
Bachelor’s Thesis Computing Science

Radboud University Nijmegen

FPGA High Performance Computing

Analysing the use and performance of High Level Synthesis toolchains

Author:
Jasmijn Bookelmann
s1052991

First supervisor/assessor:
Prof. Sven-Bodo Scholz

Second assessor:
Dr. Mart Lubbers

August 11, 2024

Abstract

This bachelor thesis is about the evaluation of High Level Synthesis tool
chains for Field Programmable Gate Arrays (FPGAs). An FPGA is a device
which can be reprogrammed with developed hardware circuits. HLS is used
to generate this circuit: it is a tool which translates a high level language
into a circuit design.

We evaluate how well FPGA HLS tool chains can be used for High Per-
formance Computing, and how much hand optimisation and low-level hard-
ware knowledge about the FPGA board is required. In order to accomplish
this, we conduct two case studies using Vitis HLS. A vector addition and
a 2D 5-point stencil computation. For both of these case studies we start
with a naive version of the implementation, and then iteratively attempt
to improve the performance. Then we compare the performance of final
implementation against a parallel CPU and GPU version, and the energy
consumption of the FPGA against the GPU.

Our results show that there is more than a 200-fold difference between a
non optimised version and a hand optimised version. In addition, in order
to make these improvements, domain knowledge of hardware design and the
card structure is required. Our comparisons against a CPU and GPU show
that the CPU and GPU had better performance than the FPGA, however
the energy consumption of the FPGA is better than that of the GPU.

Contents

1 Introduction 3

2 Background 5
2.1 FPGAs . 5
2.2 High Level Synthesis . 6
2.3 The accelerator card . 7
2.4 Using Vitis . 8

2.4.1 Host code . 8
2.4.2 Kernel code . 9
2.4.3 Configuration files . 10
2.4.4 AXI . 10

2.5 OpenCL . 11
2.6 Performance Metrics . 11

2.6.1 Performance . 12
2.6.2 Performance per Watt 12

3 Research Approach 13
3.1 General approach . 13
3.2 Technical approach . 14

3.2.1 Running code . 14
3.2.2 Performance measurement 14
3.2.3 Energy measurement 18

4 Vector addition 22
4.1 Naive solution . 22
4.2 AXI port optimisation . 23

4.2.1 Design . 23
4.2.2 Implementation . 25
4.2.3 Results . 29

4.3 Using multiple DDR cards . 29
4.3.1 Design . 29
4.3.2 Implementation . 30
4.3.3 Results . 30

1

4.4 Multiple FPGA kernels . 31
4.5 Comparison to GPU and CPU 33

4.5.1 Implementation . 33
4.5.2 Performance . 34
4.5.3 Energy consumption 35

5 5-point stencil computation 36
5.1 Naive implementation . 36
5.2 Getting the code to work . 38

5.2.1 Decreasing the amount of accesses to the coefficients
port . 38

5.2.2 Adding a cache to the in port 39
5.3 Improvements by improving dataflow 40

5.3.1 Initial Design . 40
5.3.2 Improvements by widening the dataflow width 41
5.3.3 Implementation . 43
5.3.4 Results . 46

5.4 Comparison to GPU and CPU 47
5.4.1 Implementation of CPU and GPU 47
5.4.2 Performance . 48
5.4.3 Energy consumption 49

6 Related Work 50

7 Conclusions 52
7.1 Practical observation . 53

7.1.1 Technical installation and use process 53
7.1.2 Compilation times . 53

7.2 Future work . 54

A Appendix 59
A.1 Example of host code . 59
A.2 Host code with multiple kernels 61
A.3 Stencil code . 63

2

Chapter 1

Introduction

In the 1977 Turing award lecture, the Von Neumann bottleneck or ”memory
wall problem” is established: Every time a typical von Neumann computer
executes a single step, it has to fetch an instruction from a store, fetch the
data, perform this single instruction, and store the result.

There are two important limitations due to the memory wall problem:
Data movement is greatly limited by memory bandwidth. In addition, there
is high power consumption, as the majority of power consumption is caused
by moving data between computing and off-chip memory units [26]. Both
of these limitations have only increased with current development: CPUs
can process data even faster compared to their memory bandwidth because
of pipelining and multithreading. And power consumption has become a
bottleneck in and of itself since the breakdown of Dennart scaling, meaning
that smaller chips consume more energy.

We can avoid these limitations by using Field Programmable Gate Arrays
(FPGAs). FPGAs are devices on which developers can program custom
circuits. This means that it is possible to program custom data paths,
unlike CPUs and GPUs, which both rely on a fixed circuit. FPGAs don’t
have to fetch instructions, they are built into the physical implementation
itself and data ”flows through this implementation” [20]. This means that
FPGAs consume relatively little power, as there is no overhead from fetching
instructions. Due to these benefits FPGAs have slowly been adopted as
hardware accelerators over the past years. [21].

However, there is a disadvantage when employing FPGAs: they are dif-
ficult to program. While developers are able to make use of custom circuits,
this also means they have to define custom-made circuits.

Most FPGAs are programmed using hardware description languages
(HDLs). These languages define the individual wires and gates of a cir-
cuit. Because of this, a lot of development time and hardware expertise is
required when programming using these languages.

For the past decades there has been research in order to solve this,

3

through the development of High Level Synthesis tools. These tools take
a higher level description, such as a high level programming language, and
then compile this to a circuit design. [7].

This thesis investigates the effectiveness of one instance of these HLS tool
chains. We do this by implementing two applications on the FPGA. First a
vector addition, and secondly a 5-point 2D stencil computation. The vector
addition has low complexity. This allows us to focus on proper configuration
and optimising the throughput of the FPGA. The stencil computation has
higher complexity and memory access patterns. This enables us to focus on
the implementation of the problem itself.

We initially write a ’naive’ version of both these programs, and see how
well these perform. Then we iteratively try to improve the performance,
looking at how much performance increase we get and how much domain
knowledge is required for these optimisations. Finally we compare the per-
formance of the resulting implementation to a CPU and GPU implementa-
tion, and the energy usage to a GPU implementation.

While there is a variety of devices and tools available, we use the available
AMD Alveo U200 accelerator card, which we program using Vitis, as this is
the environment AMD provides for the card.

4

Chapter 2

Background

2.1 FPGAs

GPU and CPUs both have fixed hardware: Their circuitry is fixed upon
production and cannot be changed. The way CPUs and GPUs execute
tasks is by reading instructions. Instructions tells the CPU what to do, for
example to add two items together, or to move a piece of data from one
location to another.

An FPGA is different, it does not have fixed hardware. Instead it acts
as a set of gates, registers and wires which can be connected in any way by
programming it. This allows developers to design custom circuits to execute
specific tasks.

FPGAs can be considered a more general form of a CPU or GPU. For
example, it is theoretically possible to program a CPU on an FPGA. How-
ever, FPGAs are not just a better version of CPUs or GPUs. In order to
achieve the flexibility of dynamic hardware, constraints are introduced on
the possible circuits which can be programmed onto an FPGA.

Resource limits An FPGA has a limited amount of ”space”. Broadly
speaking, FPGA space is measured in lookup tables (LUTs), block RAM
(BRAM) and digital signal processing blocks (DSPs). LUTs are used for
the logic operations, BRAMS are used for storing data and DSPs are used
for arithmetic operations.

There is a finite amount of each of these on the FPGA, limiting the
circuit design. For example if you want to allocate memory on the FPGA
to store a very large array, this would be limited by the BRAM space.

Clock speed A clock is a device which generates pulses for the hardware
circuit, for every pulse the circuit goes into it’s next state, so it ”updates”.
The frequency of the pulses is called the clock frequency. The higher the
clock frequency, the quicker the state of the circuit updates, so the faster

5

a program executes. Clock speed cannot be arbitrarily increased, as every
time a pulse is sent, the circuit needs to first be stable again. If the clock
sends pulses too quickly, the circuit will not have time to stabilize, and we
get unpredictable, non-deterministic behavior.

While stabilising, the pulse ”travels” through the circuit, and once it has
reached all components of the circuit, it is stable again. The longest path
this pulse needs to take is called the critical path. The time of the critical
path determines the maximum clock speed.

For this thesis, the most relevant parts that influence the critical path
are: Simply the length of a path, if we place components very far away
from each other the critical path will be low. In addition, doing a series
of computation right after one another without any storage in between also
lengthens the critical path significantly.

Compare to a CPU or GPU an FPGA has a lower clock speed: where
GPU or CPU clock speeds are usually in the 1-10 GHz range, FPGAs usually
operate in the 100-300 MHz range. This means that while FPGAs tend do
more per clock cycle, there are less clock cycles per second compared to a
CPU or GPU.

2.2 High Level Synthesis

In order to program an FPGA, we need a circuit design.
Most, if not all, modern FPGAs take hardware description languages as

descriptor. These languages describe a hardware circuit, so how e.g. gates,
wires and registers are all connected.

High Level Synthesis tools take a higher level description, such as a C
based language, and then synthesize this to become a circuit design which
can be used on the FPGA.

This allows developers to design circuits with more efficiency, and requir-
ing them to have less domain knowledge. Developers don’t need to be able
to create hardware designs, understand the specifics of the FPGA board
they’re using or understand hardware level communication protocols in or-
der to create a circuit using HLS. Instead they can program an algorithmic
implementation which is then compiled to a circuit.

Usually an FPGA is not used by itself, but is part of a card containing
various connections to memory and devices. Configuring these connections
is called system level integration. HLS itself is not responsible for connecting
these components to the FPGA. Instead this is done by a different step in
the tool chain called linking. [8].

This is why in our thesis we research ”tool chains” instead of ”tools” or
”languages”, as we are also making use of and evaluating the linking step.

6

2.3 The accelerator card

The FPGA accelerator card we used is the Alveo U200. This card does not
only contain an FPGA, but also memory and other components. Similar to
a GPU card, we physically connect this card to the host computer.

You can see in the following infographic roughly what the card looks
like: [1]

Figure 2.1: Alveo U200 diagram

The relevant connected components are:

� The PCIe interface, which is a channel used to receive or transfer data
to or from other components. In our case we use it to communicate
with the CPU.

� The 4 DDR cards, these cards each contain 16 GB of data, so 64 GB
total. These can be directly accessed by the FPGA. The maximum
bandwidth of all cards total is 77GB s−1. This is based on the fact
that each card has one access port, and each of these access ports
can theoretically read or write 512 bits per clock cycle at a maximum
speed of 300 MHz.

� The FPGA itself (XCU200). The FPGA is divided into 4 separate
Super Logic Regions (SLR). The 4 DDR cards and other components
are divided over these SLRs. SLR region crossings can be resource
intensive, which can have an impact on whether a circuit can be pro-
grammed onto the FPGA or achieve a high clock frequency.

7

2.4 Using Vitis

As the Alveo chip is from AMD, we use their toolchain: Vitis. In this
section, we only discuss the necessary information about Vitis. The complete
documentation can be found at [22].

Vitis contains a multitude of sub-components, such as a programming
environment, debugger and various other tools. Vitis also has a HLS lan-
guage: ”Vitis HLS”. This language translates C++ into HDL code. Then
the user can link the HDL kernel to the device to create a kernel binary.
This binary can be programmed and ran on the FPGA. Vitis generates three
different reports based on these steps: The compilation, linking and runtime
report.

In order to use the FPGA, we need to write two applications:

� The host application: This application runs on the CPU and is re-
sponsible for loading and calling the FPGA kernel.

� The kernel application: This application is compiled to a HDL, linked
and then loaded onto the FPGA

2.4.1 Host code

The host code is responsible for programming the FPGA with a kernel,
loading data onto the FPGA and receiving data from the FPGA.

The host code can be created using two different tools: the xrt library
and OpenCL. xrt is a library from AMD responsible for communication with
the FPGA. The OpenCL implementation wraps xrt. We use OpenCL as this
gives us access to OpenCL’s framework, which allows for easier profiling and
parallel execution of tasks.

The host code executes the following steps:

1. Find the FPGA accelerator card

2. Load the kernel onto the card

3. Transfer the input data to the global memory of the card (usually
DDR memory)

4. Run the kernel

5. Transfer the data back

An example of host code can be found in A.1.
It’s important to note that, unlike GPUs, you cannot compile the kernel

code at runtime. This is because creating the kernel binary tends to take
quite a long time, usually 3 - 9+ hours depending on the complexity.

8

2.4.2 Kernel code

Kernel code is written in either C++ or OpenCL, and then compiled to a
HDL language by Vitis HLS. We use C++, as there is no documentation of
OpenCL, and all examples using OpenCL kernels have been removed as of
Vitis version 2023.2. [24].

The kernel code structure is very similar to a normal C++ program and
it is possible to use C++ features such as classes. However, most libraries
except for a select few should be avoided because they are not written with
HLS compilation in mind, meaning they are either extremely inefficient or
won’t work at all.

The kernel code base structure looks as follows:

1 extern "C" {

2 void fpga_kernel(kernel arguments) {

3 ...

4 }

5 }

Where fpga_kernel is the top function of the kernel. The kernel arguments
represent data transferred from the host to the kernel. Throughout this
thesis, we also refer to these arguments as ”ports”, considering these create
ports from the FPGA to the host.

