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Abstract

This thesis explores the energy overhead of computer language features
by measuring their energy consumption. The goal is to gain a better under-
standing of the energy dynamics in a programming language. The features
we have investigated are garbage collection, bounds checking, and dynamic
typing. To investigate this, we implemented these features in a set of nu-
meric code problems written in C and measured what costs they add in
terms of energy consumption and execution time. From our measurements,
we conclude that bounds checking has a minimal effect on these two factors
in numeric code problems. Garbage collection increases them, making them
up to twice as inefficient in such problems. Dynamic typing has the most
substantial impact among the three tested features, potentially increasing
energy consumption and execution time by up to 30 times. These findings
explain the performance gap between a number, but not all, programming
languages. Therefore, it is likely that other language features also play a
significant role in these languages. These other features and their impact
should be analysed further in future research.
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Chapter 1

Introduction

In the world of software development, the choice of programming language is
a crucial decision that companies, researchers, and developers have to make
when starting a new project. Beyond considerations like familiarity and
functionality, the efficiency of a language in terms of energy consumption is
increasingly important [15]. Especially, in a time when sustainability is a
growing concern in all parts of society. As a consequence, there has been a
growing body of research into the energy efficiency of various programming
languages [14].
An example of this is the study by Periera et al. [14]. It compares 27 pro-
gramming languages based on energy consumption, runtime, and memory
usage. By comparing these factors, the study offers an insight into their
relative efficiencies. Notably, the study categorizes languages by their ex-
ecution type: interpreted, virtual machine-based, or compiled. While this
categorization highlights important distinctions, it also raises the question
of whether other features impact a language’s performance.

Building on the foundation laid by Periera et al., this thesis aims to delve
deeper into the nuances of programming language efficiency by examining
additional features beyond execution type. Specifically, we investigate how
the factors memory management, typing system, and memory safety impact
energy consumption and runtime. For the category memory management,
we focus on the difference between garbage collection and explicit memory
management. For typing, we look at the difference between a static and
dynamic typing system. For memory safety, we compare automatic bounds
checking and no bounds checking.

To be able to analyze these different features, we implement or add them
to certain code examples. Then we compare these adapted programs to their
original version on energy consumption and execution time. The goal is to
see where the added energy costs, found in the research of Periera et al.,
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come from and to get a more comprehensive understanding of the energy
dynamics in a programming language.

We look at code in the language C. We choose this language because,
among the languages tested by Periera et al., only C and Rust allow for
the individual inclusion or exclusion of each feature. Many other languages
either already have one or more of them implemented, or do not allow users
to implement them, making it impossible to turn them off and on. Since this
study is inspired by the results of Periera et al., we use the code repository
they used to verify their studies, to implement and test the different features
on, namely the Rosetta Code repository (Section 3.1 has more information
on this repository). The code problems we take from there are all numerical
problems.

We start the research by looking into good practices for benchmarking
time and memory (Chapter 2). After that we specifically look into mea-
suring energy (Chapter 3). Next, we implement the bound checks, garbage
collection, and dynamic typing in the chosen programs (Chapter 5). Then
we run the code with and without these expansions and measure their energy
consumption and execution time (Chapter 4). We visualize the results using
tables and graphs (Chapter 6), followed by an analysis (Chapter 7). From
our results and analysis, we draw conclusions on what part of the language
has the biggest impact on the energy consumption of numerical programs
(Chapter 8).
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Chapter 2

Benchmarking execution
time

Benchmarking is an important part of this thesis. Benchmarking the execu-
tion time of programming languages has been extensively researched, part
of which we discuss in this chapter.
The research in this area can be divided into two main categories. The first
category consists of the optimal procedures for configuring the benchmark-
ing system and selecting the appropriate benchmark method. The second
encompasses studies that used these methods to benchmark one or more
programming languages on their time efficiency.

2.1 Designing good benchmarks

The first important aspect to consider when designing a benchmark is its rel-
evance [17]. Meaning, relevance of what is being benchmarked. It seems like
an obvious requirement, yet is often forgotten, resulting in wasted research
time. We deem the benchmarking of energy consumption of the features
bounds checking, garbage collection, and dynamic typing relevant for the
following reasons. Understanding these features can provide more or less
reason to include them in a language. It also sheds light on the energy con-
sumption of different programming languages.

Another aspect of increasing importance when designing good bench-
marks is the replicability of a study [1]. According to Beyer, Löwe, and
Wendler a conducted study is replicable, when another research team can
later obtain the same results under the same conditions by running the
benchmarks again. This means using the same hardware and software ver-
sions. For this to be the case, it is important that the experiment satisfies
several properties, both on the reporting and technical side.
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2.1.1 Transparent reporting for replicable benchmarking

When reporting the research choosing the right metrics, documenting the
experimental setup, making the data available, and making sure the exper-
iments are repeatable are essential. Benchmarks need to carefully follow a
well-defined set of goals and rules [10].

What metrics the benchmark measures is one crucial point. Dufour et al.
[4] established five guidelines for the dynamic metrics that a benchmark can
measure. The metrics, when designed according to these guidelines, should
concisely and informatively summarize a benchmark [10].

1. The metrics need to be unambiguous. This means that what is mea-
sured is clearly defined.

2. The metrics need to be dynamic. This means that they need to relate
to runtime aspects. This requirement is there to make sure that the
metric characterizes the benchmark behavior.

3. The metrics need to be robust. This means that they should not be
too dependent on program input.

4. The metrics need to be discriminating. This means that when the
behavior of the program changes this is reflected in the metrics.

5. The metrics need to be machine independent.

When applying these guidelines to our metrics of energy consumption and
execution time, we see that the metrics are unambiguous, dynamic, and
discriminating in nature. They are not (always) robust and machine inde-
pendent. For some programs, when the input changes drastically, the time
it takes and the energy it consumes will change, this cannot be avoided.
They are also not machine independent, every machine consumes resources
differently. Even with the same hardware there can be a major difference in
energy consumption of that hardware [9]. Still these measurements do give
interesting insights, even though they may not hold for every machine.

In an experiment, documenting the experimental setup entails sharing
all important aspects of how it was carried out. These aspects are: the
hardware used (e.g. CPU model, memory size), software dependencies (e.g.,
compiler versions, runtime environments), configurations (e.g., optimization
settings, BIOS settings, parallelization techniques), source code, scripts for
gathering data, and other steps that were followed to obtain the results [17,
1]. Comprehensively documenting this allows others to understand exactly
how the experiments were conducted. When this is known, researchers can
try to replicate this study under the same conditions and verify the results.
Without clear documentation of these factors, research becomes harder to
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validate and experiments harder to accurately reproduce. In Section 4.2, we
share all the hardware and software dependencies, and we provide a link to
the scripts and code we used.

The next reporting aspect that is key for replicability, is making the
data used in the benchmarking study available [1]. This includes: the in-
put data and the final performance metrics. Access to this data allows other
researchers to verify the computations, perform additional analyses, or com-
pare the findings with alternative approaches. We have applied this to this
thesis. The source of the input data is shared in Chapter 4 and the final
performance metrics are shared in Chapter 6.

Furthermore, the experiments should be repeatable. It should not be
the case that the results of a published paper are obtained by doing only
one benchmark run, without any checks whether the resulting findings were
a random occurrence or not [1]. Some random variations or isolated inci-
dents in the benchmarks may lead to results that appear to show a clear
relationship. However, repeating the experiment several times would likely
reveal that these results were merely coincidental. Hence, it is important
to make sure the relationship seen in the results is real by checking if the
experiments are repeatable. To ensure that this is the case for our experi-
ment, we measure every benchmark 9 times. Because of this, we can verify
whether our results are relatively consistent over these 9 runs by looking at
the spread of the measurements.

