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Abstract

In the ongoing NIST competition for additional post-quantum signa-
tures, SQIsign stands out as the only candidate that uses isogenies in
its construction. The scheme is particularly suitable for cryptographic ex-
changes on small devices such as micro-controllers or key cards, as it uses
ideally-sized keys according to NIST’s standards. Additionally, the scheme’s
verification performance, critical for ensuring fast and secure communication
between such devices, was recently described by AprèsSQI, in an effort to
make the original signature more practical.

AprèsSQI is a version of SQIsign that proposes several improvements on
verification, using the number of Fp-operations as a cost metric for perfor-
mance. Namely, the model consists of the amount of multiplications M,
squaring operations S, and additions/subtractions a. This theoretical ap-
proach approximates the practical performance of verification, independent
of the device and implementation used.

In this thesis, we check the efficiency of the Fp-operations cost model
proposed by AprèsSQI by implementing their verification improvements on
a version of SQIsign that optimizes the finite field arithmetic. Our results
show that their model with S = 0.8M, M = 1, and a = 0M overpredicts the
performance of verification in practice. Therefore, we propose a new cost
model that reflects the practical results more accurately: S = 0.8M, M = 1
and a = 0.23M. In particular, we show that additions and subtractions are
more significant than AprèsSQI initially considered.

Moreover, we use our cost model to predict the practical performance of
the improvements described by AprèsSQI.
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Chapter 1

Introduction

Quantum computers will eventually change a significant part of the current
technology setting. The processing power of these machines will modify
our perception of current challenges across various domains, which range
from computer science [12] and chemistry [3], to finance [16]. And indeed,
throughout the decades, researchers consistently agreed on the inevitable
arrival and impact of quantum computers [21, 12, 1].

Cryptography represents a vital component not only for securing the in-
ternet overall, but also for protecting our online privacy and personal data.
Large enough quantum computers will obliterate current cryptographic stan-
dards (e.g. DH, ECDH, or RSA) and eventually, these will be rendered ob-
solete. In 2017, NIST initiated a call for quantum-proof signatures to pre-
vent such scenarios, resulting in the selection of two lattice-based schemes
(Dilithium and Falcon) and one hash-based (SPHINCS+) for standardiza-
tion [15]. To diversify their portfolio and reduce dependence on the security
of lattices [15], NIST also announced within the same post, an additional call
for short signatures with fast verification, preferably ”not based on structured
lattices”.

Currently, there are seven signature families still in the competition[14].
These are displayed in Table 1.1. The candidate that stands out is SQIsign
[10], as it is the unique signature that uses isogenies in its construction.
Defined by an ideal key size and good verification performance, SQIsign
represents an interesting candidate for NIST’s signature competition. Small
signatures and fast verification are critical for cryptographic exchanges on
small or embedded devices, micro-controllers, or even key cards [5, p. 2].
As the amount of such assets will only increase in the future, SQIsign has
the potential to play a very significant role in the post-quantum world.

Initially, the performance of verification in SQIsign was not impressive.
However, despite being a quite recent entry, researchers have already found
ways to substantially improve verification [5, 11, 9], making it much more
practical. The authors of AprèsSQI [5] recently described several improve-
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Type Number of Signatures

Code based 6

Isogeny-based 1

Lattices 7

MPC 7

Multivariate 10

Symmetric-based 4

Other Signatures 5

Table 1.1: Candidates of Round 1 Additional Signatures

ments by adjusting the signing process and by employing various techniques
from the literature. Accompanying the paper, the researchers also pro-
vided a proof-of-concept implementation of these optimizations using Sage
and Python. Benchmarking was primarily performed on this codebase and
on SQIsign’s official NIST implementation [2], using the number of Fp-
operations as a cost metric for performance.

1.1 Contributions

In this thesis, we intend to extend their work by providing an improved
Fp-operations cost model of SQIsign’s verification, that reflects its practi-
cal performance more accurately. We achieve this by implementing some of
the proposed improvements of AprèsSQI in a version of SQIsign that opti-
mizes the finite field arithmetic [9], and measuring their performance in clock
cycles. Then, we compare our results with AprèsSQI’s theoretical measure-
ments in terms of percentual speedups and derive a new Fp-operations cost
model that reflects these practical speedups more precisely. Finally, using
our new model, we provide predictions on the practical performance of all
SQIsign variants proposed by AprèsSQI and analyze the new speedups we
obtain1.

1.2 Related Work

SQIsign is a post-quantum cryptographic scheme that was brought out to
the public by De Feo, Kohel, Leroux, Petit, and Wesolowski [10] in 2020.
From that moment on, SQIsign established itself in the post-quantum world
by promoting very small signature and public key sizes compared to its
competitors and fast verification, key features for cryptography of small

1In this thesis, we do not consider higher-dimensional SQIsign.
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devices. However, SQIsign does pack quite significant setbacks as well: the
signing procedure is complex and difficult to understand and perhaps most
importantly, it is very slow compared to other PQC schemes. In 2022, De
Feo, Leroux, Longa, and Wesolowski [9] improved the overall performance
of the scheme and published an implementation with efficient finite field
arithmetic. The codebase written in C is publicly available2 and is suited
for precise benchmarking, due to the low-level optimizations. Therefore, we
will use it as a base for our implementations. Subsequently, Lin, Wang,
Xu, and Zhao [11] introduced valuable improvements for every procedure,
but more particularly, their verification optimizations led to an impressive
18.94% speedup in performance. We will often refer to their work throughout
our thesis.

Dartois et al recently published an improved version titled SQISignHD
[8], which further simplifies the original SQIsign and enhances signing per-
formance. However, these improvements negatively influence the verification
procedure which, as the authors acknowledged, was not their main research
focus.

Finally, Corte-Real Santos, Eriksen, Meyer, and Reijnders [5] further
improved the speed of the verification procedure and published a proof-
of-concept repository3 written in Python and Sage. However, the authors
measured the performance based on the Fp-operations standard model (i.e.
S = 0.8 · M, that is, a square operation is considered 20% less expensive
than a multiplication). Therefore, more precise measurements are required
to confirm the effectiveness of their improvements. In this thesis, we will
implement some of these optimizations in the repository that accompanies
[9] and benchmark the performance of the verification procedure using clock
cycles.

1.3 Organization of the thesis

The thesis is organized as follows. Section 2 presents the necessary back-
ground knowledge and a high-level description of SQIsign. For ease of read-
ing, we also included a list of notations used throughout the thesis. Section
3 illustrates the improvements in a three-step manner: theory, implementa-
tion, and performance, alongside our performance predictions. Finally, an
analysis of the results is shown in section 4.

1.4 Implementation availability

The code including the optimizations described in this thesis is publicly
available. Additionally, we also make available a Python implementation

2https://github.com/SQISign/sqisign-ec23
3https://github.com/TheSICQ/ApresSQI
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to be used as reference throughout the thesis. The code includes finite
field (extension) arithmetic, x-only arithmetic on Montgomery curves, and
isogeny chain computations. These can be accessed using the following links:

https://github.com/georgenadejde/SQIsignOpt

https://github.com/georgenadejde/Finite-Field-Arithmetic-
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List of Notation

The following list describes the notations used in this thesis.

