation times. Specifically, we chose
the transformation time of the k-th fractal approximation to be akf

(
n
bk

)
.

By doing so, we made it possible to infer from the computer visualisations
what the time of combining the results of subproblems of depth k is. Note
that we defined fractal approximations to be the results of repeated, fi-
nite applications of Iterated Function Systems on fractal bases. Our fractal
approximations, therefore, will never be composed of figures that are frac-
tal bases to which contractions were applied a different number of times,
which would have symbolised processing some algorithmic calls before oth-
ers. While this would have better reflected the actual order of algorithmic
calls, we instead decided to omit this, as visualising the order of calls is
not a goal given in Section 5.1. Within the constraint of working with only
repeated applications of the entire Iterated Function Systems, we chose our
transformation times well, as it now provides information on what the time
of combining the results of subproblems of depth k is.

5.7.5 Other possibilites

This section makes it clear that there could have been other choices taken
to visualise divide-and-conquer algorithms. To list a few other possibilities,
we note that we could have chosen the parameter n to be represented by
the D-measure of D-dimensional fractal bases. If we decided to have the
fractal bases of the self-similar fractal copies to also have this property, we

23

would have had to change the contractivity factors to b−
1
D . We could have

decided the transformation times to be the same as the space complexity
required for all depth k subproblems instead. We could have decided to have
non-recursive computation correspond to the angles by which fractal copies
would have been rotated. We could have experimented with geometric fig-
ures composed of sets of points to which different contractions were applied
a different amount of times. All of this leaves no doubt that what we pre-
sented is a possible approach out of many to visualising divide-and-conquer
algorithms. This subsection provides ideas on possible future work.

5.8 Constraints

We notice that our computer animations are subject to the following con-
straints.

5.8.1 Rounding

There are Iterated Function Systems with contractions defined with
numbers that have infinite decimal expansions. An example of this is the
Sierpinski Triangle of side length 1. To construct it, we start with an
equilateral triangle. Let it leftmost tip be at the point (0, 0). It follows that
its rightmost tip is at the point (1, 0). The middle point between those two
is the point

(
1
2 , 0
)
. The points (1, 0) and

(
1
2 , 0
)
are where two of the tips of

one of the self-similar copies of the final fractal are. Because the bases of
those copies are equilateral triangles as well, it follows that the third tip of

the leftmost self-similar copy is
(
1
4 ,

√
3
4

)
.

What this tells us is that what follows scaling the fractal basis by 1
2 is

shifting the coefficients of the newly acquired set such that the components
of the new fractal approximation are at the right place. For the Triangle,
each point constituting the scaled fractal basis must be shifted by 1

2 to
the right to obtain the second of the three components of the first fractal
approximation. To obtain the last component, we shift the points of the first

scaled copy by 1
4 to the right and up by

√
3
4 . Hence, the Iterated Function

System for the Triangle is the union of the contractions f1, f2, f3 given by

f1(x) =

[
1
2 0

0 1
2

]
x, (5.5)

f2(x) =

[
1
2 0

0 1
2

]
x+

[
1
2

0

]
, (5.6)

f3(x) =

[
1
2 0

0 1
2

]
x+

[
1
4√
3
4

]
. (5.7)

24

From this, we see that to get the exact position of some points, we have to
tackle numbers with infinite decimal expansions. For fractal approximations
generated with software, this necessitates rounding of the coordinates. This
means that for some fractal approximations, the scaled fractal bases com-
posing the approximations will not match the exact positions of their ideal
counterparts. Designing representations of divide-and-conquer algorithms
requires making sure that there is no overlap between the scaled fractal
bases due to rounding.

5.8.2 Graphical constraint

Our computer animations approximate a fractal. Due to limitations of com-
puters, we cannot show infinite approximation. Hence, we have to decide at
what fractal approximation we could stop. There are multiple approaches
available.

Bound on transformation time

For the cases where the transformation time is different for each fractal
approximation, we can set a value such that if the transformation time is
less than that value or exceeds that value, the computer animation would
stop.

Bound on ⌈D⌉-dimensional measure

In a computer animation, one will inevitably work with integer-valued di-
mensions. Spaces of non-integer dimensions are impossible to visualise. As
shown in Section 3.1, fractals of any non-integer dimension, sayD, have their
⌈D⌉-dimensional measure equal to 0. This means that the ⌈D⌉-dimensional
measure of the respective fractal approximations tends to 0. One can, there-
fore, choose a value for such cases such that if the ⌈D⌉-dimensional measure
of a fractal approximation is smaller than that value, the computer ani-
mation stops. For example, we can choose an algorithm with 3 recursive
invocations of itself at input scaled by 1

2 , with original input of size 16, to
be visualised with animations approximating the Sierpinski Triangle. The

area of the k-th fractal approximation is then
(
3
4

)k
64
√
3. We can decide

to stop when the area of a fractal approximation is below 1. Then, we see
that the area of F17(X) is the first fractal approximation that satisfies this,

because the area decreases, the area of F16(X) is 43046721
√
3

67108864 , and the area

of F17(X) is 129140163
√
3

268435456 . We would then stop our computer animation at
this approximation.