2.1.2 Technical requirements for replicable benchmarking

Various technical aspects can invalidate benchmarking results [1].
The first thing to consider is whether the measurements are actually valid
and reliable. This is the case if the random and systematic measurement
error is small (this means that there is no bias and there are no “volatile”
effects) and there is adequate precision [1]. There are several places in the
measuring process where this can go wrong.

To start off, it can go wrong in the measuring tool used. When measuring
the execution time, it should be measured using a reliable tool [1]. Some
measuring tools can be influenced, for example by changes to the system
clock, resulting in invalid results. A good tool to measure the time the
execution of a program took is the Unix time utility. We will be using this
utility in our measurements and look at the real time this tool outputs.

In addition, when running a benchmark, no other processes should be
able to have a performance influence on the benchmark [17]. This can be
avoided by only executing one benchmark at a time and ensuring that out-

7



side of the benchmark a minimal amount of other processes are active. We
run our experiments on a server that is ensured to run minimal processes in
the background of the one running at that moment. This ensures that the
performance influence is minimal.

There are other considerations, but these are not applicable to this the-
sis. They are only relevant under certain conditions, for example when
benchmarking concurrent code or benchmarking memory.

2.2 Benchmarking in practice

When reading on how researchers have handled benchmarking programming
languages, we encountered several procedures:

• Nanz and Furia [12] benchmarked different programming languages by
running code from the Rosetta Code repository. This is a database
with programming problems and their solutions implemented in as
many languages as possible (Section 3.1 has more information on this
repository). For benchmarking the code, they had a script for every
language. This script takes an executable name, executes it, and logs
the results. The results were gotten by repeating the execution of the
code 6 times, and discard the first of these in the case of bytecode
languages that had to load virtual machines from disk. Next, the
remaining 5 results were taken only if they were within one standard
deviation of the mean. If that was the case they logged the mean,
otherwise they ran the execution again.

• Fourment and Gillings [5] benchmarked certain bioinformatics algo-
rithms implemented in different programming languages. During the
benchmarks they ensured that unnecessary processes were disabled.
They used the user time measured with the GNU program time for
the speed of processing. Every program was run three times. Their
final measurement for each program was determined by taking the
minimum execution time recorded.

• Nanz, West, Silveira, and Meyer [13] benchmarked four different pro-
gramming languages for parallel programs. This study looked at the
code size, coding time, execution time, and speedup. Their setup for
measuring the execution time was relatively simple. They ran all their
performance tests 30 times, and the mean of the results was taken.

As is the scientific standard when measuring a variable, in all these
examples, they measure the time x times and then take a statistic that
summarizes these measurements to be the final value for that variable. The
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mean is the most commonly used statistic for this purpose [16]. Using the
minimum, as Fourment and Gillings did, is unusual.

As mentioned in the previous section, our procedure for measuring exe-
cution time and energy consumption is similar to the method used by Nanz,
West, Silveira, and Meyer.

9



Chapter 3

Measuring energy

In this chapter, we discuss measuring energy. The topics covered include re-
lated work on measuring energy, the test set-up that we use when measuring
our energy, and the validity of our energy measurements.

3.1 Related work on measuring energy

As mentioned in the introduction, in 2017 Periera et al. wrote an inter-
esting paper on a method to rank programming languages on time, mem-
ory consumption, and most importantly energy consumption [14]. In this
study, they took the code from the Computer Language Benchmarks Game
(CLBG) [6], a repository containing the optimized implementations of a
number of programming problems. These implementations are made in as
many different languages as possible. In 2021, they did a validation study
that took less optimized code from the Rosetta Code repository. This also
has implementations of the same task in many different languages [11], but
these implementations have to uphold to looser guidelines. This makes them
more representative of day-to-day programming practices [14].

Their measurements on both sets of programming problems led to simi-
lar conclusions. Of the different conclusions that they drew, there were two
most interesting for this thesis. First, they found that a faster language is
not always the most energy efficient. Second, they made a ranking of pro-
gramming languages based on their energy consumption, execution time,
and memory usage. This ranking is shown in Figure 3.1.

In this figure it can be seen that the language C is, overall, the fastest
and most energy efficient. Although the actual results nuance this view
slightly—for example, in some benchmarks, it is neither the fastest nor the
most energy efficient—it is still consistently in the top three [14].
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Figure 3.1: The normalized global results for energy, time, and memory of
Periera et al.

A shortcoming of this study and their ranking is that it does not actually
look what the underlying features of the programming languages are. They
distinguish only between the execution types: compiled, virtual machine,
and interpreted. This makes it seem like these are the only determining
factors of the energy efficiency, runtime, and memory consumption of a pro-
gramming language. But a programming language has other features, which
can all have an impact on its consumption of resources, like its typing sys-
tem, or whether or not it has a garbage collector. In this thesis, we examine
other possible features and their impact. Through the lens of these features,
we also aim to gain a better understanding of Figure 3.1.

In addition to the results of this study by Periera et al., their method
for measuring the energy is relevant. They got their energy consumption
results through measurements using RAPL [14]. Intel’s Running Average
Power Limit (RAPL) tool was introduced to allow a user or an OS to specify
maximum power limits for the processor, GPU, and DRAM. To adhere to
these power limits, the processor has to be aware of its power usage at every
moment [3]. RAPL does not directly measure this, but uses a power model.
As an added feature, the user can also access these power estimations for
CPU, GPU, and DRAM. This is a useful feature, because not many people
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have access to hardware that can measure the energy consumption of a
whole machine. RAPL makes estimating the energy consumption of code
more accessible. Since it does not do hardware measurements but uses an
energy model, its accuracy is around 20% [3], which can be accurate enough
depending on the purposes.

3.2 The test set-up

Instead of using RAPL, we use a hardware setup to measure the energy
consumption of our code. The hardware setup used is the machine of the
Software Energy Lab. The Software Energy Lab is a set-up that is part
of a research project aiming to get better insight in the energy consump-
tion of software. With this set-up come several servers on which people can
run code with hardware that measures the energy consumption. Our code
runs on an ODROID-H3+ server.1 The energy consumption of this machine
is measured with an INA260 chip. This chip is positioned in between the
ODROID’s power source and the device itself.
The test set-up makes its measurements available by responding to HTTP
POST requests in the form of a JSON, an example of this response and ex-
planation of the metrics involved can be found in Appendix A. The INA260
chip measures power input and calculates the energy consumption of the
entire machine with a sampling frequency of 806 Hz.

3.3 Validity energy measurement

To have actual valid energy measurements with this device, we need to
ensure that its accuracy is within reasonable bounds. In data sheets from
Texas Instruments [8], it can be seen that the maximum error of the INA260
chip is 0.15%. This is the maximum error and with normal behavior it is
lower, around 0.02%. It is our conviction, that this percentage is sufficiently
small, such that we can get valid conclusions from the measurements of the
device.

1This contains an Intel N6005 quad-core processor, a NVMe SSD, and 16 GB DDR4
RAM.
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Chapter 4

Methodology

In this chapter, we describe the methods we used in this thesis. Firstly, we
discuss noise factors and their mitigation. Then we discuss the selection of
the code problems. Lastly, we talk about the measuring process as a whole.