Fp finite field with p elements 9

Fp2 finite field extension 10

−P inverse of a point P on an elliptic curve 10

P +Q addition of points on an elliptic curve 10

char(Fp) characteristic of a finite field 10

E denotes an elliptic curve 10

O the point at infinity 10

#E(Fp) number of points on the elliptic curve E , defined on
Fp 11

A2
K the affine plane with elements in K 11

P2 the projective plane 11

[k]P point multiplication by k on an elliptic curve 12

E(Fp) set of rational points on curve E with coordinates in
Fp 13

EA elliptic curve in Montgomery form 12

[m] multiplication-by-m map 13

N(x) the norm of x ∈ Fp2 13

j(E) the j-invariant of an elliptic curve 13(
x
p

)
Legendre’s symbol of x ∈ Fp 13

deg(φ) degree of an isogeny 14
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ker(φ) kernel of an isogeny 14

Zm cyclic group Z/mZ 14

E/G codomain curve of an isogeny with kernel G 14

E [m] m-torsion subgroup of an elliptic curve 14

AE A parameter on an elliptic curve E in Montgomery
form 15

ord(P ) order of a point on an elliptic curve 16

bits(s) Number of bits of s ∈ N. 25

x(P ) x-coordinate of point P 35
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Chapter 2

Preliminaries

2.1 Finite Fields

The reader should already be familiar with common algebraic structures
such as abelian groups or rings. Therefore, in the following paragraphs, we
will assume the basic properties of such constructions.

A finite field is simply a special type of commutative ring. More pre-
cisely, a finite set that forms an abelian group with an additive and a mul-
tiplicative operation, respectively. Therefore, each element has unique ad-
ditive and multiplicative inverses, except for the zero element (0) for the
latter.

2.1.1 Finite Field Fp

However, we always set the prime of the field to be q = pe, where p is a large
prime.

Further, we define the following operations on Fp, corresponding to the
names of the functions we used in our code:

• fp add(x,y) = (x+ y) mod p, where x, y ∈ Fp.

• fp sub(x,y) = (x+ (−y)) mod p, where x, y ∈ Fp s.t. y + (−y) ≡ 0
(mod p).

• fp mul(x,y) = (x ∗ y) mod p, where x, y ∈ Fp.

• fp div(x,y) = (x ∗ y−1) mod p, where x, y ∈ Fp s.t. y · y−1 ≡ 1
(mod p).

2.1.2 Finite field extension Fp2

In our research, we use the finite field extension Fp2 = Fp(i), with i2 = −1
and p ≡ 3 mod 4. Thus, the elements of Fp2 will be of the form a+ bi, with
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a, b ∈ Fp. This allows for its specific operations to be defined in terms of
the ones above.

Let c1 = a+ bi and c2 = c+ di, where a, b, c, d ∈ Fp. Then:

• c1 + c2 = (a+ c) + (b+ d)i

• c1 − c2 = (a− c) + (b− d)i

• c1 · c2 = (ac− bd) + [(a+ b)(c+ d)− (ac+ bd)]i

• c1/c2 =
(a+bi)·(c−di)

c2+d2

Notice that we can do an fp2 mul by using only three fp mul’s.
Because the implementation of the division operation is not as straight-

forward compared to the other operations, we included a pseudocode version
in Appendix A for reference.

Definition. The characteristic of a field represents the smallest number
of times one needs to add the multiplicative identity to get the additive
identity.

Particularly, for the aforementioned fields, the following holds:

char(Fp) = char(Fp2) = p

2.2 Elliptic Curves

Elliptic curves are one of the most exciting aspects of modern cryptography.
The computation speed, small key size, and powerful mathematical prop-
erties are the main reasons why they are the preferred choice for current
implementations of cryptographic schemes.

Formally, an elliptic curve is a pair (E ,O), where E represents a non-
singular curve and O a point called the point at infinity [19]. A non-singular
curve assures us that every point on the curve has a well-defined tangent
line [20, p. 21], a crucial aspect when performing arithmetic operations on
elliptic curves. In the same context, O acts as the identity element, being
tightly linked with Bézout’s theorem:

Theorem 2.2.1 (Bézout’s theorem). Let E be an elliptic curve and L
a line y = ax + b. Then E intersects L in exactly three points (counting
multiplicities).

If we add three such points found on E ∩ L, we end up at the point at
infinity:

P +Q+R = O.

From this, we can derive the addition law of two elliptic curve points:

P +Q = −R,
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where −R is obtained by inverting the y-coordinate. This law makes E
an abelian group with the identity element O. For the full proof, see [19, p.
51].

In this thesis, we only use elliptic curves with a special property: su-
persingularity, as defined in [17, p. 5].

Definition. An elliptic curve E defined over a finite field Fq with character-
istic p is called supersingular if and only if:

p | #E(Fq)− q − 1

We will assume from now on that every elliptic curve mentioned is su-
persingular1.

2.2.1 Affine vs projective coordinates

In the two-dimensional plane, one typically represents a point using affine
coordinates, e.g. P = (x, y), where x, y ∈ R. More generally, we denote such
a plane as the affine K-plane, where K represents a finite field. It is defined
as follows:

A2
K = {(x, y) | x, y ∈ K}

However, it is often more convenient to work in the projective plane:

P2 = {(X : Y : Z) | X,Y, Z ∈ K} \ (0 : 0 : 0) mod ∼,

with the equivalence relation ∼ defined by:

(a : b : c) ∼ (a′ : b′ : c′) ⇐⇒ ∃λ ∈ K : (a : b : c) = (λa′ : λb′ : λc′)

Hence, as opposed to the affine space, the projective space uses triples
instead of tuples to identify points.

Remark 2.2.1. The affine space defines unique points on an elliptic curve.
However, triples in the projective space may correspond to the same affine
point.

Converting an affine point to projective coordinates is done as follows:

(x, y) 7→ (x : y : 1),

Conversely,
(X : Y : Z) 7→ (X/Z, Y/Z),

1Generally, there is some confusion around the terms singular and supersingularity.
Although they might seem related, they are in fact not. In isogeny-based cryptography, a
supersingular elliptic curve is, by definition, an elliptic curve, which again, by definition,
is non-singular [19, p. 145]
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whenever Z ̸= 0.
Cryptographers tend to prefer projective coordinates over affine due to

the ability to delay divisions until the very end of the procedure. That is,
instead of performing a division immediately, we defer it by multiplying it
into the denominator Z. To retrieve the resulting x-coordinate, we simply
divide X/Z once, at the end of the execution. Since divisions are expensive
and occur regularly in cryptography, projective coordinates help minimize
the amount of division we do and thus significantly improve the execution
time of the procedures.