25

5.8.3 Transformation time constraint

The value akf
(
n
bk

)
is the transformation time of Fk(X). We want our com-

puter animations to have the same asymptotic running time as that of the
algorithms they visualise. We see therefore that depending on the param-
eters a, 1

b and f , we may have to stop at a specific fractal approximation.
Taking Equation 4.7 for two different k and evaluating the difference of
those, we see that this difference is bounded by a constant if

∞∑
k=0

akf
(n

bk

)
< ∞. (5.8)

This means that if Equation 5.8 holds, we can stop at any fractal approxima-
tion, save for the fractal basis itself, to achieve the same asymptotic running
time of our animations as that of the associated algorithms. If Equation 5.8
does not hold, we have to stop at the logb n-th fractal approximation to have
the same asymptotic running time. To see this, consider an algorithm with
the recurrence relation T (n) = T

(
n
b

)
+ f(n) such that

f(n) =
1

1 + ln
(
1 + 1

n

) . (5.9)

It should be noted that this function is a proper example as it does not vio-
late any requirement of being admissible to the Master Theorem as outlined
in Section 2.3.4.

∞∑
k=0

f
(n

bk

)
=

∞∑
k=0

1

1− lnn+ ln(n+ bk)

≥
∞∑
k=0

1

1− lnn+ ln((n+ 1)bk)

=

∞∑
k=0

1

1− lnn+ ln(n+ 1) + k ln b
.

(5.10)

The last sum in Equation 5.10 is a shifted harmonic series, which is well
known to diverge [7, p.345]. Provided Equation 5.8 holds, we obtain

O(T (n)) = O

alogb nT (1) +

logb n−1∑
i=0

aif
(n
bi

) = O

(∞∑
i=0

aif
(n
bi

))
(5.11)

and as such, we are free in our computer animation to approximate the
fractal beyond the first logb n approximations.

26

5.9 Example of animation-algorithm relation

To show an example of a fractal-algorithm relation, we present Strassen’s
multiplication algorithm in Algorithm 2. Strassen described this approach
to matrix multiplication in [14].

Algorithm 2 Strassen’s Multiplication of Matrices
Data: square matrices A and B with n elements each

Check whether A and B are sufficiently small to perform a base case action.
If so, perform this base case action and return.

Split matrix A into matrices A11, A12, A21, A22.
Split matrix B into matrices B11, B12, B21, B22.

Let P1 = Strassen(A11 +A22, B11 +B22).
Let P2 = Strassen(A21 +A22, B11).
Let P3 = Strassen(A11, B12 −B22).
Let P4 = Strassen(A22, B21 −B11).
Let P5 = Strassen(A11 +A12, B22).
Let P6 = Strassen(A21 −A11, B11 +B12).
Let P7 = Strassen(A12 −A22, B21 +B22).

Calculate auxiliary matrices as sums of P1, ..., P7, combine them and
return the result.

The algorithm follows the recursive relation

T (n) = 7T
(n
4

)
+ f(n), (5.12)

where f(n) = O(n) is the complexity of calculating the auxiliary matrices
and combining them. Here, the parameter a is 7, and the parameter 1

b
is 1

4 . Hence, this algorithm can be visualised with a computer animation
approximating a fractal made of 7 self-similar copies, each scaled by 1

4 .
Figure 5.1 shows stages of our computer animation. We first start with a
square of side lengths n, which is our fractal basis X. We then start our
animation. At first, the first fractal approximation F(X) is arrived at in n
time. Then, F2(X) is arrived at in 7

4n time. We continue approximating the
fractal until the log4 n-th approximation, in line with constraint described
in Section 5.8.3. The entire process runs for Θ(nlog4 7) time, which is the
same time as it takes for Algorithm 2 to run.

27

X

F(X)

F2(X)

F3(X)

F4(X)

F5(X)

Figure 5.1: First 6 approximations of a fractal composed of 7 self-similar
copies scaled by 1

4 .

28

Chapter 6

Algorithms with different
scaling factors

In this chapter, we tackle algorithms following the template in Algorithm 3.