4.1 Noise factors and mitigation

When measuring the energy consumption of our code, it is important to
identify possible noise factors and account for them. In this section, we
name our noise factors and explain our way of handling them.

4.1.1 System load

We run the energy measurements on a system, and we measure the energy
consumption of the whole system during the run of our program. Hence,
it is important to ensure that there is a minimal amount of other processes
running during the whole duration of the energy measurements. The set-up
of the Software Energy Lab that we use for the measurements ensures that
the process we are running is the only process running on the system at that
time. It does this by using the Gitlab CI/CD interface for running code, the
runner can only execute one job at a time, because of this two jobs cannot
be running at the same time, competing for resources.

4.1.2 Idle energy consumption

Whenever a computer, or server, performs any action or is simply powered
on, it always consumes some amount of energy to keep everything running.
This minimal amount of energy, that is always consumed, is called the idle
energy consumption. When benchmarking the energy consumption of our
programs, we are only interested in the energy that the actual program
consumed, not in the energy that went into keeping the underlying system
running. This actual energy is important for two reasons. The first reason
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Figure 4.1: Example of skewed energy consumption between program A and
B

is that changes in the energy that is being consumed in the background can
greatly affect the results. The second reason is that it makes sure that the
results are not naturally skewed towards the faster programs.

For instance, take two programs: A and B. A is very fast and uses up a
lot of energy, B is a lot slower and uses little energy. Now, say we measure
the energy consumption of both these programs. Then Figure 4.1 shows the
resulting energy measurements over time, where program A corresponds to
the blue line and program B to the purple line. The graph shows that the
idle power consumption is 50 W. It also shows that program A should be
considered the most expensive, with a big gap to program B. But if we were
to include the idle energy consumption this gap would be much smaller,
since the idle consumption that is present during their whole duration has
to be included for both A and B, which is a lot more for B than it is for A.

For these reasons, we subtract the idle energy consumption from the en-
ergy measurement to prevent unfairly skewing the outcomes towards faster
programs. The idle power consumption is measured before each measure-
ment and afterwards. When these values do not differ more than 5%, the
measurement is considered to be valid and the idle energy consumption is
computed and subtracted from the measurement. Otherwise, the measure-
ment is discarded, because then it is possible that during the duration of
the code there was still a background process using up energy. The server
also has a known normal idle power consumption which remains relatively
steady between major updates. With our measured power consumption we
also check whether it does not differ from this normal idle power consump-
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tion by more than 10%, otherwise the measurement is also found invalid and
discarded.

The measuring of the idle power consumption goes as follows. First,
we measure the energy consumption of the command sleep 60. Then we
divide the resulting value by 60 to get the idle wattage. Now to compute
the idle energy consumption during the run of a program, we take this idle
wattage and multiply it with the amount of seconds the program ran, this
gives the amount of Joules that were idly consumed.
Given this idle energy consumption we can then compute the amount of
Joules that was actually consumed by subtracting this idle energy consump-
tion from the energy measurement of the program.

4.2 Code selection

The code Periera et al., used for the validation of their research [14], is
the starting point of the code we use in our measurements. For this val-
idation part of their study, they used the following problems from the
Rosetta Code repository1 MergeSort, QuickSort, Hailstone, Fibonacci,
Ackermann, N-Queens Problem, 100-doors, Remove duplicates, Sieve

of Eratosthenes. They have a Github repository2 containing the code
and input for these and some other problems from the Rosetta Code respos-
itory. In this thesis, the goal is to take as many of the same problems as
in their validation study and implement as many of our features on them.
We need to add three new problems from Rosetta Code, since only one of
the problems in this list (MergeSort) had a significant amount of malloc()
calls, which are important for testing the garbage collection. These three
problems were chosen from the other problems in the GitHub repository of
Periera et al. We also discard two problems: Fibonacci and Ackermann,
since their code is so simple that we cannot do anything interesting with
any of the three features (i.e. no garbage collection, no arrays, only use of
one type).

After this selection, we end up with the code problems that can be seen
in Table 4.1. In this table, the “Implemented” column describes what of
the features was implemented, so: garbage collection (GC); dynamic typ-
ing (DT); bounds checking (BC); bounds checking and garbage collection
(GC+BC); and garbage collection and dynamic typing (GC+DT). The “In-
put” column defines the input for the program, these inputs are kept the
same as the input Periera et al. used in their research.

1The whole Rosetta Code repository can be found here:
https://rosettacode.org/wiki/Rosetta Code

2This repository can be found at:
https://github.com/greensoftwarelab/RosettaExamples/tree/master
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Benchmarks Description Input Implemented

Mergesort To sort a collection of integers using merge sort 10k random integers
BC, DT, GC,

GC+BC, GC+DT

Quicksort To sort a collection of integers using quick sort 10k random integers BC, DT

Hailstone sequence
Generate the hailstone sequence for specific

numbers
Rosetta Code BC

N-queens problem Solve the n-queens puzzle 12-queens BC, DT

100-doors Solve the 100 doors problem Rosetta Code BC, DT

Remove duplicates Remove duplicated elements in a sequence 217 random elements BC

Sieve of Eratosthenes
Compute algorithm that finds the prime numbers

up to a given integer
10k BC, DT

Binary digits
Create and display the sequence of binary digits

for a given non-negative integer.
1024

BC, DT, GC,

GC+BC, GC+DT

Factors of an integer Compute the factors of a positive integer Rosetta Code
BC, GC,

GC+BC

AVL tree
Make an AVL tree of a given number of random

elements
20k GC

Table 4.1: The chosen set of programs from Rosetta Code with a description
of what they do, the chosen inputs and the features we implemented for
them.

When we have the chosen code problems, we start the implementation of
the three features (bounds checking, garbage collection and dynamic typing).
Their implementation is described in Chapter 5. The actual code we used, as
well as the full implementations of these features, are available on GitHub.3

4.3 Measurements

Before beginning the measurement process, it is important to ensure that
all programs run long enough, at least two minutes. This ensures the mea-
surements’ accuracy. All code is implemented in C, which is fast, hence to
get the running times up to two minutes we execute the programs many
times. The amount of times it actually runs for one specific measurement is
written to a csv file.

To compare the different implementations, we need to collect the energy
consumption of each of them. To do this we make a shell script that we can
call from the Gitlab CI/CD pipeline. This script follows the same measure-
ment process every time it is called. The process is shown in Listing 1, in
which it is assumed that the variable $executable path holds the path of

3This code can be found in a public GitHub repository:
https://github.com/ElineStehouwer/features-energy-analysis/tree/main
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the executable that is to be run.

idle_energy_before=10

idle_energy_after=0

diff=$(get_difference "$idle_energy_before" "$idle_energy_after")

ten_percent=0

while (( $(echo "$diff > $ten_percent" | bc -l) ));

do

idle_energy_before=$(get_idle ...)

energy_before=$(get_energy ...)

time_output=$(run_program "$executable_path" )

energy_after=$(get_energy ...)

idle_energy_after=$(get_idle ...)

diff=$(get_difference "$idle_energy_before" "$idle_energy_after")

ten_percent=$(echo "$idle_after * 0.10" | bc -l)

done

elapsed_seconds=$(get_actual_elapsed_time "$time_output")

energy_consumed=$(echo "$energy_after - $energy_before" | bc -l)

idle_energy_consumed=$(echo "$total_seconds

* $idle_power_consumption" | bc -l)

actual_energy_consumed=$(echo "$energy_consumed

- $idle_energy_consumed" | bc -l)

Listing 1: Overall process of an energy measurement.