2.2.2 Montgomery Curves

The elliptic curves that we will be focusing on are Montgomery curves. A
curve in Montgomery form has the following equation 2:

EA : y2 = x3 +Ax2 + x,

where A is a parameter in Fp2 .
What sets it apart from other curves is its scalar multiplication algorithm

called the Montgomery Ladder (referred to as xMUL from now on); that
is, computing

P + P + · · ·+ P︸ ︷︷ ︸
k times

= [k]P

using a technique similar to the more common double and add algo-
rithm, except it only uses the x-coordinate, thus completely discarding the
y-coordinate. A simple idea that facilitates very fast curve arithmetic and
one of the main reasons why Montgomery curves are preferred in ECC or
isogeny-based cryptography [6, p. 4].

When implementing xMUL, one typically uses two additional auxiliary
functions: xDBL: x(P ) 7→ [2] x(P ) and xADD: (x(P ), x(Q), x(P−Q)) 7→ x(P+
Q). We included a pseudocode implementation of xMUL in Appendix A.

2.2.3 Finding a random rational point

Not every x-value in Fp2 we can come up with has a corresponding y-
coordinate on a Montgomery curve EA, unless the value x3 +Ax2 + x ∈ Fp2

for our chosen x is indeed a square. However, checking that an element
e ∈ Fp2 is a square is not as straightforward as one may imagine.

Definition. The set of points on an elliptic curve EA defined over Fp2 is
called the set of rational points and is denoted by E(Fp2).

2Typically, a Montgomery curve is determined by two parameters: A and B, the latter
being the coefficient of y2. However, since the arithmetic and the j-invariant (we will
introduce this notion later) formulas may only depend on A, we set B = 1 and ignore it
when defining a Montgomery curve.
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In our thesis, we often need to generate a random rational point. To
achieve this, we apply the following procedure:

1. Generate a random x ∈ Fp2 .

2. Compute the norm of x
not
= N(x) ∈ Fp.

3. Check
(
N(x)
p

)
= 1.

For details, see Appendix A.

Theorem 2.2.2. Let E1 and E2 be two elliptic curves. Then E1 is isomorphic
to E2 if and only if

j(E1) = j(E2),

where j(E) denotes the j-invariant of an elliptic curve E . A j-invariant
simply acts as a representative of the isomorphism class of an elliptic curve,
and not as a unique identifier.

The j-invariant of a Montgomery curve can be computed using only the A
parameter of the curve (for the formula on Montgomery curves, see A.1). In
isogeny-based cryptography specifically, one important use of the j-invariant
is to check if two elliptic curves are isomorphic.

2.3 Isogeny-based Cryptography

Let E and E ′ be two elliptic curves. A non-constant morphism Φ : E → E ′
which satisfies Φ(O) = O′, is called an isogeny. Since an elliptic curve
is defined as an abelian group, it follows that an isogeny is also a group
homomorphism [4, p. 19]. Namely, given P,Q ∈ E , the following relation
holds:

Φ(P +Q) = Φ(P ) + Φ(Q)

For completeness, we will also mention that an isogeny can either be
separable or ordinary. However, we will only be focusing on the former for
this thesis.

Some well-known isogenies are the multiplication-by-m maps: [m] : E →
E , which compute P 7→ [m]P , for P ∈ E .

Similar to isomorphisms, an isogeny φ : E1 → E2 of degree n also has a
unique inverse called a dual isogeny, defined as φ′ : E2 → E1, and with the
following composition properties:

φ ◦ φ′ = [n]E1 φ′ ◦ φ = [n]E2
3

3[n]Ep denotes the multiplication-by-n map on Ep.

13



Example. For a standard Montgomery curve EA, the multiplication-by-2
map [2] for the x-coordinate is defined as follows [6, p. 4]:

x 7→ (x2 − 1)2

4x(x2 + ax+ 1)
,

where a represents the curve’s parameter in affine coordinates.
The points of the form (x, 0) whose x-coordinates make the denominator

vanish, together with O, form the kernel of the map. Moreover, these points
have order 2 on EA [6, p. 4]. Later, we will give an interesting property that
ties the kernel to a particular group structure.

2.3.1 The kernel

Definition. Let Φ : E → E ′ be an isogeny. Then we can define the kernel
of Φ as follows:

ker(Φ) = {P ∈ E | Φ(P ) = O}

An important property of a separable isogeny E is that it is in one-to-one
correspondence with finite subgroups of E . More precisely, for any subgroup
G⊆ E(Fp2), there exists a unique isogeny Φ : E → E ′ (up to post-composition
with an isomorphism), such that

ker(Φ) = G and deg(Φ) = #ker(Φ)

Since the points in the kernel get mapped to infinity on E ′, we often
denote E ′ as E/G. Therefore, one can say that the kernel defines separable
isogenies uniquely [17].

2.3.2 m-torsion points

Definition. The m-torsion represents the set of points sent to O under
the multiplication-by-m map [6, p. 6]. Formally:

E [m] = ker([m] : E → E)

Coming back to multiplication-by-m maps, it has been shown that the
kernel of these maps follows a quite specific pattern.

Let us return to the doubling map presented earlier. As noted in [6, p.
5], the following relation holds:

E([2]) ∼= Z2 × Z2,

which translates to having the 2-torsion be precisely three cyclic subgroups
of order 2. The author further generalizes the result for supersingular curves,
showing that the pattern holds for any multiplication-by-m map, with m not
a power of p:

E([m]) ∼= Zm × Zm

14



2.3.3 2-isogenies

Finding an isogeny may seem a difficult task at first. However, Vélu’s for-
mulas [22] make the process quite straightforward. Without these, it would
be quite challenging to implement isogeny-based schemes reliably [18]. They
take as input an elliptic curve E and its kernel K and produce the image
curve E/K and the isogeny ϕ : E → E/K, such that ker(ϕ) = K. A relevant
fact to mention here is that these formulas are simply rational functions with
their degree equal to the size of K. Consequently, their implementation is
explicit and simple and takes linear time in the size of the kernel.

Example. Let us choose the kernel G = {O, (α, 0)} for an arbitrary Mont-
gomery curve EA. G represents a cyclic subgroup of order 2. Using Vélu’s
formulas, we obtain the following 2-isogeny that sends a point from EA to
E/G [6, p. 6]:

x 7→ x(αx− 1)

x− α

where α represents the x coordinate of a point with order 2 on EA, that
has the affine coordinates (α, 0). Further, we can use the following formula
to get the A parameter of the codomain’s curve:

AE/G = 2(1− 2α2)

One can compute 2-isogenies on any given Montgomery curve using only
these two formulas.

In practice, we encounter isogenies of degree 2e, for e > 200. Since
computing them directly would negatively influence the computation time
due to the large size of the kernel [6, p. 9], we want to separate them into
a chain of smaller degree isogenies. More precisely, isogenies of degree 2.

Suppose we want to compute a 2n-isogeny Φ : E1 → En. As explained
above, we compute it using a chain of 2-isogenies. Let the first 2-isogeny be
φ1 : E1 → E2. Such isogenies have a specific kernel that is equal to the set of
points {O,K2}, where x(K2) = α, the same value we had specified above.
Therefore, K2 must have order 2 on E1.