Algorithm 3 Extended divide-and-conquer
Data: A of size n
Check whether A is sufficiently small to apply a base case. If so, apply an
action of complexity O(1).

For every i = 1, 2, ..., a do:
Invoke this algorithm on a part of A that is of size nri.

Perform an action on A of complexity f(n).

Algorithms following the template presented in Algorithm 3 have their re-
currence relations defined as Equation 6.1.

T (n) = T (nr1) + T (nr2) + ...+ T (nra) + f(n). (6.1)

6.1 Generalized Master Theorem

As mentioned in Section 2.1.5, fractals may be composed of self-copies scaled
by different factors. If a fractal is composed of a copies of itself, each scaled
by the factors r1, r2, ..., ra, then its Hausdorff dimension d is the solution to
the equation

rd1 + rd2 + ...+ rda = 1 (6.2)

as explained in Section 2.1.5. If all the contractivity ratios are 1
b , this

dimension d is given by d = logb a.

29

In this section, we derive a Master theorem for divide-and-conquer al-
gorithms the recurrence relations of which adhere to the template in
Equation 6.1. We make use of comparing the function f(n) to a monomial
of the same degree as the dimension in Equation 6.2.

Take f(n) to be bounded by Θ(Cnd) for some d, C. Then

T (n) = Cnd

1 +
N∑
i=1

rdi +
N∑
j=1

N∑
i=1

rdj r
d
i + ...+

N∑
ik=1

...
N∑

i1=1

rdik ...r
d
i1

+

N∑
ik+1=1

...
N∑

i1=1

T (nrik+1
...ri1).

(6.3)

We set k to be bounded by O(log n). This is justified as the number of
recursive algorithmic calls grows exponentially in the depth of any divide-
and-conquer algorithm, and thus its depth must be bounded by a logarithm.
Now, one can deduce the complexity just like for the standard Master The-
orem.

T (n) =

Θ(nd) if D < d,

Θ(nD log n) if D = d,

Θ(nD) if D > d.

(6.4)

6.2 Calls on input of differing size

We observe that under our approach to visualising divide-and-conquer algo-
rithms, algorithms presented in Algorithm 3 can also be visualised with our
animations. We argued in Section 5.3.2 that the number of self-similar copies
can be made to correspond to the number of self-similar copies composing
the corresponding fractal. This is the case also for algorithms presented in
this section. One difference is that in Equation 5.1, the contractions fi, fj
have different contractivity factors ci, cj , i ̸= j such that

ci ̸= cj (6.5)

for some i, j. Specifically, those contractivity factors must be equal to
r1, r2, ... ra respectively, as those are the numbers by which input size is
scaled in Equation 6.1. As a result, the final product of our visualisations will
be a figure approximating a fractal the parts of which are self-similar copies
of itself, except scaled by differing factors. The approximations approach a
fractal of dimension s, where rs1+ ...+rsa = 1 as per Equation 2.9. Moreover,

30

we can expand Equation 6.1 to obtain

T (n) =
k∑

t=1

(
a∑

it=1

...
a∑

i1=1

f(nri1 ...rit)

)

+
a∑

ik+1=1

...
a∑

i1=1

T (nri1 ...rik+1
).

(6.6)

We see therefore that the time of combining the results of subproblems
of depth k is given by

∑a
i1=1 ...

∑a
ik=1 f(nri1 ...rik). We see that we can

associate the transformation time of the k-th fractal approximation Fk(X)
with

∑a
i1=1 ...

∑a
ik=1 f(nri1 ...rik) for all k to achieve the same transformation

time of the k-th approximation as it takes for the algorithm to combine the
results of all subproblems of depth k. In Section 6.1, we derive a generalized
Master theorem for algorithms that follow the template in Algorithm 3. We
observe that with our choice transformation of times, such animations run
for the same time, asymptotically, as the corresponding divide-and-conquer
algorithms. This is subject to the constraint that

∞∑
k=0

 a∑
i1=1

...
a∑

ik=1

f(nri1 ...rik)

 < ∞, (6.7)

which is analogous to the constraint outlined in Section 5.8. If not satisfied,
we have to stop at a fractal approximation such that the last transformation
time determined the asymptotic time of our computer animation to be the
same as that of the associated algorithm. This is because any transformation
time after that would change the asymptotic running time of our animation.
Overall, we see that fractals are well-suited for representing also those divide-
and-conquer algorithms that follow the template outlined in Algorithm 3.