When we find the actual energy consumed to be negative, we restart
this measurement process, since that indicates an invalid measurement.
Each benchmark implementation is executed and measured 9 times. Af-
terwards, we take the average of the measured energy consumption and
execution time to summarize those values for that implementation.
Since we do not run all implementations the same number of times to get
2-minute measurements, we divide the resulting averages by the number of
times it is repeated to get the actual energy consumption per run. Section
6.1 has a more detailed explanation of this process.

We conduct all benchmarks on the device detailed in Chapter 3, and we
compile the code using GCC version 13.2.0 with optimization flage -O3
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Chapter 5

Code modifications

In this chapter, we outline the specific changes we make to the original code-
base. These modifications emulate certain programming language features
in C to investigate the impact of these features on the performance of the
code.

5.1 Overview of the original codebase

Originally the codebase consisted of, as described in the methodology in
Chapter 4, normal C code gotten from the Rosetta repository, chosen mainly
from programs that were pre-selected by Periera et al. Except for one pro-
gram, all programs have some form of arrays in it, most use different types
and some have malloc() statements in them.

We then transform this code by adding the previously mentioned fea-
tures. As can be seen in Table 4.1, we do not implement all features in
every program, this is why:

• For the garbage collection, the reason for this is that these programs do
not have malloc() statements in them (or not a significant amount).
Since a garbage collector would not have any significant impact there,
we do not add garbage collection to them.

• For dynamic typing, the reason is that for some programs implement-
ing it is too complicated for the time limits of the thesis. We do not
want to invest too much time into one problem, since all the 10 prob-
lems need an implementation. This means that when we get really
stuck on one problem, we quickly move on to the next program.

• For bounds checking, this is implemented in all programs but one. The
reason it is not implemented in that one program is that it does not
make use of arrays.
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• We have been able to make implementations for the combinations:
bounds checking and garbage collection, and dynamic typing and garbage
collection. We did not make any for the combination of bounds check-
ing and dynamic typing, since in the dynamic typing the array already
had bounds checks incorporated. This means that the combination of
dynamic typing and garbage collection actually incorporates all three
features.

5.2 Description of modifications

In this section, we provide for every feature a description of how it works
and of the modifications and additions made to the code.

5.2.1 Garbage collection

In C, when a program needs dynamic memory, normally it gets allocated by
calling malloc() and released by calling free(), when the memory is not
needed anymore. Now a program with a garbage collector allows allocating
memory as normal, but freeing it is no longer necessary, as the garbage col-
lector does that. Using a garbage collector can have benefits like preventing
memory leaks that may occur when freeing is not done properly. When the
collector sees that memory can no longer be accessed it recycles that mem-
ory. In this way, it is available for future malloc() calls.

Since it would be inefficient to implement a garbage collector ourselves
and there is already a well-developed and tested garbage collector for C, we
added the Boehm-Demers-Weiser conservative garbage collector to our code
to do the garbage collection for us.

There are different algorithms underlying garbage collectors. This garbage
collector uses a modified mark-sweep algorithm [2]. The algorithm has four
phases that are now and then performed in the context of a memory alloca-
tion [2]:

1. Preparation: the process starts out by clearing all mark bits of all
objects. These mark bits, which every object has, indicate whether an
object is reachable. So, clearing these bits indicates they are poten-
tially unreachable.

2. Mark phase: all objects that can be accessed by a series of pointer
chains from variables get their mark bits set. Pointers are seen as
any bit pattern that represents an address that is inside a heap object
managed by the collector.
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3. Sweep phase: in this phase the heap is scanned to look for objects that
are unmarked, hence inaccessible. The collector puts the objects that
it finds on a free list for reuse.

4. Finalization phase: the objects that have now been put in this free list
and are to be collected can have a finalization function defined. When
this is defined that code will be executed just before it gets collected,
in the finalization phase. An example usage of this is to claim system
resources or non-garbage-collected memory associated with the object.

We add the garbage collector to our code using C macro’s. But first in
the C file we have to add the header: #include<gc.h>. Then we define the
macro’s [7], as done here:

#define malloc(x) GC_malloc(x)

#define calloc(n,x) GC_malloc((n)*(x))

#define realloc(p,x) GC_realloc((p),(x))

#define free(x) (x) = NULL

These macros guarantee that whenever malloc(), calloc(), or realloc()
is called in the code, the Boehm garbage collector equivalent function is
called instead. For the free function, they ensure that no function is called
(since the garbage collector handles cleanup) and they set the pointer to
NULL, which can improve performance [7].

When the code has the correct macro’s added to it, it still needs to be
compiled correctly. The first step is to install the garbage collector library on
our machine.1 Then during the compilation, we link this library to the code
on which we want to run the garbage collector. Before running the garbage
collected program for the actual energy measurements it is important to
check whether the garbage collector really is collecting garbage. This can be
done by defining the GC PRINT VERBOSE STATS environment variable. With
this set the garbage collector will print a bit of descriptive output for each
collection. We go over this output to check if it is acting as expected. After
we verify that the collector actually works, we run the code with the garbage
collector.

5.2.2 Dynamic typing

C is a statically typed language. This means that type checking happens at
compile time, instead of at runtime, which is what happens with dynamic
typing. For dynamically typed languages, this means that at compile time
the compiler does not know of what type the variable they are handling is,
hence they cannot make the same optimizations that it may be able to make

1Instruction on how to do this can be found here: https://hboehm.info/gc/#where.
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for a statically typed language. It also has to perform more checks during
runtime than a statically typed language. By implementing dynamic types
in the C language, we try to determine the impact of having a dynamic and
static typing system on the energy consumption of a programming language.

Since C has no ready to use library implementing a dynamic typing sys-
tem, we implement it ourselves. We do this using the union type and a tag.
The union type is, like a struct, a user-defined data type which can contain
multiple elements of different types. In a struct, each element is stored in
its own memory location, allowing all elements to be defined simultaneously.
However, in a union, all elements share the same memory location, mean-
ing only one element is defined at any given time. To keep track of which
element is currently in use, unions are accompanied by a tag. This tag

is a value of an enum, where each constant represents a possible data type
that could be stored in the union. Essentially, the tag stores the constant
corresponding to the data type currently stored in the union.
This union-tag combination emulates the idea of dynamic typing, since the
compiler is not able to tell what value is stored in the union at compile
time, and whenever an operation is performed at runtime a check needs to
be performed to see if the types and the operation are compatible with each
other.

We implement this idea in a C++ class. To ensure portability between
programs, we put this class in a header that we can include. This header
looks roughly like this:

class DynamicType {

public:

// First new names for each type used are defined so these

// types can be easily changed

typedef int NumberT;

typedef std::string StringT;

typedef vector<DynamicType> ArrayT;

typedef char CharT;

typedef short ShortT;

typedef size_t SizeT;

DynamicType(Number str);

// And the other constructor declarations

DynamicType operator+ (const DynamicType& other) const;

DynamicType& operator[](int lookup);

// And the other operator declarations

bool isNumber() const;

// And the other type check function declarations
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NumberT asNumber() const;

// And the other conversion function declarations

void print(std::ostream& out) const;

private:

enum {DTNull, DTBool, DTString, DTNumber, DTArray,

DTChar, DTShort, DTSize} type; // The tag

union { // The union where one of the values is stored

bool b;

StringT str;

NumberT number;

ArrayT array;

CharT c;

ShortT s;

SizeT size;

};

};

In the implementationof the operators, we have a large switch statement
going over the tag value and doing the addition operation if the tag has
some number type in it.