To ensure the existence of such a point for each isogeny in the chain, we
first find a point P with order 2e on E1. By multiplying it with the scalar
2e−1, we obtain the point K2 of order 2 and thus compute the kernel of φ1:

ker(φ1) = {O,K2}.

We then input E1 and ker(φ1) into Vélu’s formulas, which yield the map
and E2. The next step is to push P through φ1, resulting in a point that
resides on E2:

P2 := φ1(P )

15



Proposition. Let φ : E1 → E2 be a 2-isogeny andK ∈ E1 with ord(K) = 2n,
such that K lies above a non-trivial element in the kernel 4. Then

ord(φ(K)) = 2n−1

Proof. Let
K2 = [2n−1]K. (2.1)

We can then write
ker(φ) = {O,K2} (2.2)

By definition (see Section 2.3), an isogeny is a group homomorphism.
Consequently,

[2n−1]φ(K) = φ([2n−1]K).

Using 2.1 in the equation above yields

[2n−1]φ(K) = φ(K2),

From 2.2, it results that

[2n−1]φ(K) = O. (2.3)

Since K has order 2n on E1, it follows that any point [2e]K, for e < n−1,
does not lie in the kernel. Consequently, the isogeny φ does not map these
points to O. More particularly, we know that

[2n−2]φ(K) ̸= O (2.4)

Using 2.3 and 2.4, we conclude that

ord(φ(K)) = 2n−1.

■

Using the proposition above, we find that

ord(P2) = ord(P )/ deg(φ1) = 2n−1.

We then use P2 to calculate the next K2 of order 2 on E2 and proceed
similarly as with φ1. Therefore, the proved proposition ensures we can
always find the kernel of an isogeny for all 2-isogenies in the chain. More
particularly, it follows that we need to compute precisely n such 2-isogenies
to yield our desired isogeny Φ of degree 2n.

The entire procedure described above can be visualized in an isogeny
graph. The elliptic curves are represented as nodes, while the 2-isogenies
are represented as edges. Consequently, computing a chain of isogenies is
equivalent to taking steps in the isogeny graph.

4One says a point P lies above a point K if ∃s ∈ N, such that [s]P = K.
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2.3.4 SQIsign

SQIsign is one of the most compact PQC schemes in the ongoing NIST com-
petition for additional post-quantum signatures. Despite a fast verification
and small key sizes, signing with SQIsign is quite complex and slow. We
present a simple outline of how SQIsign works below. It should be noted
that what follows is an informal description of the procedures, with many
details omitted in order to maintain a focus on verification.

Setup: Find a prime p ≡ 3 mod 4 and E0(Fp2), a supersingular elliptic
curve.

Key generation: Compute an isogeny φ : E0 → EA. Then take φ as the
secret key and EA as the public key.

Commitment: The prover generates a random commitment, that is, an
isogeny φcomm : E0 → E1 and then sends E1 to the verifier.

Challenge: The verifier generates a random challenge, that is, an isogeny
φchal : E1 → E2 and sends φchal to the prover.

Response: The prover uses φcomm and φchal to compute an isogeny σ :
EA → E2 and then sends σ to the verifier.

Verification: The verifier checks if σ is indeed an isogeny from EA to E2.

The slowdown in verification comes from computing an isogeny σ of a
large degree 2e = 21000. For the prime we are using, we can only have
rational points of order 2f with f = 75. Therefore, we can only split σ into
blocks of 2f -isogenies. Ideally, we would like the number of blocks to be as
small as possible, because computing an isogeny requires costly operations,
as we will see below.

Generally, as described in [5], verification reduces to the following pro-
cedures:

FindBasis: Compute a deterministic basis ⟨P,Q⟩ of E[2f ].

FindKernel: Using the basis ⟨P,Q⟩ and s ∈ Z/2fZ (given in the signature),
compute the kernel generator K = P + [s]Q.

FindIsogeny: Using K, compute the isogeny ϕ : E → E/K and push Q
through the isogeny, that is, compute ϕ(Q).

We apply these procedures sequentially, for each isogeny in the chain.
Namely, in our case, we split σ into isogenies of degree 2f :

E1 E2 E3 · · · En,
φ1 φ2 φ3 φn−1
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such that:
σ = φn−1 ◦ φn−2 ◦ · · · ◦ φ2 ◦ φ1.

Naturally, for each isogeny φi, i ∈ {1, 2, . . . n − 1}, we find a basis
⟨Pi, Qi⟩ using FindBasis. We then compute their corresponding kernels
via FindKernel and finally, get the isogeny-maps by FindIsogeny.

As stated in [5], the twin process of finding a basis and kernel is expen-
sive, considering the length of the isogeny chain and the limitations regarding
the number of blocks we can divide it into. Therefore, improving the per-
formance of these procedures would significantly influence the efficiency of
SQIsign’s verification.
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Chapter 3

Research

3.1 Research context

The thesis intends to analyze how verification improvements presented in
AprèsSQI [5] hold up in a practical context. We achieve this by implementing
the following optimizations:

1. Non-square x-coordinates

2. xMUL with adds

The first one is by far the most impactful out of the ones described in the
thesis. The second fits nicely since it is applied on small coordinates which
the first improvement ensures. Further, we compare their performance in
terms of AprèsSQI’s [5] more theoretical cost model based on the amount
of Fp-operations, with the more practical-oriented and precise cost model
using clock cycles.

3.2 Technical details

For our implementation, we used the repository that accompanies [9]. We
will denote the original implementation by SQIsignOpt. The code was espe-
cially suitable due to the low-level optimizations of the Fp arithmetic. This
allowed us to benchmark the performance of verification more precisely in
a practical context. However, we were also limited in the primes we could
use, as the codebase is restricted to only two primes: p3923 and p6983. We
chose to implement the optimizations on the former. Our code is available
at https://github.com/georgenadejde/SQIsignOpt. We ran benchmarks
on a 1.8GHz Intel Core i7-8550U processor with Turbo Boost disabled. All
of our tests were run using the existing benchmark tool provided by the
repository. By default, the tool generates 5 random keys, signs 5 random
messages under each key, and runs verification 10 times. This yields 250
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runs in total. Our statistics are based on the average of 10 such tests, thus
equivalent to 2500 verification samples. We also make available the scripts
we had used for testing.

For reference, we provide a Python implementation that highlights the
Fp and Fp2 arithmetic, Montgomery curves operations, and isogeny com-
putations. The code is available at https://github.com/georgenadejde/
Finite-Field-Arithmetic-.

3.3 Non-square x-coordinates

In this section, we present an important optimization for computing the ver-
ification isogeny. Particularly, it enhances the performance of FindBasis.
Our goal is to compare the performance of our implementation with the
original described by [11] and with the measurements in Fp-operations illus-
trated by [5].

3.3.1 Finding a deterministic basis for E[2f ]

Originally, finding P and Q such that they form a deterministic basis for
E[2f ] reduces to the following steps:

1. Find two points P and Q

• Sample x-coordinates of the form xk = 1 + k · i, where k ∈ Fp

and k ≥ 1.