31

Chapter 7

Related Work

This thesis presents an approach to visualising divide-and-conquer algo-
rithms. This is one of many possible ways of doing so. There are more,
the validity of which is dependent on what goals we assume. We see
that, for example, we could have forgone of introducing animations and
represent the function f(n) with a single image, just like Simant Dube
did in [6]. Within the animation approach, we could have associated the
transformation times of fractal approximations with different values. For
example, we could have chosen akf

(
n
bk

)
to indicate the amount of memory

a divide-and-conquer algorithm requires to process the subproblems. There
are many other possibilities, such as, if deciding f to nonetheless represent
the time to combine the results of subproblems, making only the overall
asymptotic time of our animations be the same as that of the corresponding
algorithm, thus disregarding what exactly the intermediate transformation
times would be. This by itself shows that there are many approaches to
visualising divide-and-conquer algorithms. We see that this thesis succeeds
in showing one of those.

We used Iterated Function Systems to give a precise definition of the
fractals we worked with. Iterated Function Systems are useful also in the
cases of tackling possible relations of fractals to other topics of computing
science. For example, the question of whether a fractal generated by an
Iterated Function System intersects a diagonal line segment is undecidable
[4]. In essence, fractals are infinitely complex and contain many details on
arbitrarily small scales, whereas computers can only approximate fractals.
Given any two points, one may require the final fractal, not approximations,
to see if said fractal crosses the points. We see that fractals are related to
the theory of computability as well, showing their many appearances in
computing science.

Fractals also show up in approximation theory. Given any real-valued func-

32

tion p, one can approximate its root x∞ with the formula

xn+1 = xn − p(xn)

p′(xn)
, (7.1)

which is known as Newton’s Method [18]. This is known to produce what is
known as Newton Fractals [18]. While Newton was unaware of the existence
of those fractals, such fractals are nonetheless named after him to underline
the fact of having been generated with the Newton approximation method.
The fractal that is generated depends on the function the root of which we
wish to approximate. The fractal itself then arises in the complex plane.

It should be noted that the generalized Master Theorem described in Sec-
tion 6.1 is a special case of the Akra-Bazzi method as detailed in [1]. There,
the authors accommodated all recursive relations of the form

T (n) = f(x) +
k∑

i=1

aiT (nbi + hi(n)) (7.2)

that have accompanying base cases and conditions. Crucially, a closer in-
spection of the relation between fractals and divide-and-conquer algorithms
allowed us to rediscover a part of the Akra-Bazzi method. The rediscovery
of a part of the Akra-Bazzi method testifies to the closeness of fractals and
divide-and-conquer algorithms.

As can be seen, fractals are connected to many subfields of computing sci-
ence. While this thesis focuses on the case of visualising divide-and-conquer
algorithms with fractals, we note that fractals also appear in other top-
ics of computing science, such as computability and approximation theory.
Further work may show more connections between fractals and computing
science.

33

Chapter 8

Conclusions

Fractals have been presented in this thesis alongside divide-and-conquer
algorithms. Prior to the research section, we went on to describe the neces-
sary knowledge relating to fractals, divide-and-conquer algorithms, and also
the Master Theorem for deducing the complexity of divide-and-conquer
algorithms. Once the basics were laid out, we went on to describe how
divide-and-conquer algorithms can be visualised with computer animations
approximating fractals.

We first argued that self-similar fractals can be used for visualising divide-
and-conquer algorithms. In the recurrence relation T (n) = aT

(
n
b

)
+ f(n)

corresponding to a divide-and-conquer algorithm, f(n) was associated with
transformation time of a shape into a shape of yet more advanced detail,
where an infinitude, under certain conditions, of consecutive transforma-
tions symbolize the work of the divide-and-conquer algorithm at hand. We
associated the number of self-similar copies composing fractals with the
number a, indicating the number of recursive calls per algporithm call. The
parameter 1

b was associated with the scaling factors of those fractal copies.
Establishing this relation allowed us to further deduce more correlations.
This includes the observation that the exponent logb a within the Master
Theorem is the Hausdorff dimension of an associated self-similar fractal.
The Master theorem itself was observed to give the same asymptotic
running time of our animations as the illustrated divide-and-conquer
algorithms. Furthermore, the logb a-dimensional measure of a fractal was
mentioned. It has been argued that fractals are well-suited for representing
divide-and-conquer algorithms.

Having noticed that the Hausdorff dimension applies also to fractals the
parts of which are scaled by differing factors, we went on to take another
look at the Master Theorem. We modified the Master Theorem. By
inductive reasoning, we expected the generalized Hausdorff dimension to

34

play a role in the generalized Master Theorem. This allowed us to discover a
Master theorem for divide-and-conquer algorithms that sub-call themselves
on data of different sizes within a single call. This result is proven.