Since this is C++ code, we need to make this accessible to C. We do
this by adding another header file, this time representing our DynamicType
class in a structure and having C accessible functions for every corresponding
function on the class. In the C++ file corresponding to this header, we wrap
all implementations of these functions in an extern block:

extern "C" {

// The code goes here

}

Through this extern "C" linkage these functions are made callable to our
C code.
After defining this class, we rewrite all the code of our programs using
the dynamic type we define and the functions corresponding to that type.
When compiling our code, it is important to include all our headers and
implementations of them and link them correctly.

5.2.3 Bounds checking

In a programming language, bounds checking means that whenever an array
is accessed, a check is performed to ensure the access is within the bounds
of the array. When a bounds check fails, it usually generates some exception
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or error that exits the program. Many programming languages incorporate
this in their array definition, but not all languages do (C for instance),
because of efficiency reasons. However, one important reason why one might
consider these checks is that not having them could cause bugs and security
vulnerabilities, like buffer overflow.
So, for a programmer it is important that they take great care to deal with
these array boundaries when writing code in a language without bounds
checking.

We implement the bounds checks in C ourselves, because, just like with
dynamic typing, we could not find an easily accessible library to do it for
us. We implement it with the the following two macros:

#define setSafe(array, index, size, value) {\

if (index < 0 || index >= size) {\

fprintf(stderr, "Error: Index out of bounds\n");\

exit(EXIT_FAILURE);\

}\

array[index] = value;\

}

#define getSafe(array, index, size) ({\

if (index < 0 || index >= size) {\

fprintf(stderr, "Error: Index out of bounds\n");\

exit(EXIT_FAILURE);\

}\

array[index];\

})

Before including the bounds checks, the code would for example look like
this:

int some_array = {1, 2, 3, 4};

int value = some_array[1];

some_array[3] = 10;

After including the bounds checks, this code would look like this:

int some_array = {1, 2, 3, 4};

int value = getSafe (some_array, 1, 4);

setSafe(some_array, 3, 4, 10);

With this definition of bounds checking, we rewrite all bounds checks into
this format.

5.2.4 Combinations

The implementation of the combination features is straightforward. For both
combinations, first follow the steps described in Section 5.2.1. Then follow
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the steps as described in either Section 5.2.3 or Section 5.2.2, depending on
the combination.
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Chapter 6

Results

The aim of this thesis is to measure the energy impact of the programming
language features garbage collection, bounds checking, and dynamic typing
on C. These last two we implement ourselves. We ran measurements on
the code problems that we implemented these three features on. In this
chapter, we discuss the results gotten from these measurements. We start
out by exploring all data, then we move on to explaining our calculations of
the mean and spread, lastly we present our processed results in four tables.

6.1 Data preprocessing

To make the measurements as reliable as possible, we ran them until they
took around 2 minutes. Different code implementations take different amounts
of time. This means that the number of times they have to be run to run
around 2 minutes also differs (e.g. 250 times and 61200 times). To be able
to compare their mean energy consumption and execution time and the
standard deviation of the energy consumption and execution time, we first
calculate the energy and time per run for all nine measurements. We do
this in the same way for both the time and energy. Different measurements
of the same program might need slightly more or less runs to run the right
amount of time. Hence, each of the nine measurements of every program
might have a different number of times it was run.
So in the example of the n-queens problem: say in one of the nine measure-
ments the code was executed 250 times and this measurement has measured
energy consumption: Emeasured = 13.3524 J. Now we can calculate the en-
ergy consumption of one run: Erun = 13.3524

250 = 0.053409486 J.
This same measurement has measured execution time: tmeasured = 114.093
s. So using this we also calculate the execution time per run: trun = 114.093

250 =
0.456372 s.
We do this for all measurements of all nine runs. We use the resulting values
to calculate the mean and variability of the energy consumption and execu-
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Figure 6.1: Graph plotting the measurements of the time in s, the data
points are divided by program and feature they implement.

tion time of one run of every version of every program.
Before we look at these means and standard deviations, we first look all data
of all measurements we have for the energy consumption and execution time
per run.

6.2 Exploration of all data

All data that we got from the measurements can be seen in Figure 6.1 and
Figure 6.2. The preprocessing step described in Section 6.1 is already ap-
plied to this data. These respectively hold the individual value plots for the
time one run of every program takes and the individual value plots for the
energy one run of every program consumes.

These plots give a rough overview of the data we gathered. The data
points are divided into the category they belonged to, so by program and
by which of the three features was implemented. So one vertical line of dots
represents the 9 measurements of a single implementation.

In these plots, there are two things that stand out. The energy mea-
surements have a bigger spread than the time measurement, mainly in the
results implementing dynamic typing. In addition to this, there seems to
be a correlation between the execution time and the energy consumption.
This is not unexpected, because we know: E = t · P . More evidence of this
linear relation is seen in Figure 6.3, where we plotted the execution time in
relation to the energy consumption.

26



Figure 6.2: Graph plotting the measurements of the energy consumption in
J, the data points are divided by program and feature they implement.

Figure 6.3: Scatter plot showing the linear relationship between execu-
tion time per run in s (t per run) and energy consumption per run in J
(e per run) with a fitted regression line.
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From the graph, we can conclude that although the energy measure-
ments have a big spread, their averages are strongly correlated with the
time measurements.

6.3 Processed results

For the measurements of time and energy we made two tables each. In Table
6.1, we put all means and standard deviations for the energy measurements.
The first column states the program name. The next six columns list the
mean energy consumption per run of the program: without additions (de-
fault), with bounds checking (BC), with bounds checking and garbage col-
lection (GCBC), with garbage collection (GC), with garbage collection and
dynamic typing (GCDT), and with dynamic typing (DT). The following six
columns present the standard deviation of the energy consumption per run
for the same respective categories. There are empty cells, because we did
not implement all features in all programs.

In Table 6.2, we show slightly different data. In this revised table, actual
values are not displayed; instead, normalized values are presented by divid-
ing them by the default value. This format enables a direct comparison of
different versions against the standard version. To enhance this comparison,
color coding is used to indicate energy consumption differences: redder cells
signify higher energy consumption than the default, whiter cells indicate
energy consumption closer to the default, and greener cells represent lower
energy consumption than the default.
There is also a slightly different subdivision of columns. The columns that
previously showed the standard deviation now shows the coefficient of varia-
tion, which was calculated by dividing the standard deviation by the mean.
While the standard deviation in the previous table helped identify potential
data overlap across different features, the coefficient of variation is more
beneficial in this table as it allows for comparing values relative to the de-
fault implementation.
For instance, without considering the coefficient of variation, one might
mistakenly think the dynamic typing result for the n-queens problem is
highly inaccurate due to its standard deviation being approximately 30 times
greater than that of the default measurement. However, this difference is
primarily because of the significantly higher energy consumption of the dy-
namic typing implementation, which the coefficient of variation adjusts for.