Kernel code is compiled in two different steps: First you synthesize the
code to a HDL kernel, after that you link the kernel to the specific device
to create a kernel binary.

HLS Pragmas

Vitis has various pragmas which can be used to communicate to the compiler
how code should be synthesized. They can be applied using:

1 # pragma HLS [pragma name] [pragma arguments]

Pragmas can control the following aspects of the code:

� Mapping of variables to hardware: For example arrays can be mapped
to individual registers, BRAM or FIFOs. This has impact on the
access patterns and resource usage.

� Kernel optimisation, for example whether functions can be executed
at the same time or execution order can be optimised. Also whether
loops can ”flattened” and every single item executed at the same time.

� Interface configuration: How ports are configured, for example which
protocol they use and how this protocol is configured.

You can find a detailed description of all Vitis HLS pragmas at [9].

9

The Vitis HLS library

Vitis HLS provides its own libraries to help with program design.
The two libraries relevant for this thesis are the HLS Stream Library

and the HLS Vector Library.
The HLS stream library provides the hls::stream class, which represents

a FIFO queue. Meaning that we can write to the back of the queue using
the write function, and read from the front using the read function. Streams
are generic and can be used to contain any type of data with a fixed size.
The maximum items the stream can contain is fixed at compile time.

The HLS vector library provides the hls::vector class, which represents
a vector of elements. The size of this vector is fixed at compile time. It is
possible to create streams of vectors, or use vectors as top-level arguments.

2.4.3 Configuration files

We have 2 configuration files which control the compilation and linking of
the kernel code:

� config.cfg: This file configures the compilation of the hardware kernel.
For example properties such as how arrays should be partitioned by
default.

� link.cfg: This files configures the linking of the hardware kernel to
the host. It mostly configures the connection between host and kernel.
Such as which memory parts ports should be mapped to.

2.4.4 AXI

AXI is the protocol used to communicate between the FPGA and other
components, including the host and DDR memory. When kernel code is
synthesized, all the top level arguments are implemented as AXI ports. The
AXI ports are then connected to a specific memory component during link-
ing.

In this section, we do not explain the exact details of the AXI protocol,
instead we show a rough overview of how data transfer works.

A data transfer to the FPGA works as follows: The FPGA kernel re-
quests data at a certain address. The kernel then waits for a fixed amount of
cycles before assuming the data has arrived. In the meantime, the external
memory receives this request and replies back with the data.

The FPGA has a maximum amount of outstanding requests, meaning
requests for which there is no reply yet.

Instead of requesting single items of data, it is also possible to request
multiple sequential items of data. This is called AXI burst. Bursts are
realised in two ways: First the memory device just sends more items back
sequentially based on a single request. Second, up to 512 bits of data can

10

be transferred every clock cycle. If we have items of 32 bits, this means
16 items can be transferred every cycle. This is called port widening, as it
requires the ports to be a width of 512 bits.

2.5 OpenCL

OpenCL is a framework for parallel computing on heterogeneous systems.
Heterogeneous systems are systems which contain multiple different types
of devices. Such as a CPU and GPU, or in our case, a CPU and an FPGA.

OpenCL code is usually executed on the CPU: The host device. OpenCL
provides a defined interface used to send commands to the other device, it is
up to the vendor of the device to actually implement these functions. This
means that while the functions are the same, the actual implementation of
these functions is different.

When running an OpenCL application, the steps are as follows:

� Find the device

� Load the kernel onto the device

� Create a command queue

� Add commands to this queue, these will be executed on the device.

� Wait until the queue is finished.

In order to execute something on the FPGA or GPU the specific commands
are similar to what we described in 2.4.1.

How these commands are executed is different for the two devices. When
running the kernel on a GPU, usually the enqueueNDRange command is used
to divide work groups among many threads and execute these. For FPGAs
this is different as there is usually only a single ”thread” (kernel). So instead
enqueueTask is used to enqueue a single task. It is possible to program more
kernels onto the FPGA so kernels can run in parallel. When doing this, the
first available kernel is used when using enqueueTask. However arguments
still need to be set manually, and compared to a GPU there are still a lot
less ”threads” (kernels). In our research we use up to 4 kernels.

More information about using OpenCL for Vitis can be found at [18].

2.6 Performance Metrics

In order to compare the performance and energy usage of different devices,
we need to have common metrics.

11

2.6.1 Performance

We measure performance in FLOPS. This stands for Floating Point Opera-
tions per second. A floating point operation is a single operation on a 32-bit
floating point variable (in C++ this is a float). For example an addition,
subtraction, multiplication or division.

In this thesis we refer to the multiple of Floating Point Operation as
”FLOPs”. And the multiple of Floating Point Operations per second as
”FLOPS”.

2.6.2 Performance per Watt

Performance per watt is a metric used to measure energy efficiency.
Performance per watt is defined as follows:

Performance

P
=

FLOPS

watt

In order to clearly identify what this metric tells us, we can rewrite this
formula:

FLOPS

watt
=

FLOPs/s

watt/s
=

FLOPs

Joule

So performance per watt tells us how many floating point operations we can
execute using a single joule of energy.

This measurement can be important in various scenarios. For example,
in data centers, where energy usage has been steadily increasing over the
years and is considered a cost factor [11], it can be valuable to have a device
which consumes less power for doing the same amount of operations.

12

Chapter 3

Research Approach

3.1 General approach

In order to answer my research question, we implement two applications:

1. A vector addition

2. A 5-point 2D stencil computation

Vector Addition Vector addition means the sum of two vectors. Given
an input of two vectors, the output should be the sum of these two. For
example for inputs {1.2, 2.4, 3.1} and {4.6, 5.3, 6.7}, we should get the
output {5.8, 7.7, 9.8}.

The vector addition problem is chosen because it is a single computation
over each value in two lists. This makes the actual computation arbitrary,
and allows us to focus on increasing the bandwidth of the FPGA: How quick
can we get data into the FPGA, and how quick can we get data back.

5-Point Stencil Computation A stencil computation is a computation
which processes values according to a predefined pattern. A 5-point 2D sten-
cil computation is a specific kind of stencil computation: This is a computa-
tion which computes the new value of a point based on its direct neighbours
in a 2D array.

Given two inputs: A 2-dimensional array and a list of 5 coefficients, the
program outputs a new 2-dimensional array. The output value of a point as
follows:

vx,y = c0 · vx−1,y−1 + c1 · vx,y−1 + c2 · vx+1,y−1

+ c3 · vx−1,y

Output values on the border, which don’t have all 4 neighbours, are kept
the same as the input value.

13

The stencil computation is a more complex computation, which requires
more complex memory access patterns. This allows us to focus on the actual
computation itself.

Approach For both problems we first start out with a ”naive” version.
This version is the simplest implementation of the specified problem. It is
not aware of any hardware specific optimisation.

We then look into whether this program works when synthesized to
FPGA code, and if it does, how well it performs. Then we iteratively try to
identify issues and bottlenecks and improve the performance.

We also note how much actual code structure change is necessary for
those optimisations and how much domain knowledge is required.

Lastly, for each application we create a CPU and GPU implementation.
We compare the optimised FPGA application with the best performance to
these implementations. Here we look separately at the performance of the
entire application and that of the kernel. The application time includes the
transfer times, and the kernel time excludes these.

In addition, we compare the FPGA application to the GPU in terms of
energy consumption. Here we look at total energy used and performance
per watt.

3.2 Technical approach

3.2.1 Running code

We run code on an Ubuntu 20.02 server through slurm. This server has
both the Alveo card and the GPU installed. The CPU has 16 cores and 32
threads. The GPU is an NVIDIA A30.

3.2.2 Performance measurement

Performance, measured in Floating Point Operations per Second can be
calculated as follows:

FLOPS =
FLOPs

s

14

The number of FLOPs can be calculated using the amount of items we
have as input.

FLOPs = item amount · FLOPs per item

”FLOPs per item” is a fixed number dependent on the case. For the vector
addition, this is 1, as we only have to do a single addition for each item in
the length. For the stencil computation this is 9, because for every item we
need to do 5 multiplications and 4 additions. For the items on the edge, this
is not the case. However we do not take this into account as for large data
sizes, the amount of items on the edge is negligible.

We do need to measure the time it takes to run the application.
There are for two different purposes for measurement: Measurement for

optimising the FPGA application, and measurement in order to compare
the final performance to CPU and GPU. For these we have two different
approaches.

Measuring the FPGA when optimising

The goal when measuring when optimising is to see how an application with
an optimisation compares to an earlier version.

We use OpenCL queue profiling to measure allocation and kernel times
individually. We also use the C++ chrono library to measure the time by
measuring the wall-clock time before queueing anything on the queue and
after finishing the queue. The individual times summed should be equal to
the total time, which holds as shown in the following figure.

Figure 3.1: Kernel time vs total time for FPGA

15

We measure the data by running the application for a fixed data size.
This is because the kernel is stable and deterministic, meaning variable data
sizes do not result in different performances of the kernel itself, only changing
the relative overhead from calling the kernel.

We choose a size of 1GB. As the maximum buffer size for a single input
is 4GB [5], and for our optimised vector addition applications we find that
after 1 GB of input the application times are almost constant.

Figure 3.2: For all sizes larger than 1 GB the application performance is
almost the same as the performance found at 1 GB, with a maximum devi-
ation of 3%

Another advantage of the stableness of the kernel is that we don’t need
to measure the kernel performance multiple times. So in cases where we are
only looking at how to improve the kernel runtime, we only run our tests
once.

Figure 3.3: Kernel times stay within a range of 0.1558 and 0.1559 for all 10
measurements

If this is not the case, and other elements also have impact, such as
allocation time, we run the tests 10 times and take the average.

While this is the default method for measuring when improving, if we
believe that measuring more extensively gives valuable insights we will do
so.

16

Measuring for comparison

As the other devices are a lot less stable than the FPGA kernel, and trans-
fer times are also included, we measure the data for 40 different sizes, for
10 iterations each. These parameters are the result of balancing the high-
est possible amount of sizes and repeated measurements with a reasonable
measurement time of under half an hour.

FPGA time measurement We measure time the same way as described
in 3.2.2.

GPU time measurement As we are also using OpenCL for the GPU,
we can attempt to measure time similar to how we measure the FPGA.
However when doing this there is a disconnect between the total time and
the sum of the individual event times:

Figure 3.4: Sum of individual times vs total time for the GPU vector addi-
tion application when using the OpenCL profiling times

This is likely because of a different OpenCL implementation by NVIDIA of
the event profiling of the transfer calls. So instead, we use wall-clock time
for each separate event: the transfer in, running the kernel and the transfer
out. We do this by finishing the queue to make sure the last command has
finished executing, measuring the time and then queuing the next command.
The disadvantage to this is that there is overhead due to having the wait
for the queue to finish before being able to execute the next command.

17

CPU time measurement For the CPU, we also use the chrono library
to measure time, similar to 3.2.2. However, we do not need to transfer any
data from host to device, as the host is the CPU. Because of this we set the
transfer times to 0. This also means that the application performance and
the kernel performance is the same for the CPU.

3.2.3 Energy measurement

In order to compare FPGA energy usage with GPU energy usage, we need
to measure the energy.

We measure the energy by executing a bash script which periodically
fetches the energy usage and prints the time. The host application also
prints the time right before running the kernel, and the time right after.

Using python, we process the resulting data: We cross-reference the
times to select an accurate range from the measurement results and calculate
the resulting energy usage.

Using bash

We start this bash script when the host application starts, and stop it when
the host application finishes:

1 measure -power -loop 0.001 >> "$OUTPUT_FILE" &

2 // run the application

3 ...

4 sleep 2

5 kill $!

It can also be seen that we sleep for two seconds after the execution of the
program. This is to make sure all delayed power usage is captured.

In order to measure the FPGA power, we use the utility command ”xbu-
til” which is part of the Vitis tool chain. For the GPU we use the ”nvidia-
smi” command.

1 # measure the current power of the FPGA:

2 OUTPUT="$(xbutil examine --device 0000:e2 :00.1 --report

electrical)"

3 echo "$OUTPUT" \

4 | grep -Eo ’^\s+Power\s+:\s+\S+’ \

5 | awk ’{print $NF}’

6

7 # measure the current power of the GPU:

8 nvidia -smi --query -gpu=power.draw --format=csv ,noheader ,nounits

Pauses

We are running the application multiple times in order to get our measure-
ments. In order to clearly separate the runs from each other, we artificially
pause for 1 second between iterations.

18

Selection of measurements

When cross referencing the data we get the following coverage:

Figure 3.5: FPGA energy usage and measurement coverage throughout runs

Figure 3.6: GPU energy usage and measurement coverage throughout runs

It can be seen on the figure that both devices still appear to draw energy
after they have finished. We need to also take this into account.

In addition, for the GPU, before the running of the kernel, there is
energy usage before the transfer in. This is due to the programming of

19

the kernel onto the GPU, which is done for every run. This is not the
case for the FPGA, because once the FPGA is programmed with a certain
kernel, if we attempt program it again with the exact same kernel, instead
of programming the kernel again it will just keep the original kernel.