This thesis makes it clear that fractals and divide-and-conquer algorithms
are related. To answer the research question of this thesis, ““How can
aspects of divide-and-conquer algorithms, including the number of recursive
calls, the scaling factor for inputs, the size of the original input as well
as the complexity of algorithmic operations, be visualised with fractals?”,
one can observe that this can be done by using computer animations with
transformation times the same as the time it takes to combine the results
of akf

(
n
bk

)
algorithmic subproblems, where such animations approximate

self-similar fractals composed of a copies of itself, each scaled by the factor
of 1

b . There are more possibilities.

35

Bibliography

[1] Mohamad A. Akra and Louay Bazzi. On the solution of linear recur-
rence equations. Computational Optimization and Applications, 10:195–
210, 1998.

[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction
to Algorithms, fourth edition. MIT Press, 2022.

[3] Marius-F. Danca and Michal Feckan. Mandelbrot set and Julia sets of
fractional order. page 2, 2022.

[4] Simant Dube. Undecidable problems in fractal geometry. Complex
Syst., 7:424, 1993.

[5] Simant Dube. Using fractal geometry for solving divide-and-conquer
recurrences. Journal of the Australian Mathematical Society, 1993.

[6] Simant Dube. Geometrical Interpretation of the Master Theorem for
Divide-and-conquer Recurrences. 2009.

[7] E.R. Fadell and A.G. Fadell. Calculus. University Series in Mathemat-
ics. Van Nostrand Reinhold Company, 1970. ISBN: 9780442023522.

[8] K. Falconer. Fractal Geometry: Mathematical Foundations and Appli-
cations, pages 123–126. 3rd edition, 2014.

[9] M. Fernández-Mart́ınez, J.L.G. Guirao, M.Á. Sánchez-Granero, and
J.E.T. Segovia. Fractal Dimension for Fractal Structures: With Ap-
plications to Finance, page 8. SEMA SIMAI Springer Series. Springer
International Publishing, 2019.

[10] Benoit Mandelbrot. Fractal Geometry of Nature. W.H Freeman and
Company, 1983. ISBN: 0-7167-1186-9.

[11] Péter Móra. Estimate of the Hausdorff measure of the Sierpinski trian-
gle. Fractals, 17:137–148, 2009.

[12] P.A.P. Moran. Additive functions of intervals and Hausdorff mea-
sure. Mathematical Proceedings of the Cambridge Philosophical Society,
42(1):15–23, 1946.

36

[13] S.S. Skiena. The Algorithm Design Manual. Springer London, 2009.
ISBN: 9781848000704.

[14] Volker Strassen. Gaussian elimination is not optimal. Numerische
Mathematik, 13:354–356, 1969.

[15] Serge Tabachnikov. Dragon Curves Revisited. The Mathematical Intel-
ligencer, 36, 02 2014.

[16] T. Vicsek. Fractal Growth Phenomena (2nd Edition), pages 9–11.
World Scientific Publishing Company, 1992. ISBN: 9789814506199.

[17] Eric W. Weisstein. Lebesgue Measure. From MathWorld—A Wolfram
Web Resource. Last visited on 2 June 2024.

[18] Figen Çilingir. Fractals Arising from Newton’s Method. AIP Confer-
ence Proceedings, 1470:142–147, 08 2012.

37

	Introduction
	Preliminaries
	Fractals
	Examples
	Affine and linear transformations
	Iterated Function Systems
	Fractal dimension
	Considered fractals

	Notation
	Divide-and-conquer algorithms
	Examples
	Complexity of divide-and-conquer algorithms
	Master Theorem
	Inadmissibility to the Master Theorem

	Measure of fractals
	Lebesgue Measure
	Hausdorff Measure

	Master Theorem
	Explanation of the Master theorem
	First case of the Master Theorem
	Second case of the Master Theorem
	Third case of the Master Theorem
	Proof of the Master Theorem

	Construction
	Parameters to visualise
	Outline of the approach
	Visualisation of the parameters n, a, 1b
	Input size
	Recursive calls
	Size of subproblems

	Visualisation of the term f
	Time
	Overall complexity

	Final animation product
	Correctness
	Argumentation for choices
	Association of parameter n
	Association of parameter a
	Association of parameter 1b
	Association of computation time
	Other possibilites

	Constraints
	Rounding
	Graphical constraint
	Transformation time constraint

	Example of animation-algorithm relation

	Algorithms with different scaling factors
	Generalized Master Theorem
	Calls on input of differing size

	Related Work
	Conclusions