Table 6.3 and Table 6.4 are formatted in the same way as Table 6.1 and
Table 6.2 respectively. The only difference is that these tables contain the
data on the execution time of the programs instead of the energy consump-
tion.
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Mean Standard deviation
Program

default BC GCBC GC GCDT DT default BC GCBC GC GCDT DT

100-doors 0.266 0.333 0.386 0.072 0.131 0.196

AVL tree 1.598 1.619 0.807 0.622

Binary digits 0.272 0.298 0.233 0.329 1.198 1.695 0.189 0.148 0.081 0.148 0.510 0.231

Hailstone sequence 10.512 7.511 3.264 4.780

Factors of an integer 0.346 0.225 0.3 0.427 0.196 0.035 0.154 0.153

Mergesort 0.437 0.572 0.953 0.805 10.617 13.693 0.175 0.157 0.313 0.254 5.193 6.388

N-queens problem 1.882 1.342 50.278 0.331 0.708 13.551

Quicksort 0.551 0.643 8.809 0.286 0.200 5.497

Remove duplicates 4.513 4.609 1.678 1.729

Sieve of Eratosthenes 0.182 0.224 3.246 0.061 0.109 1.047

Table 6.1: Mean and standard deviation of energy (mJ) per single run of
the code.

Mean Coefficient of variation
Program

default BC GCBC GC GCDT DT default BC GCBC GC GCDT DT

100-doors 1.0 1.2 1.4 1.0 1.5 1.9

AVL tree 1.0 1.0 1.0 0.8

Binary digits 1.0 1.1 0.9 1.2 4.4 6.2 1.0 0.7 0.5 0.6 0.6 0.2

Hailstone sequence 1.0 0.7 1.0 2.1

Factors of an integer 1.0 0.7 0.9 1.2 1.0 0.3 0.9 0.6

Mergesort 1.0 1.3 2.2 1.8 24.3 31.3 1.0 0.7 0.8 0.8 1.2 1.2

N-queens problem 1.0 0.7 26.7 1.0 3.0 1.5

Quicksort 1.0 1.2 16.0 1.0 0.6 1.2

Remove duplicates 1.0 1.0 1.0 1.0

Sieve of Eratosthenes 1.0 1.2 17.8 1.0 1.5 1.0

Table 6.2: Mean and coefficient of variation of energy per single run of the
code normalized to the value of the default implementation.

Mean Standard deviation
Program

default BC GCBC GC GCDT DT default BC GCBC GC GCDT DT

100-doors 1.884 1.882 4.711 0.021 0.018 0.015

AVL tree 15.945 18.545 0.031 0.015

Binary digits 2.252 2.275 3.009 3.006 10.792 9.671 0.015 0.015 0.009 0.013 0.049 0.012

Hailstone sequence 62.948 62.273 0.310 0.233

Factors of an integer 2.303 3.329 3.340 2.294 0.012 0.008 0.010 0.011

Mergesort 5.369 5.983 7.732 7.110 102.381 94.773 0.012 0.014 0.014 0.019 0.499 0.515

N-queens problem 15.885 16.350 620.124 0.030 0.014 3.199

Quicksort 4.505 4.485 68.849 0.013 0.013 0.293

Remove duplicates 44.625 44.915 0.177 0.210

Sieve of Eratosthenes 1.880 1.893 32.285 0.014 0.014 0.196

Table 6.3: Mean and standard deviation of time (ms) per single run of the
code.
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Mean Coefficient of variation
Program

default BC GCBC GC GCDT DT default BC GCBC GC GCDT DT

100-doors 1.0 1.0 2.5 1.0 0.9 0.3

AVL tree 1.0 1.2 1.0 0.4

Binary digits 1.0 1.0 1.3 1.3 4.8 4.3 1.0 1.0 0.4 0.1 0.7 0.2

Hailstone sequence 1.0 1.0 1.0 0.8

Factors of an integer 1.0 1.4 1.5 1.0 1.0 0.5 0.6 0.9

Mergesort 1.0 1.1 1.4 1.3 19.1 17.7 1.0 1.0 0.8 1.2 2.2 2.4

N-queens problem 1.0 1.0 39.0 1.0 0.5 6.0

Quicksort 1.0 1.0 15.3 1.0 1.0 1.5

Remove duplicates 1.0 1.0 1.0 1.2

Sieve of Eratosthenes 1.0 1.0 17.2 1.0 1.0 0.8

Table 6.4: Mean and coefficient of variation of time per single run of the
code normalized to the value of the default implementation.
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Chapter 7

Discussion

In this chapter, we discuss and interpret the results as they are presented in
Chapter 6.

7.1 Impact of added features

7.1.1 Bounds checking

We expected bounds checking to add a certain overhead due to the addi-
tional checks it performs during runtime. In Table 6.2, we see that the
impact of bounds checking on the energy consumption differs per program.
In some, it seems to make the program more energy efficient, in other pro-
grams, there is a slight increase in energy consumption. But when we look
at the standard deviation in Table 6.1, we see that none of these differences
are significant.

In Table 6.4, we see that no programs with bounds checking added are
quicker than the default program. There are two programs which do become
slightly slower with bounds checking added. These results are significant,
this suggests that bounds checking could make some programs slower, but
does not make a difference within other programs.

From these results, we can conclude that the impact of bounds checking
is either minimal or non-existent on the type of numeric programs that we
have tested on. One possible explanation for this finding lies in the operation
of branch prediction in modern CPUs. Branch prediction involves the CPU
estimating in advance which branch will be taken. With bounds checks, the
CPU predicts that the check will succeed, which it does in all our programs,
since these were written to not have any out-of-bounds errors, as is normal
in well-written programs. This allows the CPU to continue execution effi-
ciently without unnecessary interruptions.
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Assembly instructions are executed in multiple stages through a pipeline.
If the CPU correctly predicts the outcome of a branching, it can already par-
tially execute instructions in the pipeline, which provides more efficient use
of resources and less energy consumption. However, if the prediction is in-
correct, all partially executed instructions must be discarded and restarted,
which is costly in terms of time and energy. This almost never happens in
correctly written programs, so there are rarely wrong predictions on these
types of branches by the branch predictor. Since these predictions are cor-
rect, the only added costs of bounds checking is the if-statement checking
whether it is in bounds. Thus, the few extra assembly instructions that
bounds checking adds have no significant impact on pipelining efficiency,
energy consumption, and execution time.

7.1.2 Garbage collection

We expected garbage collection to add some overhead due to the fact that
it has to keep track of the malloced pieces of memory and manage them
during runtime. In Table 6.2, we see that garbage collection has some kind
of impact on the energy consumption of every program, except for AVL
tree. The size of impact does differ per program. The energy consumption
of mergesort goes up most. This is for several reasons. First, this program
has the most mallocs relative to the amount of code, since every merge calls
malloc(). These results show that the intensity with which the garbage
collector has to allocate memory and clean it up is a factor that changes its
energy consumption.
Second, compared to the other programs mergesort calls free() more fre-
quently. A garbage collector only has to actually collect “garbage” if this
garbage is no longer used. In mergesort, for every merge, memory has to
be claimed through malloc() and after the merge the memory goes out of
scope, which means it can be cleaned up by the garbage collector. The other
programs often use the pointers they create with malloc() for a bigger part
of the program and hence the garbage collector has nothing to clean up
during those periods.
When we look at the standard deviation in Table 6.1, not all these differ-
ences are significant, but there does seem to be a trend toward a larger
energy consumption with garbage collection enabled.

In Table 6.4, we see a similar pattern. The difference is that although the
gap between the execution time for the default programs and the programs
with garbage collection added to it is smaller, Table 6.3 shows that these
numbers are actually significant.