We are not going to take kernel loading energy usage and times into ac-
count, as this would require us to program the FPGA with another different
kernel between every measurement.

So our final measurement slot is from the start of transfer in, to the end
of the coverage of the measurement script:

Figure 3.7: The range used for energy measurements

This way we avoid the energy usage caused by the programming of the
kernel while at the same time covering the full energy usage of the device as
result of its use.

Calculating the energy usage

We measure the power. Based on these measurements, we can calculate the
energy usage of one run as follows:

E = P · t = (Pavg − Pbase) · (t1 − t0)

Where

� Pavg is the average power usage during the run in watts

� Pbase is the base power usage in watts, this is the watt value when
the device is not doing anything, for this we use the lowest measured
value throughout all runs, usually this is the value completely at the
start, when the device hasn’t done anything yet. For this we do use
all values we measured.

� t0 is the time of the first measurement within our range in seconds

� t1 the time of the last measurement in seconds

20

Calculating performance per watt We calculate the performance per
watt as follows:

Performance per watt =
Performance

P

Where:

� Performance is the speed of computation in FLOP per second.

� P is the power usage. For each run, this is the maximum value mea-
sured within the range. We cannot use the average power measured,
as this also includes times when the kernel is not running, and as for
both the FPGA and GPU measurements the ”peaks” of the kernel
consumption are flat, we can use the maximum.

Accuracy

Measurement frequency The frequency of the FPGA measurements
is about 1 measurement per second. This means that for application times
shorter than this interval, there is a possibility that there is no measurement
while the application is running. This leads to inaccurate results.

During our analysis we keep in mind that the FPGA measurements for
small data sizes are inaccurate, and look at larger data sizes. We also mea-
sure for 10 iterations per data size, and take the average to get a more
accurate result.

In contrast, the GPU frequency is 0.1 seconds, which is a 10 times higher
frequency. This means that the GPU measurements is more accurate.

Baseline discrepancy The baseline power for the GPU is higher than
that of the FPGA. The GPU baseline is equal to 29.61 and that of the
FPGA to 28.13. This means that the GPU does consume more power while
not doing anything which is not accounted for in the results as we subtract
the baseline from the current power.

21

Chapter 4

Vector addition

As mentioned before in 3.1, vector addition is defined as the sum of two
vectors.

We take two input vectors, called in1 and in2 in the code, then we sum
these two input vectors and store the result in a third vector, which we call
out. All vectors are the same size.

4.1 Naive solution

The naive implementation of the vector addition kernel is shown below. The
kernel code is implemented as a single function with the input and output
defined as parameters. in1, in2 and out are the input and output vectors.
size is the size of all three vectors. The kernel code iterates over all indices,
adding the input vectors together and writing this to the output vector.

1 typedef float data_t;

2 typedef uint32_t size_int;

3

4 extern "C" {

5 void fpga_kernel(

6 data_t* in1 ,

7 data_t* in2 ,

8 data_t* out ,

9 size_int size

10) {

11 for (int i = 0; i < size; i++) {

12 out[i] = in1[i] + in2[i] ;

13 }

14 }

15 }

Listing 4.1: Naive vector addition kernel code
The host code can be found in the appendix as A.1. The general approach of
the host code is similar what is described in 2.4.1, so the code first finds the
device, transfers in1 and in2 to the card, executes the kernel and transfers

22

out back. The host code is the exact same for all implementations in this
chapter unless explicitly described otherwise.
We apply HLS to this kernel code to create a kernel binary, and then measure
the resulting application as described in the technical approach section.
Note that the input and output vectors we put in the parameters of the
source code are compiled to become kernel ports. So the kernel speed per
port is the read/write speed of a single port, of which the current kernel has
3. The size parameter is not a port as it’s only a single variable.
We find the following performance:

size (GB) time (s) speed (GB s−1) performance (GFLOPS)

transfer in 2.00 2.49× 10−1 8.02 -

kernel (per port) 1.00 2.50× 101 4.00× 10−2 1.00× 10−1

transfer out 1.00 9.37× 10−2 1.07× 101 -

total 1.00 2.54× 101 3.94× 10−2 9.86× 10−2

We can observe that most time is spent in the kernel itself, on the com-
putation. This is surprising because there is very little computation to be
done.
Upon investigation by looking at the Vitis runtime report we find the cause
of this: the transfer speed between the kernel and external memory. More
specifically, the configuration of the AXI connections between the kernel
and the DDR. It is stated that the kernel read utilisation is 0.212% and the
kernel write utilisation is 0.416% in relation to the utilisation using ideal
port configuration. In addition, the report also states that the kernel has
an external memory stall of 93%, so the kernel spends 93% of the time not
doing anything and waiting for data to arrive from the DDR.

4.2 AXI port optimisation

4.2.1 Design

In order to explain the cause of the low transfer speed, we need to look at
the AXI configuration. In the compilation report it is stated how the AXI
ports are currently configured: AXI burst is not enabled, and with this, the
port width is set to be equal to the data type used: 32 bits.
This means that that sequentially, for every one of the 3 vectors, the kernel
is sending a few requests for 32 bit items. Then the kernel waits for a fixed
amount of cycles until the data has been received or acknowledged. Only
after this has happened, does the kernel send another request.
This explains the low transfer speed and high stall percentage found in the
results. In order to improve the bandwidth we can enable AXI bursts. By
requesting more data at once, stall time can be minimised.

23

Sequential bursts

If we just enable sequential bursts we should be able to minimise stall time,
so time when the kernel is not doing anything and waiting for data to arrive.
Ideally, every clock cycle, the kernel should be reading and writing data.
By assuming there is no stall time at all, we can calculate the theoretical
maximum bandwidth. We know that the maximum amount of data a port
can write/read per clock cycle is equal to the width of the port times the
clock speed. As the current clock speed is equal to the default 300MHz the
maximum amount of data written per second is equal to:

32 bit · 300MHz = 9.6Gbit s−1 = 1.2GB s−1 (4.1)

The following schematic shows an interpretation of how the kernel is syn-
thesized based on this AXI configuration. All three ports are connected to
DDR memory and have a width of one item, so 32 bits. This means that at
maximum, one computation can be done per clock cycle.

Figure 4.1: A schematic of the FPGA with 32-bit ports

While this is already a major improvement from the current performance,
we can also apply port widening to increase this performance further.

Port widening

The maximum AXI port width can go up to 512 bits, which is 16 times
as wide as our current width. This means that if we show the compiler
that the FPGA consumes 16 items per clock cycle, we can increase the port
width. Assuming a maximum clockspeed of 300MHz, This would increase
the theoretical maximum transfer speed for a single port to:

512 bit · 300MHz = 153.6Gbit s−1 = 19.2GB s−1 (4.2)

The following schematic shows what this design would look like. Instead of
reading or writing only one item per clock cycle, each port is able to read

24

or write up to 16 items per clock cycle. This also means that we are able to
perform 16 parallel calculations per clock cycle.

Figure 4.2: A schematic of the FPGA with 512-bit ports

4.2.2 Implementation

In attempt to achieve this design, we try three different implementations.
All methods have been found in official examples or documentation.

By adding an assert statement By consulting the documentation we
find that the HLS requirements for port widening are as follows [1]:

1. Must be a monotonically increasing order of access. You
cannot access a memory location that is in between two
previously accessed memory locations- aka no overlap.

2. The access pattern from the global memory should be in
sequential order, and with the following additional require-
ments:

(a) The sequential accesses need to be on a primitive type
or non vector power of two size aggregate type

(b) The start of the sequential accesses needs to be aligned
to the widen word size

(c) The length of the sequential accesses needs to be divis-
ible by the widen factor

Most of these conditions are already fulfilled by our original definition of
vector addition, as we already monotonically increase the order of access.

25

The only requirement missing is 2c: The compiler does not know if size is
a multiple of our widen factor (32).
In order to fulfill this requirement, we can simply add an assert statement
showing that the size should be divisible by 16:

1 # define PORT_WIDTH 16

2 ...

3 void fpga_kernel (...) {

4 assert(data % PORT_WIDTH == 0);

5 for (int i = 0; i < size; i++) {

6 out[i] = in1[i] + in2[i];

7 }

8 }

9 }

In order to enable burst for all ports we also add the following line to our
compilation config file (config.cfg):

1 [hls]

2 ...

3 syn.interface.m_axi_auto_max_ports =1

This enables creating multiple ports for each kernel argument. By default
all kernel arguments are bundled into a single port, which means we use less
FPGA resources, however this limits the total bandwidth to that of a single
AXI port. So now we have 3 separate ports instead of 1.
From the compilation report we know that AXI burst and port widening
has both been inferred from the source code.
When compiling and measuring the resulting kernel, we find a speed of
1.20GB s−1 per port. This is a 30-fold improvement compared to the naive
implementation, however is only 6.25% of the speed with respect to the
theoretical maximum calculated in equation 4.2.
It can be seen that the speed is exactly equal to the theoretical maximum
without port widening found in equation 4.1. From this we conclude that
while port widening has been inferred, the actual calculation itself is not
happening in parallel. The resulting circuit can be imagined as image 4.2,
but instead of 16 parallel add blocks, there is only a single add block.
This means we need to rewrite our code such that the compiler infers the
16 parallel adds we want to accomplish.

By using a buffer array By looking at various examples in the Vitis
example repository, we find a different approach [24]. Instead of inferring
the parallel load and add, we can do this by adding a buffer and separating
the read, calculate and write steps into separate for-loops:

1 ...

2 u_int buffer1[BURST_SIZE];

3 u_int buffer2[BURST_SIZE];

4 u_int bufferOut[BURST_SIZE];

5

26

6 outer:

7 for (size_int i = 0; i < size; i += BURST_SIZE) {

8 for (size_int b = 0; b < BURST_SIZE; b++) {

9 buffer1[b] = in1[i + b];

10 }

11 for (size_int b = 0; b < BURST_SIZE; b++) {

12 buffer2[b] = in2[i + b];

13 }

14 for (size_int b = 0; b < BURST_SIZE; b++) {

15 bufferOut[b] = buffer1[b] + buffer2[b];

16 }

17 for (size_int b = 0; b < BURST_SIZE; b++) {

18 out[i+b] = bufferOut[b];

19 }

20 }

21 ...

The compiler will automatically flatten the inner for-loops as the iteration
condition is a constant value (BURST_SIZE), this means that all iteration will
be executed in a single clock cycle. In addition, the outer loop will be
pipelined. Meaning that instead of executing the functions one after the
other, components take a new input every iteration and pipeline the result
to the next component:

Figure 4.3: A schedule showing how tasks are executed, comparing the non
pipelined execution order to the pipelined execution order

When synthesizing this code to a kernel binary and measuring the kernel we
find that the port speed is 5.62GB s−1. This is a 140-fold improvement com-
pared to the naive implementation, and 29.27% of the theoretical maximum
calculated in equation 4.2.

By manually changing the port data types Another approach we
find in the documentation and examples is using hls::streams and manually
setting the data width to be 512 bits. This pattern is recommended by the
Vitis documentation for burst inference. The advantage of this pattern is
that process for transferring data to and from external memory is separated
from the processing. In addition, port widening is forced as the data type
is already 512 bits.

27

For our wide data type, we use the hls::vector type. In our case, we want
to have a vector of 16 items, as this corresponds to the desired port width
of 512 bytes.
In this implementation, we first read all the input data into input streams,
then we add these streams and lastly we write the output stream to output.
This design requires a different type of pipelining: Task level pipelining. This
can be enabled using the dataflow pragma. Instead of pipelining operations,
we now pipeline functions.
For example whenever we read a value using the read_input function and
write it to in_stream1, this value can immediately be read by the add_streams

function. This also means that the streams will always only contain one
item, as the moment the read_input function puts an item into the stream,
the add_streams function immediately reads this value in the next clock cycle.

1 # define WIDTH 16

2

3 typedef uint32_t size_int;

4 typedef float data_t;

5 typedef hls::vector <data_t , WIDTH > data_vec;

6 typedef hls::stream <data_vec > stream_t;

7

8 ...

9

10 static void add_streams (...) {

11 for (size_int i = 0; i < size; i++) {

12 data_vec in_value1 = in_stream1.read();

13 data_vec in_value2 = in_stream2.read();

14

15 out_stream << in_value1 + in_value2;

16 }

17 }

18

19 extern "C" {

20 void fpga_kernel(data_vec* in1 , data_vec* in2 , data_vec*

out , size_int size) {

21 assert(size % WIDTH == 0);

22 const size_int stream_size = size / WIDTH;

23

24 # pragma HLS dataflow

25 static stream_t in_stream1("in stream 1");

26 static stream_t in_stream2("in stream 2");

27 static stream_t out_stream("out stream");

28

29 read_input(in1 , in_stream1 , stream_size);

30 read_input(in2 , in_stream2 , stream_size);

31 add_streams(in_stream1 , in_stream2 , out_stream , stream_size

);

32 write_result(out , out_stream , stream_size);

33 }

34 }

When synthesizing and measuring this source code, this design results in

28

exactly the same performance found in the buffer implementation. From this
we conclude that the synthesized circuit from both designs is very similar.