• Check if the corresponding point lies on the curve.

2. Check ord(P ) = ord(Q) = 2f

• Compute P ←
[
p+1
2f

]
P and Q←

[
p+1
2f

]
Q.

• Verify that [2f−1]P ̸= O and [2f−1]Q ̸= O.

3. Check linear independence

• Verify that [2f−1]P ̸= [2f−1]Q.

• Otherwise: discard Q and re-sample.

As one may observe, this procedure is quite complex and computationally
heavy. Fortunately, Lin, Wang, Xu, and Zhao [11, § 5.1, Th. 3] described an
optimization that enhances the performance of verification by almost 19%.
In [5], the improvement is described more generally and is benchmarked
using the Fp-operations cost model.

More precisely, [11] showed that in the case that [2f−1]P = (0, 0), we
can speed up the generation of the second torsion point Q by sampling with
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non-square x-coordinates. AprèsSQI’s [5] generalizes this result, explaining
how, given a point P of order 2f above a 2-torsion point (thus not necessarily
above (0, 0)), we can determine the second point Q of order 2f . Moreover,
to ensure linear independence check, we find a point Q with 2f -torsion that
is not above (0, 0). By using this improvement, we can safely skip half of
step 2 and the entire step 3, which enhances the performance significantly.

For more details, see the proofs in [5, [§ 5.1, Th. 2] and [11, [§ 5.1, Th.
3].

Consequently, to generate the second torsion point Q, we only have to
do the following:

1. Sample non-square xQ ∈ Fp2 .

2. Check that x3Q +Ax2Q + xQ is a square.

3. xMUL Q by the cofactor.

Moreover, since non-squareness is only dependent on the prime p and
not on an elliptic curve [5], we can pre-generate a list of these non-square
coordinates for every prime.

3.3.2 Implementation

In this section, we present details about the implementation of the above
optimization, which we denote as SQIsignOpt(LXWZ). In terms of modifica-
tions, we only adjusted the function deterministic second point() from
the original SQIsignOpt.

First, we proceed to generate a list of non-square coordinates using the
sampling function presented in Algorithm 1. The output of this function
allows us to then instantiate an array with possible candidates Q’s. We
decided to include 15 such points in the array. Since our isogeny has degree
21000 and our f = 75 (i.e. the number of blocks), it means we need to
compute 13 isogenies of degree 2. Unless we are extremely unlucky, the 15
candidates from the array should accommodate for finding a suitable point
that reside on each curve in the chain. Our testing confirms this.

For sampling, although the original function uses slightly different se-
quences, we decided to follow the original sequence described by NIST [2]
to generate the xQ’s:

xQ = 1 + k · i,

choosing k as small as possible. Since points are represented in projective
coordinates, we set XQ = 1 + k · i and Z = 1.
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Algorithm 1 Generate sample point

Input: k ∈ N
Output: A candidate point Q with non-square x-coordinate.
1: Q← samplePoint(k) ▷ xQ = 1 + k · i
2: if not fp2 issquare(xQ) then ▷ check xQ is non-square
3: arrayAdd(Q) ▷ add point to the array
4: end if
5: update(k) ▷ k ← k + 1

We add the sampled values that turned out to have a non-square x-
coordiante to an array lwxz, which is initialized in deterministic second point().
After checking if the point resides on the curve, we multiply it by the cofac-
tor p+1

2f
. This is because a random point always has an order that divides

p+1 and by sampling it with non-square x-coordinate, we obtain a point of
order 2f · g, for some unknown g that divides the cofactor. Therefore, scalar
multiplying by the cofactor ensures that our point has order 2f . The entire
procedure is presented in Algorithm 2.

Algorithm 2 deterministic second point

Input: cofactor ∈ Fp, A ∈ Fp2 , lwxz = [Q1, Q2, . . . ]
Output: Q ∈ Fp2 . such that Q ∈ E[2f ].
1: for Qi in lwxz do
2: if is on curve(Qi, A) then
3: Q← xMUL(cofactor, Qi, A) ▷ [cofactor]Qi

4: return Q
5: end if
6: end for

3.3.3 Performance

In this section, we present benchmarks comparing SQIsignOpt and SQIsignOpt(LWXZ).
The results are summarized in Table 3.1.

Table 3.1: Timings comparing the original implementation SQIsignOpt and
SQIsignOpt(LWXZ). Results are expressed in millions of clock cycles.

Prime Implementation Cycles (mil)

p3923
SQIsignOpt 32.963

SQIsignOpt(LWXZ) 28.273

Speedup 14.22%
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We notice a significant difference in performance between the two im-
plementations, yielding a speedup of 14.22%. If we compare it with [11]’s
original results on the same prime (and implemented in the same codebase),
we notice that the speedup we obtained is slightly lower (18.94%). We be-
lieve the difference comes from the additional techniques employed by the
authors to further improve their implementation. These were adapted from
the literature and not mentioned explicitly in their paper [11, p. 26].

Table 3.2 presents the results obtained by AprèsSQI [5] when implement-
ing the same improvements, measured in number of Fp-operations. The
authors used the official NIST submission [2] as their codebase, referred
to as SQIsign(NIST), while their implementation including the non-square
coordinates is referred to as SQIsign(LWXZ).

Table 3.2: Comparison between NIST’s submission implementation [2] and
AprèsSQI’s [5] implementation of LWXZ. The latter was included in the
former’s codebase. Results are expressed in terms of 103 Fp-multiplications,
using S = 0.8 ·M.

Prime Implementation Fp-operations

p1973
SQIsign(NIST) [2] 500.4

SQIsign(LWXZ) [5] 383.1

Speedup 23.44%

If we compare the two speedups, we notice a difference of less than
10% between the two. The Fp-operations model seems to overestimate the
correct performance gain by a factor of 1.65. However, considering that the
two implementations run on different primes (p3923 and p1973, respectively),
we believe the factor to be slightly smaller in practice. The reason is that
if we were to run SQIsignOpt(LWXZ) on a smaller prime, it would result in
a higher speedup which would lead to a smaller difference in comparison to
SQIsign(NIST).

3.4 xMUL with adds

In this section, we consider an optimization for xMUL described by [5]. Our
goal is to see how the improvement maps to a more practical context, that
is, how the performance in Fp-operations relates to the one in clock cycles.

3.4.1 Taking advantage of small coordinates

As described in the previous section, finding a second basis point requires
an xMUL by the cofactor to ensure the point has order 2f . Since during the
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verification phase we need to generate a basis quite frequently, improving
xMUL would greatly benefit the performance.