From the data, we can conclude that garbage collection has an impact
on the energy consumption and execution time of programming languages
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in the type of numeric programs that we have tested on. We also find that
calling malloc() more often leads to a higher energy consumption. It is
notable that the runtime of mergesort with garbage collection increases less
than the energy consumption.
Memory operations generally consume a lot of energy, and this consump-
tion is not always linear with time. This could be a possible reason for this
difference. While a standard algorithm is primarily CPU-intensive, garbage
collection creates additional memory operations, resulting in higher overall
hardware usage. Consequently, more frequent access to the entire memory
leads to less efficient use of the cache and more direct access to RAM, trig-
gering additional circuits and increasing power consumption.
A different explanation would be that many operations are cached, mean-
ing that the initial cache operation is slow, but repeated accesses are faster.
But the operations themselves can still consume a lot of energy, even though
they can be quickly retrieved.

We cannot say for sure which of these explanations, if any, is the actual
cause of this difference in impact on energy consumption and execution time.

7.1.3 Dynamic typing

We expected that the added runtime checks introduced by dynamic typing
would result in an efficiency overhead. In Table 6.2, we see that dynamic
typing has a big impact on all implementations. As we observed with the
garbage collection the difference does depend on the program. For example,
it only makes 100-doors consume 1.4 times more energy than the default im-
plementation, while it makes N-queens problems consume 26.7 times more
energy. This can be explained by the complexity of the program. 100-doors
is a nested for-loop, which does one array access and one array assignment
every run of the loop. In the n-queens problem, there are many more opera-
tions that are more energy intensive, like declaring and initializing big arrays
and doing complicated computations. We see the same effect on execution
time in Table 6.4. In Table 6.1 and Table 6.3, we can see that all these
differences are significant, except for the difference in energy consumption
of the 100-doors problem.

From these numbers, we can conclude that dynamic typing has a signif-
icant impact on the energy consumption and execution time of a program-
ming language in the type of numeric problems we have tested on. However,
the amount of influence can vary from program to program. The impact of
dynamic typing is due to several factors.

First, dynamic typing reduces the effectiveness of branch prediction. In
integer-only numeric programs, the processor can often successfully predict
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which branch to follow, especially with code inlining. Dynamic typing makes
these predictions less reliable, because the processor cannot predict as well
what type of value is in a variable. This reduces efficiency, since a branch
miss can be costly.

Second, dynamic typing hinders auto-vectorization. Normally for stati-
cally typed programs with many numeric operations, the compiler can per-
form optimizations, such as merging multiple operations into one vector
operation. This is more efficient and reduces energy consumption. With dy-
namic typing, however, the compiler is not sure which data types are being
used, so this optimization is not possible.

Third, the way we implemented dynamic typing, with a union type,
causes inefficient memory management. Because variables are stored in
union-types, the largest possible type determines the size of the union.
For example, an integer that normally occupies 8 bytes is now stored in a
24-byte union-type if the largest possible variable within that union is 24
bytes. This means that caching is more inefficient, increasing the energy
consumption and execution time.

In short, dynamic typing introduces several inefficiencies in both pro-
cessing and memory management, leading to higher energy consumption
and execution time. This is an important consideration when designing and
optimizing programs that rely on dynamic typing.

7.1.4 Garbage collection and bounds checking

When combining garbage collection and bounds checking we generally see in
Table 6.2 that the individual overheads of the energy consumption have an
additive nature, except for for the binary digits program. However, from the
data of that program we cannot draw any conclusions, because the standard
deviation of the default, bounds checking and garbage collection program in
Table 6.1 are too high.

This same additive relation can be seen in all programs when we look at
the execution time measurements in Table 6.4. These results are significant,
as the standard deviation in Table 6.3 shows. So in this case we can conclude
that for the execution time and energy consumption, there is an additive
relation between garbage collection with bounds checking in the type of
numeric programs that we tested on.
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7.1.5 Garbage collection and dynamic typing

When we look at the data on the energy consumption of garbage collection
combined with dynamic typing in Table 6.2, there seems to be a different
relation at first. This combination of features looks more energy efficient
than dynamic typing on its own. As with the previous combination, when
we look at Table 6.1, we can see that these differences are not significant.
Therefore, we cannot draw any conclusions about the relationship between
the energy consumption of garbage collection with dynamic typing.

In Table 6.4, we see a different relationship between the measurements
of the execution time. When we add garbage collection to a dynamically
typed program the execution time goes up more than when we add it to
a program without. As opposed to the results on energy consumption, the
standard deviation in Table 6.3 shows that these results are actually signifi-
cant. This means we can conclude that the combination of garbage collection
and dynamic typing takes more time than only dynamic typing in numeric
programs. A possible explanation for the phenomenon that garbage collec-
tion adds a bigger load when using dynamic typing compared to without
it, is that these dynamically typed variables all look like pointers to the
garbage collector. Hence, it assumes it has to garbage collect all these possi-
ble pointers, while in the original program the difference between an integer
(which did not need to be garbage collected) and a pointer was clear to the
garbage collector.

7.2 Comparing with programming language rank-
ing

Now that we know these numbers, we look back at the energy rankings in
Figure 3.1 in Chapter 3 and try to explain the differences of languages that
we see there.

The 27 languages Periera et al. investigated can all be divided into
categories based on which of the three features they have. Every one of
those categories has some average added energy consumption and execution
time. We calculate each of these by taking the average of the values in
Tables 6.2 and 6.4. For the averages of energy consumption, we discard
the values for which the normalized coefficient of variation is higher than
1.5. For those of execution time we do not discard anything, because for
those measurements all standard deviations were sufficiently small. We have
listed these categories, the languages that belong to each category, and the
average added costs:

• No features: C++, Pascal, Chapel, and Fortran. This category has no
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added features, meaning the costs (in terms of energy and time) are
the same as those of C.

• Bounds checking: Rust and Ada. This category consumes, on average,
1.1 times more energy and has a 1.06 times longer execution time.

• Garbage collection: Ocaml, TypeScript, and Hack. On average, this
category consumes 1.55 times more energy and has a 1.20 times longer
execution time.

• Bounds checking and garbage collection: Java, Swift, Haskell, C#,
Go, Dart, and F#. This category consumes, on average, 1.33 times
more energy and has a 1.40 times longer execution time.

• Garbage collection and dynamic typing: Lisp, JavaScript, Racket,
PHP, and Lua. Although we did not explicitly measure this combina-
tion (since bounds checking was already incorporated in our dynamic
typing system), we estimated the average cost by subtracting the av-
erage added costs of bounds checking from those of the combination
of garbage collection and dynamic typing. Thus, this category con-
sumes, on average, 14.25 times more energy and has an 11.90 times
longer execution time.

• Bounds checking, garbage collection, and dynamic typing: Erlang,
JRuby, Ruby, Python, and Perl. On average, this category consumes
14.35 times more energy and has an 11.95 times longer execution time.

We make a table with these values, comparing the normalized energy
consumption and execution time that these languages would have if the
calculations were correct and the normalized energy consumption and ex-
ecution time that Periera et al. measured. This can be seen in Table 7.1,
which has 27 languages ordered from most to least efficient in that category,
either energy or time.

When we look at this table, for some languages we see that our calculated
cost estimation comes pretty close to the actual costs that Periera et al. ob-
served. These languages are Rust, C++, Ada, Java, and we can add Racket
to this if we only consider the execution time. Here there are still some min-
imal differences, but these could be explained by different hardware. Here
it stands out that almost all of these languages are either compiled or use a
virtual machine.