4.2.3 Results

For these results we’ll only look at kernel performance for 1 GB:

Transfer speed (per port) (GB s−1) Performance (GFLOPS) Speedup

naive 4.00× 10−2 1.00× 10−2 -

assert 1.20 4.80× 10−1 30.00

buffer 5.62 1.41 140.50

manual 5.62 1.41 140.50

Overall we find that proper configuration of AXI has a big impact on the
performance. We find that an just adding an assert statement, without
modifying any other code, already results in a 30 fold speedup. However the
compiler does not infer a possible parallel add, which creates a performance
bottleneck of one computation per clock cycle.
If we do modify the code, by using a separate read, compute and write
step, the compiler does create this parallel execution. This does require the
programmer to write code which does not make much sense when looking at
it from a software perspective, and requires them to understand the concept
of pipelining. It does not make a difference in terms of performance which
of the two methods we use, buffer or manual.
The performance is still only about a third of the theoretical maximum.
When looking at the runtime reports, we find that there is still an external
memory stall time of 70.67%. This means that about a third of the time, the
kernel is waiting for transfers with external memory. This is an improvement
from the naive version, but signifies that there is still improvement to be
made in the port configuration.

4.3 Using multiple DDR cards

4.3.1 Design

When consulting the Vitis documentation on port configuration, we find
that each DDR only has a single connection to the FPGA card, and a single
connection can only read or write one item at a time.
This means that if we read 2 items from the same card this will happen
sequentially instead of in parallel.
By default, all ports are connected to the same DDR card. So for each of
the three ports (in1, in2 and out), the reads and write happens sequentially.
If instead we were to use two DDR cards, we would only have to read two
data items sequentially, while the third would happen in parallel, resulting
in a 1.5 times speedup.

29

When using three separate DDR cards, all three accesses happen in parallel,
meaning we should get a 3 times speedup.

4.3.2 Implementation

This is implemented by adjusting the linking configuration file (link.cfg).
In this configuration file we add the following lines of code

1 nk=fpga_kernel :1: fpga_kernel

2 sp=fpga_kernel.in1:DDR [0]

3 sp=fpga_kernel.in2:DDR [1]

4 sp=fpga_kernel.out:DDR [2]

Listing 4.2: The lines added to link.cfg file configured to use three DDR
cards
Each input port gets explicitly assigned a different DDR card. The 4 DDR
cards are identified by the names DDR[0] to DDR[3].
We do not need to adjust the host or kernel code for this improvement.

4.3.3 Results

In our measurements, both the buffer implementation and the manual im-
plementation perform the exact same. This is why we only show the results
from the buffer implementation.

kernel speed per port (GB s−1) performance (GFLOPS) speedup

1 DDR 5.62 1.41 140.50

2 DDR 8.89 2.22 222.25

3 DDR 6.91 1.73 172.75

It can be seen that for the 2 DDR the speedup is indeed by a factor of 1.5
compared to the 1 DDR version.
However when using 3 DDR cards, the speed actually decreases. This is
because when compiling, the compiler was not able to achieve a frequency
of 300 MHz. Instead the maximum frequency attained was 120.5 MHz.
This was the case for both the burst and manual implementation from sec-
tion 4.2.
It’s interesting to note that when using integers instead of floats as our data
type, this did not happen and we got a performance of 15.9GB s−1 per port.
This is close to the maximum calculated bandwidth.
So the issue is likely caused by the combination of using DDR3, which is
in a different SLR as the kernel, together with the increased resource usage
from Floating Point Operations. As floating point operations are expensive
to execute on FPGAs and can cause critical path issues. [10].
In order to make this improvement it was necessary to be aware of the general
card structure, and the limitations of the DDR cards. The adjustments were

30

only in configuration, and not dependent on code structure. However we did
run into issues created by the critical path of the circuit design, something
which we do not have much insight in on the HLS abstraction level, and can
therefore be very unpredictable.

4.4 Multiple FPGA kernels

We find in the documentation that we can program multiple FPGA kernels
onto the FPGA card.
An abstraction of this is shown in the following figure. Multiple instances of
the same kernel are programmed onto the FPGA. We can run these instances
in parallel.

Figure 4.4: A schematic of the FPGA with 2 vector addition kernels

In order to implement this, we need to adjust the linking configuration file
(link.cfg). We create two kernels in the shown configuration: vadd0 and
vadd1, then we can assign DDR cards separately to both of these kernels.
This can be extended to using 4 kernels if we change the second line to nk

=fpga_kernel:4:vadd0,vadd1,vadd2,vadd3 and also add the DDR configuration
for the third and fourth kernel.

1 [connectivity]

2 nk=fpga_kernel :2:vadd0 ,vadd1

3

4 sp=vadd0.in1:DDR [0]

5 sp=vadd0.in2:DDR [1]

6 sp=vadd0.out:DDR [0]

7

8 sp=vadd1.in1:DDR [2]

9 sp=vadd1.in2:DDR [3]

10 sp=vadd1.out:DDR [2]

Listing 4.3: The link.cfg file with two kernels
We also adjust the host code: We need to queue multiple kernels instead
of one. In order to execute tasks in parallel, we also need to change the
queue configuration to allow for concurrent execution, and add explicit de-
pendencies between events so they do not happen out of order. We allocate
data explicitly to the different DDR cards. Because if all data is allocated

31

to only one card, only the kernel with ports connected to that card is able
to perform the execution.
Overall about a 100 lines of code need to be added or adjusted in order to
accomplish this. See A.2 for the exact implementation details.
The kernel code does not need to change.
We try two implementations: Using two kernels, with a DDR mapping as
shown in the code snippets above, and four kernels, where every kernel has
all ports mapped to a single DDR port.

Results

We measure the results over different data sizes, as it could be that using
more kernels causes a larger overhead.

Figure 4.5: Performance of the vector addition application with multiple
kernels

Figure 4.6: Transfer times of the vector addition application with multiple
kernels

It can be seen that the overall implementation is slower compared to using
a single kernel. This is because, while the kernel performance is higher for

32

large data sizes, the transfer times are lower. Instead of transferring all the
data in one go to a single DDR card, we need to divide the data over several
DDR cards, this likely reduces the transfer speed.

4.5 Comparison to GPU and CPU

In the past sections we attempt various improvements, resulting in a more
than 200 fold improvement in performance over the naive version. Now we
want to see how this improved version compares against a CPU and GPU
implementation.

4.5.1 Implementation

FPGA

For the FPGA we use the 2 DDR implementation described in 4.3.

CPU

For the CPU code we create a parallel for loop which is parallelized using
an OpenMP pragma:

1 void vector_add(data_v& in1 , data_v& in2 , data_v& out) {

2 #pragma omp parallel for

3 for (size_int i = 0; i < in1.size(); i++) {

4 out[i] = in1[i] + in2[i];

5 }

6 }

GPU

For the GPU we use the following kernel code. For each id, representing the
index, the kernel checks if the id is within the bounds of the array. If it is,
the kernel writes the sum of the input values at that index to the output
vector.

1 const char *kernel_code =

2 __kernel void vector_add(

3 __global float *a,

4 __global float *b,

5 __global unsigned int *c,

6 const unsigned int n

7) {

8 int id = get_global_id (0);

9

10 if (id < n)

11 c[id] = a[id] + b[id];

12 }

Which we queue with a local size of 128.

33

4.5.2 Performance

Now that we have all three implementations, we measure the resulting appli-
cations in accordance to how they were described in the technical approach
section 3.2.
From measurements we find the following results:

Figure 4.7: Performance of the vector addition applications of the GPU,
FPGA and CPU

The CPU outperforms the GPU and FPGA if we take transfer times into
account, this is because for both the FPGA and GPU, the transfer times
are larger than the kernel times. For both these devices, the performance
is bound by the speed between the host and the device global memory, so
the PCI express bus. For the CPU this is not an issue, as the CPU uses the
data directly from the host, so there are no transfer times.
As for kernel times, the GPU by far outperforms both the FPGA and the
CPU. For all three devices, the performance is limited by memory. Because
vector addition is arbitrary to compute, the computation is quicker than the
memory bandwidth.
In this case, the FPGA does not have great performance compared to the
other devices, this is different when we look at energy consumption.

34

4.5.3 Energy consumption

Figure 4.8: Energy consumption of the vector addition applications of the
GPU and FPGA

Figure 4.9: Energy consumption of the vector addition applications of the
GPU and FPGA, zoomed in on the last 0.5 GB of measured data sizes

For our analysis we mostly look at the largest data sizes, as explained in
3.2.3. It can be seen that there is a spike in performance per watt for smaller
data sizes for the FPGA, this is because the measurement method does not
measure the wattage usage properly for short runs. The same holds, but on
a smaller scale, for the GPU, shown by the small bump.
The energy consumption of the FPGA is significantly lower than the GPU.
The FPGA uses about 15 times less energy than the GPU. When looking
at performance per watt, the FPGA has a 6 times higher performance per
watt.

35

Chapter 5

5-point stencil computation

A stencil computation is a computation which processes values in an ar-
ray according to a predefined pattern. A 5-point stencil is a stencil which
computes the new value of a point based on its direct neighbours. A visual
representation of how the output value depends on its neighbours is shown
in the image below.

Given two inputs: a 2-dimensional array, and a list of 5 coefficients, the
program outputs a new 2-dimensional array. All output values which are
not on the edges of the array are calculated as follows:

vx,y = c0 · vx−1,y−1 + c1 · vx,y−1 + c2 · vx+1,y−1

+ c3 · vx−1,y

If a point is on the edge of the input, the output value is equal to the input
value.

5.1 Naive implementation

We first implement this problem as simple as possible without any perfor-
mance considerations.

The arguments for the kernel are as follows:

36

� data_t* in: the input data, this represents a 2-dimensional array con-
taining the input data. The data has been flattened such that in[y*

width + x] is equal to the value at position (x, y)

� data_t* out: the output data, formatted similar to in

� data_t coefficients[5]. This argument determines the coefficients for
the stencil. Such that the top value is at index 0, the middle values
1-3 and the bottom value 4.

� size_int width is the width (and height) of the input array.

We have already configured the kernel to use separate ports and DDR cards.
The kernel code loops through all non-border cells and calculates the

new values based on the neighbours of that cell.

1 typedef float data_t;

2 typedef uint32_t size_int;

3 # define STENCIL_SIZE 5

4

5 extern "C" {

6 void fpga_kernel(data_t* in, data_t* out , data_t

coefficients[STENCIL_SIZE], size_int width) {

7 for (size_int y = 1; y < width - 1; y++) {

8 for (size_int x = 1; x < width - 1; x++) {

9 out[y*width + x] =

10 coefficients [0] * in[(y-1)*width+x] +

11 coefficients [1] * in[y*width+x-1] +

12 coefficients [2] * in[y*width+x] +

13 coefficients [3] * in[y*width+x+1] +

14 coefficients [4] * in[(y+1)*width+x];

15 }

16 }

17 }

18 }

The host code is similar to that of the vector addition code.
We synthesize this kernel code to a kernel binary and run the application.

We find that while the program does synthesize to a kernel binary, when
running it on the FPGA it does not return the correct results. The outer
values at the edge are correct, but the inner values not.

37

Input:

0 1 2 3 4 5 6 7

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37

40 41 42 43 44 45 46 47

50 51 52 53 54 55 56 57

60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77

Reference:
0 1 2 3 4 5 6 7

10 55 60 65 70 75 80 17

20 105 110 115 120 125 130 27

30 155 160 165 170 175 180 37

40 205 210 215 220 225 230 47

50 255 260 265 270 275 280 57

60 305 310 315 320 325 330 67

70 71 72 73 74 75 76 77

Output:

0 1 2 3 4 5 6 7

10 16711935 16711935 16711935 16711935 16711935 16711935 17

20 0 0 0 0 0 0 27

30 0 0 0 0 0 0 37

40 0 0 0 0 0 0 47

50 0 0 0 0 0 0 57

60 0 0 0 0 0 0 67

70 71 72 73 74 75 76 77

There are no warnings about correctness in the compile or link reports,
and the code does return correct results when compiling and running it for
software emulation.

5.2 Getting the code to work

In our debugging process, we explore various implementations to identify the
root cause of the issue. Unfortunately, the compile reports provide limited
guidance, making it challenging to pinpoint the exact problem.

A correct version that we found is based on the assumption that the
cause of this issue is the DDR latency. In the AXI protocol, the kernel waits
a fixed amount of cycles between requesting a value and assuming this value
has arrived. We are attempting to request 5 values on the same port in a
single iteration. Because the DDR can only handle a single request at a
time, and the data is not sequential, the DDR latency is quite high. What
can go wrong is that the latency of the DDR is higher than the waiting time,
meaning that the FPGA will read incorrect data from the input ports.

We can solve this issue in two different ways: We can increase the latency,
or we can decrease the amount of accesses to the DDR. We attempt the
latter.

We try to decrease the amount of accesses for both ports: The in port
and coefficients port.

5.2.1 Decreasing the amount of accesses to the coefficients
port

We can decrease the amount of accesses to the coefficients port by sav-
ing the coefficients in a local buffer. We do this by creating a separate
load_coefficients function which copies the values of an input array of size

38

STENCIL_SIZE to an output array. We then create a local array variable coef-
ficients, and copy the values of the parameter in_c to this variable. In the
computation code, we only read from coefficients, ensuring we don’t access
any values from the in_c port after the initial loading.