In AprèsSQI [5], the authors describe several improvements for xMUL

which essentially optimize the Fp2-multiplications used in the procedure.
For our research, we will focus on one of these. Specifically, we will take
advantage of the small x-coordinate of the second torsion point. The previ-
ous section highlighted how we can generate such x-coordinates of the form
1+ki, where k ∈ Fp and k is chosen as small as possible. When multiplying
by a scalar in xMUL, the authors of [5] claim that if we replace an fp2 mul

by xQ with 1+k additions, we save around 3M per bit of the scalar. This is
explained by how fp2 mul is originally implemented. As shown in 2.1.2, we
can do an fp2 mul with 3 fp mul’s and 5 fp add’s1. However, we show in
the next section that if we replace an fp2 mul by additions, it costs 2k + 2
additions instead, for some pre-determined k ∈ N. Since [5] ignored addi-
tions in their cost model, implementing an fp2 mul with additions implies
saving the 3 fp mul’s that were originally used in its definition.

For reference throughout the section, an example implementation of
xMUL using xDBL and xADD is available in Appendix A, more precisely Algo-
rithm 6, Algorithm 5 and Algorithm 4 respectively.

3.4.2 Implementation

Let S,Q ∈ Fp2 , such that

S = a+ bi Q = 1 + ki,

where a, b, k ∈ Fp. Then we can write their multiplication as follows:

(a+ bi) · (1 + ki) = a+ bi+ ki · (a+ bi)

= a+ bi+ kai− bk

= (a− bk) + (b+ ak)i

(3.1)

From 3.1, we observe that we only need to calculate two Fp-multiplications
(bk and ak) and two Fp-additions (a + (−bk) and b + ak). This results in
precisely 2k + 2 Fp-additions or equivalently, k + 1 Fp2-additions.

We implemented this idea in SQIsignOpt(LWXZ) by adjusting xMUL.
The existent xMUL calls only one function: xDBLADD, which combines the
functionalities of xDBL and xADD. Therefore, it has the parameters xP , xQ,
xP−Q and A. As explained in Appendix A, if the first two change values
quite frequently, the third one representing their difference remains constant
throughout the execution. In our case, the difference is always the second
torsion point that we previously generated. Furthermore, in xDBLADD, there

1For simplicity, we treat subtractions equally in weight with additions. Therefore, we
replace the number of subtractions with the same amount of additions in our measure-
ments.
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is only one Fp2-multiplication by xP−Q that we refactor using additions. A
pseudocode implementation is given in Algorithm 3.

Algorithm 3 fp2 mul with additions

Input: S,Q ∈ Fp2 , with S = a+ bi and Q = 1 + ki, a, b, k ∈ Fp

Output: S ·Q ∈Fp2

1: sum1 ← 0
2: sum2 ← 0
3: for i = 1 to k do
4: sum1 ← sum1 + b ▷ a · k
5: sum2 ← sum2 + a ▷ b · k
6: end for
7: sum1 ← (−1) · sum1 ▷ - b · k
8: SQre ← a+ sum1 ▷ a− bk
9: SQim ← b+ sum2 ▷ b+ ak

3.4.3 Performance

In this section, we analyze the performance of xMUL using both cost met-
rics. We denote the original xMUL implementation by xMUL* and the one
that replaces fp2 mul’s with additions by xMUL+. Finally, their performance
comparison helps us derive a more precise Fp-operations model.

As mentioned above, when generating the second torsion point, we use
xMUL with the cofactor as a scalar. The cofactor is constant throughout the
execution and for our specific prime p3923, the cofactor has 188 bits. We
denote this by bits(s) = 188.

Moreover, we define the performance of a function T in terms of Fp-
operations as FpO(T ) and in thousands of clock cycles as CC(T ).

Fp-operations model

Further, we present the measurements of both types of xMUL in terms of the
Fp-operations model, closely following AprèsSQI’s [5] cost metrics. There-
fore, we consider S = 0.8, M = 1 and a = 0.

In both xMUL* and xMUL+, the function xDBLADD is called several times.
However, in the case of xMUL+, one M is replaced by (k + 1)a. Without
loss of generality, we choose k as the average of its values in 250 runs of
verification. More precisely, we observe which second torsion points are
chosen from the pre-generated list and average their corresponding k val-
ues(for the complete list of values, see the code on https://github.com/

georgenadejde/SQIsignOpt). Consequently2, rounded to the nearest in-
teger, we choose k = 11. Therefore, counting the number of operations in

2We measured the average value of k to be 10.52. For reference, the first 4 values of k
for p3923 in the corresponding list of second torsion points are 9, 10, 11 and 15.
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both variants yields

FpO(xDBLADD*) = 4S+ 8M+ 8a FpO(xDBLADD+) = 4S+ 7M+ 20a,

thus replacing 1M by 12a. However, since the original model ignores
additions, the above equations are equivalent to

FpO(xDBLADD*) = 4S+ 8M FpO(xDBLADD+) = 4S+ 7M

Additionally, we can extend the measurements to the entire xMUL. As ex-
plained in the previous sections, xMUL calls the underlying function xDBLADD

precisely bits(s) = 188 times. Hence,

FpO(xMUL*) = 188 · (4S+ 8M) FpO(xMUL+) = 188 · (4S+ 7M)

The final numbers obtained by replacing the values from the model inside
the two equations are presented in Table 3.3.

Table 3.3: Performance of the two xMUL implementations.

Implementation Fp-operations

xMUL* 2105.6

xMUL+ 1917.6

Speedup 8.92%

Clock cycles model

We compare these theoretical measurements with our benchmark in clock
cycles. We computed the average performance of both types of xMUL and
displayed them in Table 3.4.

The benchmark presents a substantial performance decrease of 15.5%
between the two xMUL implementations. However, the overall performance
is not impacted as significantly, with a downgrade of only 2.65%.

More formally, it follows that

CC(xMUL*) = 354, 623 CC(xMUL+) = 409, 560

The results imply that the estimates based on the Fp-operations model
are again overpredicting, but this time with higher consequences. Theo-
retically, one expected a positive performance gain, while in practice, the
changes impacted the performance negatively.

Consequently, this means additions are more significant in performance
than AprèsSQI’s model [5] initially predicted.
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Table 3.4: Performance comparison between xMUL* and xMUL+. Results are
expressed in clock cycles.

Implementation Cycles Overall (mil)

xMUL* 354,623 28.273

xMUL+ 409,560 29.025

Speedup -15.5% -2.65%

Finding a better model

We want the Fp-operations model to predict the performance in clock cycles
as precisely as possible. However, the results presented above in Table 3.3
and Table 3.4 show that the model does not perform as expected.

Further, we present our approach for creating a more precise model based
on the amount of S, M, and a, that would reflect the performance difference
in clock cycles.

We concluded in the previous section that additions should not be ig-
nored in measuring performance. Therefore,

FpO(xMUL*) = 188·(4S+8M+8a) FpO(xMUL+) = 188·(4S+7M+20a),

with a ̸= 0.
Based on the -15.5% speedup in CC performance, we can compute the

expected amount of Fp-operations for xMUL+:

FpO(xMUL+) = FpO(xMUL*) + 15.5% · FpO(xMUL*) = 2431.9

We then proceed to solve the following system of equations:{
188(4S+ 8M+ 8a) = 2105.6

188(4S+ 7M+ 20a) = 2431.9
(3.2)

Using 3.2, we intend to find a suitable value for a that indicates the differ-
ence in clock cycles performance between the two xMUL variants. Moreover,
we want our Fp-operations cost model to reflect the number of multiplica-
tions we use. Therefore, we assume M = 1 and S = 0.8 . From 3.2, it then
follows that {

4S+ 8M+ 8a = 11.2

4S+ 7M+ 20a = 12.9

Using the first equation into the second yields

12a−M = 1.7 (3.3)
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Substituting M = 1 in 3.3, yields

a = 0.23,

rounded to two decimals. Therefore, we conclude

S = 0.8M M = 1 a = 0.23M.