Then there are two groups of languages that both have a significant gap
of unexplained costs, the difference between these two groups is how big the
part of the costs is that could not be explained by the three features. The
first group contains the languages Pascal, Chapel, Ocaml, Fortran, Swift,
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Total

Energy (J) Time (ms)

Periera et al. Calculated costs Periera et al. Calculated costs

C 1.00 1.00 C 1.00 1.00

Rust 1.03 1.10 Rust 1.04 1.06

C++ 1.34 1.00 C++ 1.56 1.00

Ada 1.70 1.10 Ada 1.85 1.06

Java 1.98 1.33 Java 1.89 1.40

Pascal 2.14 1.00 Chapel 2.14 1.00

Chapel 2.18 1.00 Go 2.83 1.40

Lisp 2.27 14.25 Pascal 3.02 1.00

Ocaml 2.40 1.55 Ocaml 3.09 1.20

Fortran 2.52 1.00 C# 3.14 1.40

Swift 2.79 1.33 Lisp 3.40 11.90

Haskell 3.10 1.33 Haskell 3.55 1.40

C# 3.14 1.33 Swift 4.20 1.40

Go 3.23 1.33 Fortran 4.20 1.00

Dart 3.83 1.33 F# 6.30 1.40

F# 4.13 1.33 JavaScript 6.52 11.90

JavaScript 4.45 14.25 Dart 6.67 1.40

Racket 7.91 14.25 Racket 11.27 11.90

TypeScript 21.50 1.55 Hack 26.99 1.20

Hack 24.02 1.55 PHP 27.64 11.90

PHP 29.30 14.25 Erlang 36.71 11.95

Erlang 42.23 14.35 JRuby 43.44 11.95

Lua 45.98 14.25 TypeScript 46.20 1.20

JRuby 56.54 14.35 Ruby 59.39 11.95

Ruby 69.91 14.35 Perl 65.79 11.95

Python 75.88 14.35 Python 71.90 11.95

Perl 79.58 14.35 Lua 82.91 11.90

Table 7.1: Normalized energy consumption and execution time of 27 pro-
gramming languages with both the values Periera et al. measured and the
costs we calculated.
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Haskell, C#, Go, Dart, and F#. For these languages it hence seems that
their costs in the ranking of Periera et al. should be 1 to 3 points lower.
These differences may be due to noise in our measurements or those of
Pereira et al. However, it is also possible that other factors are at play. For
example, the execution type (compiled, virtual machine, or interpreted), the
programming paradigm (imperative, object-oriented, functional, or script-
ing), or other unidentified factors could influence the results.

The second group contains TypeScript, Hack, PHP, Erlang, Lua, JRuby,
Ruby, Python, and Perl. These languages have much higher costs than the
costs we calculated based on the three features. The differences are so big
that there seem to be other factors in these language that play an big role
in the energy consumption and execution time of the program. For future
research, it is worth it to look at the differences between dynamically typed
languages like JavaScript, which is relatively efficient, and Python, which
is relatively inefficient. These two have all features in common that we re-
searched, but there seem to be other factors that cause them to behave very
differently in terms of energy consumption and execution time.
An interesting outlier in this group is TypeScript, which is the only stati-
cally typed language in this group. This is possibly, because at its core it
is still a dynamically typed language. When TypeScript gets compiled it
is first translated to JavaScript and then run as if it was JavaScript. This
means we would expect its performance to be similar to JavaScript, but it
is 5 times more inefficient. This is another difference that should be further
looked at in future research.

Finally, there are two languages that performed a great deal better than
than our calculated costs expected, Lisp and JavaScript. Note that both of
these are dynamically typed languages. A possible reason for this could be
that the implementation of their dynamic typing system under the hood is
somehow more efficient than ours, making our implementation less repre-
sentative for these languages. Or there could be other reasons that cause
this difference in estimation, for example that the interpreter, or virtual ma-
chine of these languages is just better at optimizing the handling of dynamic
types, where the C compiler is not made to do specifically that, since C is a
statically typed language. Both of these possible explanations are interest-
ing starting points for possible future research.
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Chapter 8

Conclusions

In this thesis, we investigated the impact of the programming language fea-
tures bounds checking, garbage collection, and dynamic typing on the energy
consumption and execution time of a programming language in numeric pro-
grams. We did this by implementing these features in C and measuring these
metrics on 10 different programs with and without these features. We im-
plemented the features bounds checking and dynamic typing ourselves and
used the Boehm-Demers-Weiser garbage collector for garbage collection.

Our measurements examined the impact of three features and their com-
binations on program performance. Firstly, bounds checking was found to
have minimal effect due to effective branch prediction in the absence of out-
of-bound errors. Secondly, garbage collection negatively impacts efficiency,
especially with frequent malloc() calls, affecting energy consumption and
execution time differently due to non-linear memory operations and ineffi-
cient energy use of cached data. Thirdly, dynamic typing greatly increases
both energy consumption and execution time, likely because of inefficiencies
in processing and memory management.

When combining features, garbage collection and bounds checking ex-
hibited an additive effect, while the effect of garbage collection got bigger
when combined with dynamic typing.

With these results, it is important to keep in mind that future research
is needed to verify them and further investigate the findings. One impor-
tant aspect to verify is that these results do not only hold for this specific
language C with the compiler gcc. This can be tested by repeating these
measurements and implementations in Rust (which just like C sits close to
the physical machine) and by repeating them in C using the clang compiler.
Another aspect that needs testing and verification is whether these results
apply to all types of problems or only to the numeric problems we researched.
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The reason for this research was the article by Periera et al. that made
a ranking of 27 different programming languages based on their energy ef-
ficiency and execution time. We looked back at the main results of their
article with the knowledge we gained from our own measurements. From
this reflection, we found that for some languages them having some combi-
nation of the three features completely explains their energy consumption.
For others, it did not, which is logical, since these three features are usually
not the only factors on which programming languages differ, other factors
might be execution type, programming paradigm, or something else entirely.
There were big differences between the amount of effect that was explained
by the existence of bounds checking, garbage collection, and/or dynamic
typing. These differences, possible factors that could explain them, and
what the impact is of those factors are all of interest for future research.
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[9] Jóakim von Kistowski et al. “Variations in CPU Power Consumption”.
In: Proceedings of the 7th ACM/SPEC on International Conference
on Performance Engineering. ICPE ’16. Association for Computing
Machinery, 2016, pp. 147–158.

41

https://hboehm.info/gc/gcdescr.html
https://hboehm.info/gc/gcdescr.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://www.linuxjournal.com/article/6679
https://www.ti.com/document-viewer/ina260/datasheet
https://www.ti.com/document-viewer/ina260/datasheet


[10] Stefan Marr, Benoit Daloze, and Hanspeter Mössenböck. “Cross-language
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Appendix A

Appendix

A.1 Example JSON output from server

{
"electricity consumed current":13.015040000000001,

measurements":84141,

"electricity consumed total":418145.88456979376,

"power draw":10.25

}

These variables have the following meaning:

• electricity consumed current: The electricity that was consumed
between the last measurement and the one before. So the results of
the measurements done right before this JSON was sent to output.

• measurements: The total number of measurements that have been
done on the machine.

• electricity consumed total: The total amount of energy that has
been consumed on the machine.

• power draw: The current Wattage that the machine is using, so the
amounts of Joules per second.
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