The resulting additions to the code are as follows:

1 void load_coefficients(const data_t in[STENCIL_SIZE], data_t

out[STENCIL_SIZE]) {

2 load_coefficients_loop:

3 for (size_int i = 0; i < STENCIL_SIZE; i++) {

4 out[i] = in[i];

5 }

6 }

7 ...

8 static void main(.., data_t in_c[STENCIL_SIZE], ..) {

9 ...

10 data_t coefficients[STENCIL_SIZE];

11 load_coefficients(in_c , coefficients);

12 ...

13 }

14 ...

5.2.2 Adding a cache to the in port

We find in the documentation that it is possible to add a cache to the input
port. This means that the last items we have read from that input port are
stored in a cache in the kernel. If we try to read this same item again it’ll
be directly returned by the cache instead of having to fetch the item from
the DDR.

This means that for small data widths, possibly all previously accessed
values can be read from the cache, and for large data widths, at least the
three values next to each other can be read from the cache. We attempt a
few random values for the ”lines” and ”depth” parameters of the cache and
find that 16 and 16 are the higher values with which we can still synthesize
our code. These parameters signify the amount of cache lines and the size of
these lines respectively. These parameters can possibly be larger, however if
the values are too large the linker first takes 9 hours to run before throwing
an error. This means that it is not viable to try many different parameter
combinations.

We enable the cache by adding an HLS pragma in the code:

1 ...

2 static void main(data_t* in, ..) {

3 # pragma HLS cache port=in lines =16 depth =16

4 ...

5 }

6 ...

We do not need to adjust any other code for this.

39

After synthesizing kernel and measuring the application we find that the
kernel does produce the correct results. When we measure the performance
we find the following:

size (GB) time (s) speed (GB s−1) performance (GFLOPS)

alloc in 1.00 1.51× 10−1 1.33× 101 -

kernel (per port) 1.00 1.55× 101 6.46× 10−2 1.45× 10−1

alloc out 1.00 1.24× 10−1 8.04 -

total 1.00 1.58× 101 6.35× 10−2 1.43× 10−1

The performance is initially already higher than the naive version of vec-
tor addition, this is because we already apply proper linking configuration
here such as using multiple ports and DDR. However, similar to the perfor-
mance of the naive version of vector addition, most of the time spent is in
the kernel.

Based on what we know from the previous case, this is not surprising.
We know from our last case that not using AXI burst has a large impact
on performance, and burst is not enabled in this kernel as the data accessed
is not sequential. This means that the biggest bottleneck is the transfer
between the FPGA and the DDR.

5.3 Improvements by improving dataflow

5.3.1 Initial Design

The naive cache implementation has two big flaws: We do not access data
sequentially, meaning we are not able to make use of AXI burst. In addition,
we only use data fetched from DDR once, while this data is needed multiple
times. First as upper neighbour, then three times as the three middle values
and lastly as lower neighbour. As the application is now, we fetch this item
again each time we need it, instead of keeping it in the kernel and reusing
it.

In order to avoid these issues we can use a sliding window approach
inspired by similar research which discusses implementing stencil computa-
tions on an FPGA: [8] and [23].

The ”window” in this design consists of the 5 variables we need for the
calculation: the upper value (v0), the middle values (v1-v3) and the lower
value (v4). Every iteration we ”slide” this window to the right to calculate
the new value for the item at the position of v2.

By using two FIFO queues we keep track of the intermediate values
without having to read these again from global memory. fifo_up contains all
the values in the input between v0 and v1, and fifo_down all those between
v3 and v4. A visual representation of this structure can be seen in the image
below.

40

Figure 5.1: A visual representation of the sliding window structure

We can slide the window to the right as follows:

1. Write v1 to fifo_up.

2. Write v4 to fifo_down.

3. Shift the middle values one position to the left, so v1 = v2 and v2 = v3.

4. Read v0 from fifo_up

5. Read v3 from fifo_down

6. Read v4 from the input.

We then send the values v0 to v4 to a compute unit, which is responsible
for computing the result based on the current variables and the position.

The advantage is that all data is accessed sequentially, allowing for
bursts, in addition, we only have to access each data point once, as it is
reused.

This also comes with a disadvantage: We have to define a maximum
width at compile-time. A FIFO must be able to contain all values between
v0-v1, and v3-v4. This means that the FIFOs contain ”width − 3” values
at all times. These FIFOs must be allocated as memory components in the
FPGA, which can’t happen dynamically.

We limit the FIFO size to be 214 = 16384 items, which corresponds to
a square array of a bit more than 1 GB. A larger size did not link due to
space limitations of the FPGA.

5.3.2 Improvements by widening the dataflow width

The current design only allows us to process a single item per clock cycle.
However we are able to read and write up to 16 items per clock cycle to

41

global memory, as shown in the vector addition case. So our processing
bandwidth should be 16 items per clock cycle.

We can accomplish this by widening the window size. Instead of sliding
the window forward by one every time, we can slide the window by 16 items.
This means that we can also calculate the output values for 16 items at a
time instead of 1.

This means that v0, v2 and v4 become lists instead of single values. We
call these lists lup, lmid and lbot.

Figure 5.2: A visual representation of the wide sliding window structure

Every iteration we slide the window as follows:

1. Write v1 and all values except the last one of lup to fifo_up.

2. Write all of lbot fifo_down.

3. Shift the middle values 16 items to the right, so v1 = lmid[15] and
l2[0] = v3.

4. Read lup from fifo_up

5. Read all values except the first one lmid and v3 from fifo_down

6. Read lbot from the input.

This can be shown visually as follows:

42

Figure 5.3: A visual representation of update of a wide sliding window
structure

5.3.3 Implementation

Now that we have a design of the application, we need to implement this in
Vitis HLS. For the full implementation, see code in the appendix A.3.

Instead of fixing the window width to be 16 values, we define a variable
P_UNROLL, which defines the width of the window and with that, how many
items we can process per iteration. In this text we call this value punroll.

Our programming pattern is similar to what we used in the buffer version
of the vector add code. We have a loop where we read data into a buffer of
size punroll, after that we compute the output and update the state, lastly,
we write the result out to the output buffer.

Achieving Pipeline: II=1 The main loop is pipelined, this means that
the length of the individual steps does not impact performance, as they can
be executing in parallel. Ideally, you want a pipelined loop to process new
inputs every single clock cycle, this is called a pipeline of II=1.

However, if the input of a step in a pipeline is also dependent on its
output, meaning it is dependent on past loop iterations, the amount of
clock cycles this step takes to execute matters. Every time we execute this
step, we need to wait for the previous step to have finished, meaning that if
the step takes multiple clock cycles, we are unable to achieve II=1.

For our code it is possible for the calculation function to be multiple clock
cycles, as it is only dependent on the input, however the update function
also has a state (the FIFOs). So in order to update, the previous update
needs to be completed, this is why it is important that this function is able
to execute in a single clock cycle.

43

The difference between the two functions is shown in the image below.

Figure 5.4: Two pipeline schemes, showing that if the update function takes
multiple clock cycles this has impact on performance, but if the calc function
does this is not the case

The update function The update function needs to shift the window
one step to the right. It needs to be able to do this in a single clock cycle,
It’s implementation can be found in A.3 as the function next_values.

The update function writes the current window to the FIFOs, and then
reads the next values into the window, both from the input and the FIFOs,
as described in the algorithm design.

In order to implement the FIFOs we create a Fifo class: This class
contains an array of size MAX_WIDTH, which is equal to the maximum width we
can process. The class contains a ”read” and ”write” function which allows
you to read or write punroll items from or to a buffer. These read and write
functions need to be able to be executed in a single clock cycle.

In order to do this, we have attempted various methods. The final
method which worked was to partition the array using the PARTITION pragma.
Unlike the coefficients however, we don’t fully partition the buffer but in-
stead use a cyclic partition.

By default the array is implemented using only a single memory compo-
nent (BRAM), however then it is only possible to read and write one item
every clock cycle. In our case, we need to write and read punroll items.

To solve this we use the PARTITION pragma, this causes the array to be
allocated to different components in a cyclic pattern.

For example if we partition the array {0, 1, 2, 3, 4, 5} with a factor of
3, values 0 and 3 belong to the first component, 1 and 4 to the second and
3 and 5 to the last.

44

We also attempted using the built-in hls:stream class. However we found
that when trying to read and write from the stream in a single clock cycle,
the compiler gave a warning that it was unable to achieve II=1.

Figure 5.5: En example of a cyclic array partition with a factor of 3, every
color represent an allocation to a different component

By partitioning the array with factor punroll we are able to write or read
punroll sequential items in parallel. Which means that our write and read

functions can be executed in a single clock cycle.
We ensure the write and read loops execute in a single clock cycle by

using the unroll pragma. This pragma tells the compiler to execute each
iteration of the loop in parallel.

Which means that our update function is also able to update in a single
clock cycle.

The compute step The compute step is responsible for computing the
output based on the current window and location.

As mentioned before, how many clock cycles this takes does not matter
for performance. We find that if we do add an unroll pragma here to execute
the add loop in a single clock cycle, we get a low frequency of around 120
Hz. This is why instead we use a pipeline pragma, to ensure the critical path
does not get too long. The pipeline pragma forces the loop to be pipelined,
which means that it is not possible to do all calculations in a single clock
cycle.

1 data_t vs[5] = {v0, v1, v2, v3, v4};

2

3 data_t out_val = 0;

4 for (size_int i = 0; i < 5; i++) {

5 # pragma HLS pipeline

6 out_val += coefficients[i] * vs[i];

7 }

Array partition We find that the compiler is unable to achieve pipeline
II=1 due to access problems because it is unable to read multiple values in
one clock cycle from the arrays we use to store the window. In order to avoid
this, we use the PARTITION pragma to fully partition the array. This means
all values in the array are stored in separate registers and it is possible to
read all these values in parallel in a single clock cycle.

45

Start handling At the start of the execution the FIFOs are completely
empty. This means that we first need to read input into the FIFOs until
they are filled with valid values. This takes width + 2 · punroll iterations.
As the FPGA kernel needs to reads and write values in batches of punroll,
and width doesn’t necessarily need to be a multiple of punroll, we let this be
handled by the host.

The host ignores the first width+2·punroll output values from the FPGA.

End handling At the end of the buffer, we still want the window to slide
forward but without reading any new inputs. To solve this, we let the host
allocate extra data at the end of the input data.

Port mapping We map the in and out ports to DDR0 and DDR1 re-
spectively. We map the coefficients port to PLRAM. This is a memory
component of 128KB max embedded in the FPGA. With this we hope to
prevent the frequency issues caused by using 3 DDR cards seen in 4.3 as the
PLRAM is on the same SLR as where we place the kernel.

5.3.4 Results

When running the applications corresponding to our two designs, we find
the following performance:

speed per port (GB s−1) performance (GFLOPS) speedup

Cache 6.46× 10−2 1.45× 10−1 -

Window (punroll = 1) 7.62× 10−2 1.71× 10−1 1.18

Window (punroll = 16) 1.46× 101 3.29× 101 226.01

It can be seen that there is barely any speedup for the sliding window using
punroll = 1. This is because the compiler was only able to achieve a frequency
of 25.0MHz for this implementation. This is very interesting, considering
this was not an issue for the higher punroll version, which contains the exact
same code except for the different value of the constant variable P_UNROLL.
Our theory is that the compiler likely does not allocate memory somewhere
in the circuit due to this, resulting in a longer critical path. However we
find that there is no way to look further into this issue without looking into
the compiled HDL code.

The sliding window with a punroll of 16 does manage to get a maximum
frequency of 300MHz, resulting in a 226-fold speedup compared to the cache
version. The final performance is limited by the FPGA-to-DDR memory
bandwidth, as with a higher bandwidth we would be able to increase punroll
to increase the performance.

When looking at how much hand optimization and domain knowledge
was required, we find that our initial naive version did not return correct

46

results, and there was not much guidance from the compiler or any other
analysis tool in the Vitis tool chain on how to fix this. Knowledge about
the exact details of the AXI protocol turned out to be necessary to debug
the issue. In order to get better performance out of the program, it was
necessary to apply an FPGA specific algorithm, in order to implement this,
it was necessary to use various pragmas and FPGA specific structures. When
implementing it is necessary to constantly be aware of what the resulting
circuit will look like.

Similar to the vector addition case, clock frequency has significant impact
on the performance of one of our versions: punroll = 1. We find that it is
difficult to predict, explain or prevent this issue when programming on the
HLS abstraction level.

5.4 Comparison to GPU and CPU

Now that we have an improved FPGA application, we can compare its per-
formance against a GPU and CPU implementation.

5.4.1 Implementation of CPU and GPU

CPU The CPU code is similar to the naive version of the FPGA kernel
code, we loop through all inner values and calculate the output value based
on the neighbours of the input value. We parallelise the outer for loop using
OpenMP.

1 #pragma omp parallel for

2 for (size_int y = 1; y < width; y++) {

3 for (size_int x = 1; x < width; x++) {

4 out[y * width + x] =

5 in[(y - 1) * width + x] * coefficients [0]

6 + ...