If we apply this model to the performance in Fp-operations of xMUL+, we
get that

FpO(xMUL*) = 188 · (4S+ 8M+ 8a) = 2451.5

FpO(xMUL+) = 188 · (4S+ 7M+ 20a) = 2782.4,

yielding a predicted speedup of -13.5%, which is close to the speedup in
practice of −15.5%, and more precise than the original model’s prediction
of 8.92%.

3.5 Performance predictions

In this section, we present our predictions regarding the performance of the
SQIsign variants described in [5]. We estimate the performance in cycles
of these implementations relying on our proposed Fp-operations model and
benchmark results presented in Section 3.3 and Section 3.4. Note that these
are just our general predictions and should not be considered precise indi-
cations of their practical performance.

Table 3.5 presents the implementations on different primes described by
AprèsSQI in their paper [5], together with their variants. The table depicts
smaller speedup factors compared to the ones presented by AprèsSQI. Our
speedup factors for the unseeded and seeded versions of p7 in comparison
to SQIsign(NIST) are 1.89 and 2.23, contrary to [5]’s 2.37 and 2.80, respec-
tively. Moreover, the same variants in comparison to SQIsign(LWXZ) yield
1.62 and 1.92, as opposed to 1.82 and 2.15.

For p4’s uncompressed version, we predict a speedup factor of 3.55 in
comparison to SQIsign(NIST) and 3.05 in comparison to SQIsign(LWXZ).
These numbers are slightly lower compared to AprèsSQI’s predictions of 4.46
and 3.41, respectively.
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Table 3.5: Performance comparison between different implementations de-
scribed by [5] in terms of 103 Fp-multiplications, together with our predic-
tions expressed in millions of clock cycles.

prime Implementation Variant AprèsSQI’s model [5] Our prediction

p1973

SQIsign(NIST) [2] - 500.4 32.963

SQIsign(LWXZ) - 383.1 28.273

AprèsSQI unseeded 276.1 22.827

AprèsSQI seeded 226.8 18.753

p7

AprèsSQI unseeded 211.0 17.439

AprèsSQI seeded 178.6 14.760

AprèsSQI uncompressed 103.7 8.576

p4

AprèsSQI unseeded 185.2 15.314

AprèsSQI seeded 160.8 13.291

AprèsSQI uncompressed 112.2 9.276
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Chapter 4

Conclusions

In this thesis, our goal was to check how the Fp-operations cost model pro-
posed by AprèsSQI [5] corresponds to the practical cost model in clock cy-
cles. We implemented two different improvements on the codebase provided
by [9] and measured their performance. Table 4.1 reports our benchmarking
results.

Table 4.1: Performance comparison of different SQIsign implementations.
Results are expressed in clock cycles.

Implementation xMUL Overall (mil)

Original 383,413 32.963

Original(LWXZ) 354,623 28.273

Original(LWXZ Adds) 409,560 29.025

The Fp-operations cost model eliminates the dependence on the level
of optimization of the Fp arithmetic and the hardware running SQIsign
[5], but its general nature implies that it may lack precision. We used
an implementation that has highly optimized Fp arithmetic [9] to rigorously
measure some of the verification improvements AprèsSQI proposed, and thus
test the efficiency of their cost model. We showed that the Fp-operations
model overpredicts the real speedup by a factor of 1.65 for the non-square x-
coordinates optimization. In the case of xMUL with adds, we established that
the theoretical cost model predicts a positive speedup instead of a negative
one, as shown in Table 4.2.

Based on these measurements, we were able to adjust the Fp-operations
cost model such that it reflects the practical speedup more accurately:

S = 0.8M M = 1 a = 0.23M

.
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Thus concluding that additions and subtractions are more significant
than AprèsSQI initially considered in their model.

Moreover, we also provide estimates of the performance in practice of
the implementations described by AprèsSQI in their paper based on our
model. These are not precise enough to reflect the actual performance of
these implementations, but they give a general overview of the expected
performance.

As of future work, we would like to implement the rest of the proposed op-
timizations in [5] and compare the two cost models further. Additionally, we
would like to test our own proposed cost model against these improvements,
essentially verifying its effectiveness against a larger pool of implementations
and adjusting it accordingly.

Table 4.2: Performance comparison of different xMUL implementations. Re-
sults are expressed in Fp-operations and clock cycles.

Implementation AprèsSQI’s model [5] Our model Cycles

xMUL* 2105.6 2451.5 354,623

xMUL+ 1917.6 2782.4 409,560

Speedup 8.92% -13.5% -15.5%
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Sina Schaeffler, and Benjamin Wesolowski. SQIsign: Al-
gorithm specifications and supporting documentation. Na-
tional Institute of Standards and Technology, 2023. URL:
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/

documents/round-1/specfiles/sqisign-spec-web.pdf.

[3] Hai-Ping Cheng, Erik Deumens, James K Freericks, Chenglong Li, and
Beverly A Sanders. Application of quantum computing to biochemi-
cal systems: A look to the future. Frontiers in chemistry, 8:587143,
2020. URL: https://www.frontiersin.org/journals/chemistry/

articles/10.3389/fchem.2020.587143/full.

[4] Gary Cornell, Joseph H. Silverman, and Glenn Stevens, edi-
tors. Modular Forms and Fermat’s Last Theorem. Springer,
New York, NY, 1997. URL: https://link.springer.com/10.1007/
978-1-4612-1974-3, doi:10.1007/978-1-4612-1974-3.

[5] Maria Corte-Real Santos, Jonathan Komada Eriksen, Michael Meyer,
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Appendix A

Appendix

In this section, we present in more technical detail algorithms and formulas
we used throughout the thesis.

A.1 Elliptic curve arithmethic

The arithmetic on Montgomery curves differs slightly compared to other
variants of elliptic curves, mainly because it only uses the x-coordinate.
Therefore, we tend to ignore the y-coordinate of a point and instead repre-
sent it solely by its x-coordinate, denoted by x(P ), for P ∈ EA. As argued
in the thesis, we use projective instead of affine coordinates for efficiency
reasons. Hence,

P = x(P ) = XP /ZP ,

for P ∈ EA, where XP , ZP ∈ Fp2 .
The Montgomery Ladder [13] is a simple and fast method to perform

scalar multiplication on different types of elliptic curves. Typically named
xMUL in the isogeny-based cryptography field, it is implemented using two
additional functions: xADD and xDBL.