7 }

8 }

9 }

GPU For the GPU we use the following kernel code. If the current index
is within the bound of the array and not on a border, we calculate the new
value based on its neighbours. The GPU executes this kernel for each of the
indices in the input.

1 __kernel void calc_stencil (...)

2 {

3 unsigned int id_x = get_global_id (0);

4 unsigned int id_y = get_global_id (1);

5

6 if (id_x >= 1 && id_x < width - 1 && id_y >= 1 && id_y <

width - 1) {

47

7 out[id_y*width + id_x] =

8 in[(id_y -1)*width+id_x] * coefficients [0]

9 + ...

10 }

11 else if (id_x >= 0 && id_x < width && id_y >= 0 && id_y <

width) {

12 out[id_y*width + id_x] = in[id_y*width + id_x] ;

13 }

14 }

5.4.2 Performance

We run and measure the performance of the three applications.

Figure 5.6: The performance metrics of the FPGA, GPU and CPU for the
5-point stencil computation

When looking at the entire application the FPGA performance stabilises at
about 8 GFLOPS. The GPU at around 12-13 GFLOPS and the CPU at 25.
For the FPGA and GPU, most time was spent on the transfer between host
and global memory of the device.

The GPU performs best when looking at the kernel only. However, in
comparison to the vector addition case, where the disparity was about 2.5
times, here the disparity is 1.6. This is because here we do not have issues
with reduced clock speed, so we were able to use a higher percentage of the
DDR bandwidth.

For all three implementations, the performance is higher compared to
the performance of the vector addition. This is because more computations
are done per memory read, this is especially the case for the FPGA as we
have programmed it to reuse all read data. The limiting factor for the three
applications remains to the memory accesses, as there are few computations
compared to the memory speed.

Next, we look at the energy consumption of the FPGA compared to that
of the GPU.

48

5.4.3 Energy consumption

Figure 5.7: The energy consumption of the FPGA and GPU for the 5-point
stencil computation

Figure 5.8: The energy consumption of the FPGA and GPU for the 5-point
stencil computation, zoomed in on the last quarter of the measured data
sizes

It can be seen that the FPGA consumes less energy compared to the GPU.
Compared to the vector addition case the disparity in performance per watt
is higher, this is because the relative performance is lower.

We are unable to get as much accuracy for the FPGA compared to the
vector addition as we’re unable to work with larger data sizes, meaning we
have shorter execution times.

49

Chapter 6

Related Work

There exist several surveys on the overall development of high synthesis lan-
guages [21], [6], [17], [15]. These surveys look at possible tools and method
of FPGA programming and compare and evaluate them. In contrast to this
thesis, they are an overview of the overall state of FPGA development and
highlight different tools. The Vitis tool chain we use is mentioned in [21] and
[6]. [21] finds that while Vitis is a significant improvement over other meth-
ods and older tools, especially in regards to the system level integration,
there is still domain knowledge required. This supports our findings.

Vitis is just one of various tools used to develop FPGAs. One category of
tools being researched are on the same abstraction level as classic HDL tools
such as VHDL but with more modern features such as parametrisation and
polymorphism. [2] [3] [12]. As an example, one such language: Clash [2],
compiles from Haskell to Verilog and VHDL. While the source language of
these tools might be a similar or higher level of abstraction compared to the
C++ used in our bachelor thesis, these languages are on a lower abstraction
level in regards to circuit design. Other HLS tools on a higher abstraction
level are also being developed [14] [16]. These languages are usually domain
specific. For instance Lift [14] is a language focusing on functional patterns.
The language most similar to Vitis is Intel’s OpenCL HLS tool. We are
not aware of research into the use of these other HLS languages for high
performance computing, possible future work can be to repeat the approach
of bachelor thesis but using one of these languages.

We are aware of one paper researching the development process using
Vitis HLS specifically looking into the use process and domain knowledge:
[4] shows the development process of a single application of Vitis HLS and
has similar conclusions to this thesis. While this work is very similar, it does
not take the same approach by starting with a naive version and comparing
this to the hand optimised version.

Similar cases have been developed on FPGAs. [13] is an technical report
of a floating point vector addition. [8] [25] and [19] all discuss implement-

50

ing high performance stencil applications. Specifically [8] has inspired the
design of the advanced stencil implementation in this thesis. The papers
all get a higher end performance compared to our findings, this is due to
a combination of a different problem scale, such as a 3d or chained stencil,
and different hardware. Specifically the FPGA used in [8] has HBM mem-
ory which has higher memory bandwidth compared to the DDR memory
used in our thesis. These papers have a different focus compared to this
thesis, the goal is getting the best performance without looking at the naive
implementation or the development process itself.

51

Chapter 7

Conclusions

Both case studies have demonstrated that a naive implementation at best
leads to a significantly worse performance, with more than a 200-fold dif-
ference between the naive implementation and the hand optimised version.
This is a surprising observation, specifically for vector addition as it is such
a simple, common problem. The naive implementation of the stencil com-
putation shows us that naive implementations can also not work at all. We
conclude that it is not viable yet to write naive code when programming
FPGAs using HLS, especially when performance is an important factor.

For both cases, we find that hand optimisations do require domain knowl-
edge in order to work, especially knowledge about the general structure of
the card, the memory access protocol and general good programming prac-
tices for Vitis, such as the read-compute-store pattern.

For the stencil computation specifically, we find that it is necessary to
first design a high-level circuit design, which can then be translated into
the HLS language. It necessary to always be aware of clock cycles, memory
division and pipelining.

In conclusion, while HLS tools make it significantly easier to program
FPGAs compared to HDL tools, there is still domain knowledge required on
how hardware design works and the developer must be aware of the circuit
which is synthesized.

When looking at the final performance of the optimised FPGA kernels
we find that for both cases we hit a memory bottleneck: the limiting factor
was the DDR memory bandwidth. In addition, when looking at the entire
application, most of the time spent was in the data transfer between the
host and global memory. In neither of the cases did we hit a limit in FPGA
computing resources themselves (LUT, DSPs), we suspect that for more
complicated problems the FPGA kernel can be fully utilised and achieve
higher performance levels.

If we look at the comparison to non optimised GPU and CPU code we
find that for both cases we hit memory bottlenecks on all devices. The CPU

52

performed best when looking at the entire application, and the GPU best
when looking at only the kernel. The FPGA had the lowest performance
compared to other devices in the vector addition application. But when
looking at the kernel speed of the stencil did perform better than the CPU.

When looking at energy usage compared to a GPU, the FPGA used
significantly less energy and has a higher performance per watt. This is only
possible from carefully optimised HLS code, and the development process
was significantly more complicated than that of the GPU and CPU.

7.1 Practical observation

7.1.1 Technical installation and use process

We find that Vitis is difficult to install and use. First of all, the whole pro-
gram is more than 200 GB large. This includes a user interface, a compiler
for both normal HLS and AI specific HLS, a linker, a simulator, and a de-
bugger. It is not possible to just install the parts which are necessary, you
have to install all of it.

Vitis does provide a GUI which includes a way to compile projects,
however there’s not a documented way to compile projects made by the
GUI using the terminal. So this was not viable when using slurm. Instead
we wrote CMake files and used a self-configured text-editor, which worked
well. However this means we might have missed out on some Vitis features
by using this method.

For users, this would be something to take into consideration, as in-
stalling the GPU and CPU development tools and compilers is much easier
and takes less space.

One other issue is that the documentation of Vitis can be pretty unclear.
There are a lot of dead links in the documentation, links which lead to an
error or empty page. In addition, a lot of the examples don’t use optimal
code practices for performance.

This can also be found in the results of research papers: For example [8]
used a manual conversion from a 512 bit integer to widen to ports, while
they could have used a hls::vector. This is likely because the documentation
for the vector is hidden somewhere deep in the documentation and not used
in any examples provided.

7.1.2 Compilation times

As mentioned in my thesis, the compilation times when linking the kernel
can take a lot of time and memory. The times could go from 1 hour up
to 10+ depending on the kernel. In addition, at least 32 GB of memory
is required. When deciding whether to use an FPGA, this should also be
taken into account.

53

The compilation times for GPU and CPU did not take more than 10
seconds Assuming the best case and for the FPGA and the worst case for
the GPU/CPU the FPGA compilation time is 360 times as slow. When
developing many different programs, this should be taken into account. Al-
though if the program is ment to be reused for many times, this will have
less of an impact on the choice.

One additional disadvantage is that this makes optimising very difficult.
For example, the maximum frequency is only known after the linking has
completed, so debugging low frequencies is difficult as for each attempt, you
need at least an hour to find out the result. In some cases, such as the cache
with high values, the compiler would not be able to complete because it took
more than 10 hours to compile the program, which is the maximum set in
the slurm configuration used.

It’s important to note that these two applications were also relatively
small, and the documentation mentions that compilation times are based
on the source. So it is possible that this might be even more of an issue for
larger projects.

7.2 Future work

Cases In both my cases, we did not take full advantage of the pipelining
possible by an FPGA, this would likely lead to better performance of the
FPGA compared to the GPU and CPU.

Possible cases which could be explored would be a repeated stencil com-
putation, or signal or image processing problems.

In addition, in both cases we hit the memory bandwidth limit. It would
also be interesting to explore cases where this harder or impossible to ac-
complish, such as a matrix multiplication. For these cases, techniques such
as using multiple kernels could lead to a bigger improvement.

Optimizing clock frequency We have not looked much into how to
optimise the clock frequency and prevent long critical paths. Nor did we
look into what exactly causes extremely low frequencies and how to prevent
this when using HLS languages.

Comparison to other HLS tools It would be interesting to explore
these cases by using different languages to program the FPGA kernel. Using
Vitis, it is possible to use custom RTL kernels which can then be linked.

Future research could explore implementing these problems using differ-
ent languages and tools and seeing how the code, energy usage and perfor-
mance compare.

54

Bibliography

[1] Alveo Product Details � Alveo U200 and U250 Data Center Accelerator
Cards Data Sheet (DS962) � Reader � AMD Technical Information
Portal. url: https://docs.amd.com/r/en-US/ds962-u200-u250/
Alveo-Product-Details (visited on 06/05/2024).

[2] Christiaan Baaij et al. “C?aSH: Structural Descriptions of Synchronous
Hardware Using Haskell”. In: Proceedings of the 2010 13th Euromi-
cro Conference on Digital System Design: Architectures, Methods and
Tools. DSD ’10. USA: IEEE Computer Society, Sept. 1, 2010, pp. 714–
721. isbn: 978-0-7695-4171-6. doi: 10 . 1109 / DSD . 2010 . 21. url:
https://doi.org/10.1109/DSD.2010.21 (visited on 10/02/2023).

[3] Jonathan Bachrach et al. “Chisel: Constructing Hardware in a Scala
Embedded Language”. In: Proceedings of the 49th Annual Design Au-
tomation Conference. DAC ’12. New York, NY, USA: Association for
Computing Machinery, June 3, 2012, pp. 1216–1225. isbn: 978-1-4503-
1199-1. doi: 10.1145/2228360.2228584. url: https://doi.org/
10.1145/2228360.2228584 (visited on 07/29/2024).

[4] Nick Brown. “Weighing Up the New Kid on the Block: Impressions
of Using Vitis for HPC Software Development”. In: 2020 30th Inter-
national Conference on Field-Programmable Logic and Applications
(FPL). 2020 30th International Conference on Field-Programmable
Logic and Applications (FPL). Aug. 2020, pp. 335–340. doi: 10.1109/
FPL50879 . 2020 . 00062. url: https : / / ieeexplore . ieee . org /

abstract / document / 9221613 ? casa _ token = rdeoF2HIGpsAAAAA :

MI97y4NQyz9HfXYJGBSIFqp6qlCXhOqx7M4E63LzFVwNuWexVk3hPX6E6XDZgJivtwj6LvaJabRDfFw

(visited on 05/28/2024).

[5] Buffer Creation and Data Transfer � Vitis Unified Software Platform
Documentation: Application Acceleration Development (UG1393) �

Reader � AMD Technical Information Portal. url: https://docs.
amd.com/r/en-US/ug1393-vitis-application-acceleration/

Buffer-Creation-and-Data-Transfer (visited on 06/06/2024).

[6] Jason Cong et al. “FPGA HLS Today: Successes, Challenges, and
Opportunities”. In: ACM Transactions on Reconfigurable Technology

55

and Systems 15.4 (Aug. 8, 2022), 51:1–51:42. issn: 1936-7406. doi: 10.
1145/3530775. url: https://dl.acm.org/doi/10.1145/3530775
(visited on 05/28/2024).

[7] Tomasz S. Czajkowski et al. “From Opencl to High-Performance Hard-
ware on FPGAS”. In: 22nd International Conference on Field Pro-
grammable Logic and Applications (FPL). 22nd International Con-
ference on Field Programmable Logic and Applications (FPL). Aug.
2012, pp. 531–534. doi: 10.1109/FPL.2012.6339272. url: https://
ieeexplore.ieee.org/document/6339272 (visited on 10/05/2023).