For both algorithms, we denote O and T to be points in projective
coordinates of the following form:

O = (a : 0) T = (0 : b),

with a, b ∈ Fp2 and a, b ̸= 0.
For xADD, besides the two points we want to add, we also need a third

parameter: the difference between these two points. Although it might seem
peculiar to define the addition of points in terms of their difference, they
are in fact mathematically indistinguishable. However, we do not need to
compute the difference separately. Instead, we use one of the properties
of the Montgomery Ladder which ensures that whenever we have to call
xADD on two points R0 and R1, their difference will always be the same: P ,
precisely the point which we want to multiply by scalar s.
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Algorithm 4 Point Addition on Montgomery Curve (xADD)

Input: P = (XP : ZP ), Q = (XQ : ZQ), P −Q = (XP−Q : ZP−Q) ∈ EA
Output: P +Q = (XP+Q : ZP+Q) ∈ EA
1: if (P −Q) = O or (P −Q) = T then
2: return O
3: else
4: V0 ← fp2 add(XP , ZP )
5: V1 ← fp2 sub(XQ, ZQ)
6: V1 ← fp2 mul(V1, V0)
7: V0 ← fp2 sub(XP , ZP )
8: V2 ← fp2 add(XQ, ZQ)
9: V2 ← fp2 mul(V2, V0)

10: V3 ← fp2 add(V1, V2)
11: V3 ← fp2 mul(V3, V3)
12: V4 ← fp2 sub(V1, V2)
13: V4 ← fp2 mul(V4, V4)
14: XP+Q ← fp2 mul(ZP−Q, V3)
15: ZP+Q ← fp2 mul(XP−Q, V4)
16: return (XP+Q, ZP+Q)
17: end if

For point doubling, we will also need the A parameter of the curve. As
[5] observed, using A in affine coordinates instead of projective improves the
speed of xDBL since it requires one less Fp2-multiplication.

Algorithm 5 Point Doubling (xDBL)

Input: P = (XP : ZP ) ∈ EA, A ∈ Fp2

Output: [2]P = (X[2]P , Z[2]P ) ∈ EA
1: if P = O or P = T then
2: return O
3: else
4: V1 ← fp2 add(XP , ZP )
5: V1 ← fp2 mul(V1, V1)
6: V2 ← fp2 sub(XP , ZP )
7: V2 ← fp2 mul(V2, V2)
8: x[2]P ← fp2 mul(V1, V2)
9: V1 ← fp2 sub(V1, V2)

10: c1← fp2 add(A, 2)
11: V3 ← fp2 mul(fp2 div(c1, 4), V1)
12: V3 ← fp2 add(V3, V2)
13: z[2]P ← fp2 mul(V1, V3)
14: return (x[2]P , z[2]P )
15: end if
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Finally, the Montgomery Ladder combines both xADD and xDBL. Notice
that we use two points R0 and R1 that are initialized with P and [2]P ,
respectively. The difference of P will be kept through the whole process,
which enables us to easily provide the third parameter for xADD. Moreover,
similar to other scalar multiplication algorithms such as square and multiply,
the scalar needs to be traversed bit by bit:

Algorithm 6 Montgomery Ladder (xMUL)

Input: k = bn−1bn−2 . . . b1b0, with bi ∈ {0, 1} and bn−1 = 1, P = (XP :
ZP ), A ∈ Fp2

Output: [k]P = (X[k]P , Z[k]P ) ∈ EA
1: if P = O or P = T then
2: return O
3: end if
4: R0 ← P
5: R1 ← xDBL(P,A)
6: for bit in k do
7: if bit = 0 then
8: R1 ← xADD(R0, R1, P )
9: R0 ← xDBL(R0, A)

10: else
11: R0 ← xADD(R0, R1, P )
12: R1 ← xDBL(R1, A)
13: end if
14: end for
15: return R0

For even more details about the arithmetic on Montgomery curves, see
the paper by Costello and Smith [7].

Finally, the j-invariant of a Montgomery curve is denoted by the following
formula:

j(EA) =
256(a2 − 3)3

a2 − 4

A.2 Finite field operations

In this section, we present the implementation of division in Fp2 . Essentially,
the algorithm uses the following idea:

a+ bi

c+ di
=

(a+ bi) · (c− di)

c2 + d2
= [(a+ bi) · (c− di)] · (c2 + d2)−1,

where a, b, c, d ∈ Fp.
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Algorithm 7 Fp2 division (fp2 div)

Input: c1 = a+ bi, c2 = c+ di ∈ Fp2

Output: c1/c2 ∈ Fp2

1: conj2 ← getConj(c2) ▷ c− di
2: N ← fp2 mul(c1, conj2) ▷ (a+ bi) · (c− di)
3: norm← fp2 mul(c2, conj2) ▷ c2 + d2

4: D ← fp inv(norm) ▷ (c2 + d2)−1

5: R← fp2 mul(N,D)
6: return R

A.3 Generating a random rational point

In isogeny-based cryptography, we often need to generate random points on
elliptic curves. And since we are using fast x-only arithmetic, we only need to
generate x-coordinates. However, not all values are valid x-coordinates. An
additional check needs to be done using the curve equation. More precisely,
we need to show that the point which corresponds to our randomly generated
x-coordinate lies on the elliptic curve. To prove this, we plug in the x-
coordinate into the curve’s equation and check if the right-hand side is a
square.

An x-coordinate is a value in Fp2 . Therefore, when we plug it into the
curve’s equation, we get that

y2 = a+ bi,

for some a, b ∈ Fp. Computing y2 is shown in Algorithm 8.

Algorithm 8 Compute RHS of EC equation

Input: x ∈ Fp2 , A ∈ Fp2

Output: x3 +Ax2 + x
1: x2 ← fp2 pow(x, 2) ▷ x2

2: a sq ← fp2 mul(A, x2) ▷ Ax2

3: x3 ← fp2 pow(x, 3) ▷ x3

4: add1 ← fp2 add(x3, a sq) ▷ x3 +Ax2

5: y2 ← fp2 add(add1, x) ▷ x3 +Ax2 + x
6: return y2

Further, we need to show that ∃c, d ∈ Fp such that

a+ bi = (c+ di)2.

Showing that a complex number is a square represents a difficult prob-
lem. However, instead of working in Fp2 , we can use a smart idea and instead
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work in Fp. Any complex number a+ bi has a norm, which is equal to

(a+ bi)(a− bi) = a2 + b2,

and trivially
a2 + b2 ∈ Fp.

Finally, we use Legendre’s symbol to check if our Fp value is indeed a
square. Legendre’s symbol is defined as follows:

(
α

p

)
= α

p−1
2 =

1, α is a square.

−1, α is not a square.

Therefore, we only need to perform one more exponentiation to complete
our algorithm. This is shown in Algorithm 9.

Algorithm 9 Legendre’s symbol

Input: q ∈ Fp

Output: True if q is a square, False otherwise.
1: pw ← fp pow(q, p−1

2 )
2: if pw = 1 then
3: return True

4: else
5: return False

6: end if
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