[8] Changdao Du and Yoshiki Yamaguchi. “High-Level Synthesis Design
for Stencil Computations on FPGA with High Bandwidth Memory”.
In: Electronics 9.8 (8 Aug. 2020), p. 1275. issn: 2079-9292. doi: 10.
3390/electronics9081275. url: https://www.mdpi.com/2079-
9292/9/8/1275 (visited on 04/01/2024).

[9] HLS Pragmas � Vitis Unified Software Platform Documentation: Ap-
plication Acceleration Development (UG1393) � Reader � AMD Tech-
nical Information Portal. url: https://docs.amd.com/r/en-US/
ug1393-vitis-application-acceleration/HLS-Pragmas (visited
on 08/11/2024).

[10] Integer vs. Floating-Point Processing on Modern FPGA Technology
— IEEE Conference Publication — IEEE Xplore. url: https://
ieeexplore.ieee.org/abstract/document/9031118?casa_token=

88cYsmJu4OoAAAAA:Gs-HNkfNDwlBmC6FmFMtxLH-wLk3l0qE-Wg7LTmCwYGTop4JVsjPtT1GTeaxQfLSsbgiVZs-

eJWN0vU (visited on 07/01/2024).

[11] Amin Isazadeh, Davide Ziviani, and David E. Claridge. “Global Trends,
Performance Metrics, and Energy Reduction Measures in Datacom Fa-
cilities”. In: Renewable and Sustainable Energy Reviews 174 (Mar. 1,
2023), p. 113149. issn: 1364-0321. doi: 10 . 1016 / j . rser . 2023 .
113149. url: https://www.sciencedirect.com/science/article/
pii/S1364032123000059 (visited on 07/27/2024).

[12] Keerthan Jaic and Melissa C. Smith. “Enhancing Hardware Design
Flows with MyHDL”. In: Proceedings of the 2015 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays. FPGA ’15.
New York, NY, USA: Association for Computing Machinery, Feb. 22,
2015, pp. 28–31. isbn: 978-1-4503-3315-3. doi: 10.1145/2684746.
2689092. url: https://doi.org/10.1145/2684746.2689092 (vis-
ited on 07/29/2024).

[13] Zheming Jin et al. Evaluation of the Single-precision Floatingpoint
Vector Add Kernel Using the Intel FPGA SDK for OpenCL. ANL/ALCF-
17/2. Argonne National Lab. (ANL), Argonne, IL (United States),
Apr. 20, 2017. doi: 10.2172/1357902. url: https://www.osti.gov/
biblio/1357902 (visited on 06/30/2024).

56

[14] Martin Kristien et al. “High-Level Synthesis of Functional Patterns
with Lift”. In: Proceedings of the 6th ACM SIGPLAN International
Workshop on Libraries, Languages and Compilers for Array Program-
ming. ARRAY 2019. New York, NY, USA: Association for Comput-
ing Machinery, June 8, 2019, pp. 35–45. isbn: 978-1-4503-6717-2. doi:
10.1145/3315454.3329957. url: https://dl.acm.org/doi/10.
1145/3315454.3329957 (visited on 10/02/2023).

[15] Sakari Lahti et al. “Are We There Yet? A Study on the State of
High-Level Synthesis”. In: IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 38.5 (May 2019), pp. 898–911.
issn: 1937-4151. doi: 10.1109/TCAD.2018.2834439. url: https://
ieeexplore.ieee.org/abstract/document/8356004?casa_token=

vIGwHjk37IUAAAAA:7kRMJZcdkAlsF_krYFrnsFXaJXouGHFW3xXutF8-

En9KdYsEOdabNfVL0V08luKmSNGCMYky7fMecwo (visited on 05/27/2024).

[16] Yi-Hsiang Lai et al. “HeteroCL: A Multi-Paradigm Programming In-
frastructure for Software-Defined Reconfigurable Computing”. In: Pro-
ceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. FPGA ’19. New York, NY, USA: Asso-
ciation for Computing Machinery, Feb. 20, 2019, pp. 242–251. isbn:
978-1-4503-6137-8. doi: 10.1145/3289602.3293910. url: https:
//doi.org/10.1145/3289602.3293910 (visited on 07/29/2024).

[17] Zhengjie Li et al. “A Survey of FPGA Design for AI Era”. In: Journal
of Semiconductors 41.2 (Feb. 2020), p. 021402. issn: 1674-4926. doi:
10.1088/1674-4926/41/2/021402. url: https://dx.doi.org/10.
1088/1674-4926/41/2/021402 (visited on 06/05/2024).

[18] OpenCL Programming � Vitis Unified Software Platform Documen-
tation: Application Acceleration Development (UG1393) � Reader �

AMD Technical Information Portal. url: https://docs.amd.com/
r/en- US/ug1393- vitis- application- acceleration/OpenCL-

Programming (visited on 07/24/2024).

[19] Kentaro Sano, Yoshiaki Hatsuda, and Satoru Yamamoto. “Multi-FPGA
Accelerator for Scalable Stencil Computation with Constant Memory
Bandwidth”. In: IEEE Transactions on Parallel and Distributed Sys-
tems 25.3 (Mar. 2014), pp. 695–705. issn: 1558-2183. doi: 10.1109/
TPDS.2013.51. url: https://ieeexplore.ieee.org/abstract/
document/6470606?casa_token=6ksDen-u_J4AAAAA:8xbz0WPciTDia0W1QieBqTbYmhgk5jrhcR_

EScGemtWdV7Ba7AdQ1HrRA3tURbh58BkiI3bcRpjP0LA (visited on 07/29/2024).

[20] Scott Sirowy and Alessandro Forin. “Where’s the Beef? Why FPGAs
Are So Fast”. In: ().

57

[21] Emanuele Del Sozzo et al. “Pushing the Level of Abstraction of Digital
System Design: A Survey on How to Program FPGAs”. In: ACM
Computing Surveys 55.5 (Dec. 3, 2022), 106:1–106:48. issn: 0360-0300.
doi: 10.1145/3532989. url: https://dl.acm.org/doi/10.1145/
3532989 (visited on 10/02/2023).

[22] Vitis Unified Software Platform Documentation Landing Page (UG1416)
� Viewer � AMD Technical Information Portal. url: https://docs.
amd.com/v/u/en- US/ug1416- vitis- documentation (visited on
07/24/2024).

[23] Hasitha Muthumala Waidyasooriya and Masanori Hariyama. “Multi-
FPGA Accelerator Architecture for Stencil Computation Exploiting
Spacial and Temporal Scalability”. In: IEEE Access 7 (2019), pp. 53188–
53201. issn: 2169-3536. doi: 10.1109/ACCESS.2019.2910824. url:
https://ieeexplore.ieee.org/abstract/document/8689014 (vis-
ited on 02/22/2024).

[24] Xilinx/Vitis Accel Examples: Vitis Accel Examples. url: https : / /

github.com/Xilinx/Vitis_Accel_Examples/tree/main (visited
on 06/30/2024).

[25] Hamid Reza Zohouri, Artur Podobas, and Satoshi Matsuoka. “Com-
bined Spatial and Temporal Blocking for High-Performance Stencil
Computation on FPGAs Using OpenCL”. In: Proceedings of the 2018
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. FPGA ’18. New York, NY, USA: Association for Computing
Machinery, Feb. 15, 2018, pp. 153–162. isbn: 978-1-4503-5614-5. doi:
10.1145/3174243.3174248. url: https://doi.org/10.1145/
3174243.3174248 (visited on 06/30/2024).

[26] Xingqi Zou et al. “Breaking the von Neumann Bottleneck: Architecture-
Level Processing-in-Memory Technology”. In: Science China Informa-
tion Sciences 64.6 (June 2021), p. 160404. issn: 1674-733X, 1869-1919.
doi: 10.1007/s11432-020-3227-1. url: https://link.springer.
com/10.1007/s11432-020-3227-1 (visited on 06/17/2024).

58

Appendix A

Appendix

A.1 Example of host code

1 ...

2 typedef uint32_t size_int;

3 typedef uint32_t data_t;

4 ...

5

6 int main(int argc , char** argv) {

7 // process arguments

8 ...

9

10 // Allocate Memory in Host Memory

11 size_int vector_size_bytes = sizeof(data_t) * data_size;

12 std::vector <data_t , aligned_allocator <data_t >> in1(

data_size);

13 std::vector <data_t , aligned_allocator <data_t >> in2(

data_size);

14 std::vector <data_t , aligned_allocator <data_t >> out(

data_size);

15

16 std::vector <data_t , aligned_allocator <data_t > > reference(

data_size);

17

18 // Create the test and reference data

19 ...

20

21 auto devices = xcl:: get_xil_devices ();

22

23 auto fileBuf = xcl:: read_binary_file(binaryFile);

24 cl:: Program :: Binaries bins{{ fileBuf.data(), fileBuf.size()

}};

25 auto device = devices [0];

26

27 cl_int err;

28 OCL_CHECK(err , cl:: Context context(device , nullptr , nullptr

, nullptr , &err));

29 OCL_CHECK(err , CommandQueue q(context , device ,

59

CL_QUEUE_PROFILING_ENABLE , &err));

30

31 std::cout << "Trying to program device " << device.getInfo <

CL_DEVICE_NAME >() << std::endl;

32 cl:: Program program(context , {device}, bins , nullptr , &err)

;

33 if (err != CL_SUCCESS) {

34 std::cout << "Failed to program device with xclbin file!\n"

;

35 exit(EXIT_FAILURE);

36 } else {

37 std::cout << "Device: program successful !\n";

38 OCL_CHECK(err , cl:: Kernel krnl_add(program , "fpga_kernel",

&err));

39 }

40

41 // Allocate Buffer in Global Memory

42 OCL_CHECK(err , cl:: Buffer buffer_in1(

43 context ,

44 CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY ,

45 vector_size_bytes ,

46 in1.data(),

47 &err

48));

49 OCL_CHECK(err , cl:: Buffer buffer_in2(

50 context ,

51 CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY ,

52 vector_size_bytes , in2.data(),

53 &err

54));

55 OCL_CHECK(err , cl:: Buffer buffer_out(

56 context ,

57 CL_MEM_USE_HOST_PTR | CL_MEM_WRITE_ONLY ,

58 vector_size_bytes ,

59 out.data(),

60 &err

61));

62

63 argc = 0;

64 OCL_CHECK(err , err = krnl_add.setArg(argc++, buffer_in1));

65 OCL_CHECK(err , err = krnl_add.setArg(argc++, buffer_in2));

66 OCL_CHECK(err , err = krnl_add.setArg(argc++, buffer_out));

67 OCL_CHECK(err , err = krnl_add.setArg(argc++, data_size));

68

69 cl::Event in_event;

70 cl::Event kernel_event;

71 cl::Event out_event;

72

73 Clock clock;

74 clock.start();

75

76 OCL_CHECK(err , err = q.enqueueMigrateMemObjects ({ buffer_in1

, buffer_in2}, 0, NULL , &in_event));

77

60

78 OCL_CHECK(err , err = q.enqueueTask(krnl_add , NULL , &

kernel_event));

79

80 OCL_CHECK(err , err = q.enqueueMigrateMemObjects ({ buffer_out

}, CL_MIGRATE_MEM_OBJECT_HOST , NULL , &out_event))

81 OCL_CHECK(err , err = q.finish ());

82

83 // verify data

84 ...

85 // calculate and print measurements

86 ...

87 }

A.2 Host code with multiple kernels

1 // includes

2 ...

3 # define DIVISION 4

4

5 // helper functions and classes , same as normal host code

6 ...

7

8

9

10 int main(int argc , char** argv) {

11 // load kernel , create reference data , similar to normal host

code

12 ...

13

14 OCL_CHECK(err , cl:: Context context(device , nullptr , nullptr

, nullptr , &err));

15 OCL_CHECK(err , cl:: CommandQueue q(context , device ,

CL_QUEUE_PROFILING_ENABLE |

CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE , &err));

16

17 // program device

18 std::vector <cl_mem_ext_ptr_t > in1_exts;

19 std::vector <cl_mem_ext_ptr_t > in2_exts;

20 std::vector <cl_mem_ext_ptr_t > out_exts;

21

22 for (uint i = 0; i < DIVISION; i++) {

23 cl_mem_ext_ptr_t ext; // Declaring two extensions for both

buffers

24 ext.flags = i | XCL_MEM_TOPOLOGY; // Specify Bank0 Memory

for input memory

25 ext.obj = in1.data() + i * slice_size;

26 ext.param = 0 ;

27 in1_exts.push_back(ext);

28 }

29 for (uint i = 0; i < DIVISION; i++) {

30 cl_mem_ext_ptr_t ext; // Declaring two extensions for both

buffers

31 ext.flags = i | XCL_MEM_TOPOLOGY; // Specify Bank0 Memory

61

for input memory

32 ext.obj = in2.data() + i * slice_size;

33 ext.param = 0 ;

34 in2_exts.push_back(ext);

35 }

36 for (uint i = 0; i < DIVISION; i++) {

37 cl_mem_ext_ptr_t ext; // Declaring two extensions for both

buffers

38 ext.flags = i | XCL_MEM_TOPOLOGY; // Specify Bank0 Memory

for input memory

39 ext.obj = out.data() + i * slice_size;

40 ext.param = 0 ;

41 out_exts.push_back(ext);

42 }

43

44 std::vector <cl::Event > in_events ;

45 std::vector <cl::Event > kernel_events ;

46 std::vector <cl::Event > out_events ;

47 std::vector <cl::Buffer > buffers_in1;

48 std::vector <cl::Buffer > buffers_in2;

49 std::vector <cl::Buffer > buffers_out;

50 std::vector <cl::Kernel > kernels;

51

52 for (size_int i = 0; i < DIVISION; i++) {

53

54 std::cout << "creating buffers" << std::endl;

55 OCL_CHECK(err ,

56 buffers_in1.push_back(cl:: Buffer (

57 context ,

58 CL_MEM_READ_ONLY | CL_MEM_EXT_PTR_XILINX |

CL_MEM_USE_HOST_PTR ,

59 slice_size_bytes ,

60 &in1_exts.at(i),

61 &err

62)

63));

64

65 OCL_CHECK(err ,

66 buffers_in2.push_back(cl:: Buffer (

67 context ,

68 CL_MEM_READ_ONLY | CL_MEM_EXT_PTR_XILINX |

CL_MEM_USE_HOST_PTR ,

69 slice_size_bytes ,

70 &in2_exts.at(i),

71 &err

72)

73));

74 OCL_CHECK(err ,

75 buffers_out.push_back(cl:: Buffer (

76 context ,

77 CL_MEM_READ_ONLY | CL_MEM_EXT_PTR_XILINX |

CL_MEM_USE_HOST_PTR ,

78 slice_size_bytes ,

79 &out_exts.at(i),

62

80 &err

81)

82));

83 }

84

85 for (size_int i = 0; i < DIVISION; i++) {

86

87 size_int arg = 0;

88 OCL_CHECK(err , cl:: Kernel kernel (program , "fpga_kernel", &

err));

89 OCL_CHECK(err , err = kernel.setArg(arg++, buffers_in1.at(i)

));

90 OCL_CHECK(err , err = kernel.setArg(arg++, buffers_in2.at(i)

));

91 OCL_CHECK(err , err = kernel.setArg(arg++, buffers_out.at(i)

));

92 OCL_CHECK(err , err = kernel.setArg(arg++, 0));

93 OCL_CHECK(err , err = kernel.setArg(arg++, slice_size));

94 kernels.push_back(kernel);

95 }

96

97 Clock clock;

98 clock.start();

99 for (size_int i = 0; i < DIVISION; i++) {

100 cl::Event in_event;

101 OCL_CHECK(err , err = q.enqueueMigrateMemObjects(

102 {buffers_in1.at(i),

103 buffers_in2.at(i)},

104 0, NULL , &in_event)

105);

106 in_events.push_back(in_event);

107 }

108 for (size_int i = 0; i < DIVISION; i++) {

109 cl::Event kernel_event;

110 OCL_CHECK(err , err = q.enqueueTask(kernels.at(i), &

in_events , &kernel_event));

111 kernel_events.push_back(kernel_event);

112 }

113 for (size_int i = 0; i < DIVISION; i++) {

114 cl::Event out_event;

115 OCL_CHECK(err , err = q.enqueueMigrateMemObjects ({

buffers_out.at(i)}, CL_MIGRATE_MEM_OBJECT_HOST , &

kernel_events , &out_events [0]));

116 out_events.push_back(out_event);

117 }

118 q.finish ();

119 clock.stop();

120

121 // verify data and print timing results

122 ...

123 }

A.3 Stencil code

63

1 #include <iostream >

2

3 #include <hls_stream.h>

4 #include <sys/types.h>

5 #include <ap_int.h>

6 #include <cassert >

7 /* Coefficients should be seen as following:

8 * |x-1| x |x+1

9 * |---|---|---

10 * y-1| | 0 |

11 * y | 1 | 2 | 3

12 * y+1| | 4 |

13 */

14

15 typedef uint32_t data_t;

16 typedef uint32_t size_int;

17 typedef hls::stream <data_t > stream_t;

18

19 # define P_UNROLL 16

20 // width of p_index should be 2 log P_UNROLL

21 # define STENCIL_SIZE 5

22 # define MAX_WIDTH 16384

23

24 const size_int SLICE_SIZE = P_UNROLL + 2;

25

26 class Fifo {

27 # define STREAM_SIZE 16384

28 typedef ap_uint <14> index_t;

29 index_t read_index = 0;

30 index_t write_index ;

31 data_t stream[STREAM_SIZE];

32

33 public:

34 Fifo(size_t size) {

35 write_index = size;

36 }

37

38 void read(data_t buffer[P_UNROLL]) {

39 streams_read_loop:

40 # pragma hls ARRAY_PARTITION variable=stream cyclic factor=

P_UNROLL

41 # pragma hls ARRAY_PARTITION variable=buffer complete

42 for (size_int i = 0; i < P_UNROLL; i++) {

43 # pragma hls UNROLL

44 buffer[i] = stream [(index_t) read_index + i];

45 }

46 read_index += P_UNROLL;

47 }

48

49 void write(const data_t buffer[P_UNROLL]) {

50 streams_write_loop:

51 # pragma hls ARRAY_PARTITION variable=stream cyclic factor=

P_UNROLL

52 # pragma hls ARRAY_PARTITION variable=buffer complete

64

53 for (size_int i = 0; i < P_UNROLL; i++) {

54 # pragma hls UNROLL

55 stream [(index_t) write_index + i] = buffer[i];

56 }

57 write_index += P_UNROLL;

58 }

59

60 size_t size() {

61 if (write_index < read_index) {

62 return STREAM_SIZE - read_index + write_index;

63 }

64 return write_index - read_index;

65 }

66 #ifndef __SYNTHESIS__

67 void print_contents () {

68 for (size_int i = 0; i < size(); i += 1) {

69 std::cout << stream [(index_t) read_index + i] << " ";

70 }

71 std::cout << std::endl;

72 }

73 #endif

74 };

75

76

77 static void load_coefficients(const data_t in[STENCIL_SIZE],

data_t out[STENCIL_SIZE]) {

78 load_coefficients_loop:

79 # pragma hls ARRAY_PARTITION variable=out complete

80 for (size_int i = 0; i < STENCIL_SIZE; i++) {

81 # pragma hls UNROLL

82 out[i] = in[i];

83 }

84 }

85

86 static data_t calc_stencil_point (

87 const data_t coefficients[STENCIL_SIZE],

88 const size_int width , const size_int iteration ,

89 data_t v0, data_t v1, data_t v2, data_t v3, data_t v4

90) {

91 size_int loc = iteration - width - P_UNROLL - P_UNROLL;

92 const size_int y = loc / width;

93 const size_int x = loc % width;

94

95 // std::cout << "calculating stencil for (" << x << ", " <<

y << ") with v0:" << v0 << " v1:" << v1 << " v2:" << v2 <<

" v3:" << v3 << " v4:" << v4 << std::endl;

96

97 if (y <= 0) v0 = 0;

98 if (x <= 0) v1 = 0;

99 if (y >= width - 1) v4 = 0;

100 if (x >= width - 1) v3 = 0;

101

102 data_t vs[5] = {v0, v1, v2, v3, v4};

103

65

104 data_t out_val = 0;

105 for (size_int i = 0; i < 5; i++) {

106 # pragma HLS unroll factor =3

107 out_val += coefficients[i] * vs[i];

108 }

109 return out_val;

110 }

111

112 static void compute_output (

113 data_t buffer[P_UNROLL],

114 const data_t* coefficients ,

115 const size_int width , const size_int loc ,

116 const data_t top[SLICE_SIZE], const data_t mid[SLICE_SIZE],

const data_t bot[SLICE_SIZE]

117) {

118 # pragma hls ARRAY_PARTITION variable=buffer complete

119 compute_output_loop:

120 for (size_int i = 0; i < P_UNROLL; i++) {

121 # pragma HLS UNROLL

122 buffer[i] = calc_stencil_point(coefficients , width , loc+i

, top[i+1], mid[i], mid[i+1], mid[i+2], bot[i+1]);

123 }

124 }

125

126 #ifndef __SYNTHESIS__

127 static void print_status (

128 Fifo& fifos_up , Fifo& fifos_down ,

129 size_int x, size_int y,

130 data_t top[SLICE_SIZE], data_t mid[SLICE_SIZE], data_t bot[

SLICE_SIZE]

131){

132 std::cout << "=====[" << "x: " << x << " y: " << y << "

]=====" << std::endl

133 << "fifos up size " << fifos_up.size() << std::endl

134 << "fifos down size " << fifos_down.size() << std::endl;

135 std::cout << "fifos up contents: " ;

136 fifos_up.print_contents ();

137 std::cout << "fifos down contents: " ;

138 fifos_down.print_contents ();

139 std::cout << "status registers: " << std::endl;

140 std::cout << "top\t" ;

141 for (size_int i = 0; i < SLICE_SIZE; i++) {

142 std::cout << top[i] << "\t" ;

143 }

144 std::cout << std::endl;

145 std::cout << "mid\t" ;

146 for (size_int i = 0; i < SLICE_SIZE; i++) {

147 std::cout << mid[i] << "\t" ;

148 }

149 std::cout << std::endl;

150 std::cout << "bot\t" ;

151 for (size_int i = 0; i < SLICE_SIZE; i++) {

152 std::cout << bot[i] << "\t" ;

153 }

66

154 std::cout << std::endl;

155 }

156 #endif

157

158 static void next_values(data_t input[P_UNROLL], Fifo& fifos_up ,

Fifo& fifos_down , data_t top[SLICE_SIZE], data_t mid[

SLICE_SIZE], data_t bot[SLICE_SIZE]) {

159 // update the fifos

160 # pragma HLS ARRAY_PARTITION variable=top complete

161 # pragma HLS ARRAY_PARTITION variable=mid complete

162 # pragma HLS ARRAY_PARTITION variable=bot complete

163 # pragma HLS ARRAY_PARTITION variable=input complete

164 fifos_up.write(mid);

165 fifos_down.write(bot);

166

167 // shift the values P_UNROLL spots to the right

168 top [0] = top[SLICE_SIZE - 2];

169 top [1] = top[SLICE_SIZE - 1];

170

171 mid [0] = mid[SLICE_SIZE - 2];

172 mid [1] = mid[SLICE_SIZE - 1];

173

174 bot [0] = bot[SLICE_SIZE - 2];

175 bot [1] = bot[SLICE_SIZE - 1];

176

177 // let middle and top read from their respective fifos

178 fifos_up.read(top + 2);

179 fifos_down.read(mid + 2);

180 for (size_int i = 0; i < P_UNROLL; i++) {

181 # pragma HLS unroll

182 bot[i+2] = input[i];

183 }

184 }

185

186 void read_buffer(const data_t* in, data_t buffer[P_UNROLL],

const size_int i) {

187 # pragma HLS array_partition variable=buffer complete

188 for (size_int j = 0; j < P_UNROLL; j++) {

189 # pragma HLS UNROLL

190 buffer[j] = in[i + j];

191 }

192 }

193

194 void write_buffer(data_t* out , const data_t buffer[P_UNROLL],

const size_int i) {

195 # pragma HLS array_partition variable=buffer complete

196 for (size_int j = 0; j < P_UNROLL; j++) {

197 # pragma HLS UNROLL

198 out[i + j] = buffer[j];

199 }

200 }

201 void calc_stencil(

202 const data_t* in , data_t* out , const data_t in_c[

STENCIL_SIZE],

67

203 const size_int width

204) {

205 const size_t n_iterations = width * width + width + P_UNROLL

+ P_UNROLL;

206

207 data_t in_buffer[P_UNROLL];

208 data_t out_buffer[P_UNROLL];

209 Fifo fifos_up(width - P_UNROLL - 2);

210 Fifo fifos_down(width - P_UNROLL - 2);

211 data_t top[SLICE_SIZE] = {};

212 data_t mid[SLICE_SIZE] = {};

213 data_t bot[SLICE_SIZE] = {};

214

215 for (size_t i = 0; i < n_iterations; i += P_UNROLL) {

216 # pragma HLS pipeline II=1

217 read_buffer(in, in_buffer , i);

218 # ifndef __SYNTHESIS__

219 print_status(fifos_up , fifos_down , i % width , i / width , top ,

mid , bot);

220 # endif

221 compute_output(out_buffer , in_c , width , i, top , mid , bot);

222 next_values(in_buffer , fifos_up , fifos_down , top , mid , bot)

;

223 write_buffer(out , out_buffer , i);

224 }

225 }

226

227 extern "C" {

228 void fpga_kernel(data_t* in, data_t* out , const data_t in_c

[STENCIL_SIZE], const size_int width) {

229 #pragma HLS INTERFACE m_axi port=in bundle=gmem0

230 #pragma HLS INTERFACE m_axi port=out bundle=gmem1

231 #pragma HLS INTERFACE m_axi port=in_c bundle=gmem2

232 assert (width <= MAX_WIDTH);

233 assert (width >= P_UNROLL * 2);

234

235 data_t coefficients[STENCIL_SIZE];

236 # pragma HLS ARRAY_PARTITION variable=coefficients complete

237 load_coefficients(in_c , coefficients);

238 calc_stencil(in , out , coefficients , width);

239 }

240 }

68

