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Abstract

Weighted finite automata (WFAs) are a generalisation of nondeterministic finite auto-
mata, where transitions are additionally equipped with weights from a semiring. This
induces a function from strings to weights. In this thesis, we provide an introduction to
the theory of WFAs, and showcase one of the main results in Fliess’ theorem. We prove
a classical minimisation algorithm for WFAs over fields, and study an adaptation of this
algorithm for minimisation over the integers as defined in [5]. Finally, we provide an
implementation of this algorithm in Python, which allows for practical minimisation
of WFAs over Q and Z.
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Chapter 1

Introduction

Nondeterministic finite automata (NFAs) are a fundamental concept in theoretical com-
puter science and formal language theory. An NFA consists of a finite set of states, an
input alphabet, a finite set of transitions, an initial state, and a set of accepting states.
NFAs induce a function, called a language, which either accepts or rejects words.

Weighted finite automata (WFAs) are an extension of NFAs, where each transition is
equipped with a weight. These automata induce a language function from strings to
weights, where the weights are part of a semiring, such as the integers, rational num-
bers, or booleans. The mathematical theory behind these languages is the theory of
rational power series. This topic has been thoroughly studied in the past [19, 4], but is
still an active area of research [6]. In this thesis, we will approach these rational power
series from a linear algebra and automata theoretic perspective.

Weighted finite automata have a wide variety of applications. One such applications is
the modelling of neural networks [26]. Other applications include, but are not limited
to, image processing [11], speech recognition [17], speech synthesis [16], bioinformat-
ics [7, 21], and formal verification [1].

These applications motivate the ongoing research towards minimising WFAs. That is,
finding a WFA that induces the same language, but uses a minimal amount of states.
It is classical that a WFA with weights from a field can be minimised in polynomial
time [12, 13]. However, the ring of integers Z are notably not a field, which means
that this classical minimisation algorithm is not applicable to Z. A recent paper [5]
has provided an adaptation of this classical algorithm to minimise WFAs using weights
in Q to a WFA using only integer weights, given that the induced language function
produces only integer weights.
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Chapter 1. Introduction 2

The main goal of this thesis is providing an overview of this algorithm and the theory
needed to prove its correctness and time complexity, and give an implementation in
Python. In Chapter 3, we will start with an intuitive definition of weighted finite auto-
mata, and use this to motivate the formal definition. We continue by looking at several
examples of WFAs, and give two different methods to construct them, one of which is
a fundamental result in the theory of WFAs.

In Chapter 4, we give a method to minimise WFAs over fields, and adapt this method
to an algorithm that minimises WFAs over the integers. This algorithm can, given a
WFA using weights in Q, determine if the induced language is strictly integer valued,
and if so, return an equivalent WFA using only integer weights, and otherwise return a
counterexample in the form of a word, such that its weight is not an integer.

We finish Chapter 4 by looking at an applications of the minimisation algorithm, where
we start with a WFA that uses non-integer weights, but induces an integer valued
language, and end with an equivalent WFA with a minimal amount of states using
only integer weights. Finally, we discuss an implementation of this algorithm in Py-
thon.



Chapter 2

Preliminaries

This chapter serves as a very quick overview of some definitions and results which
do not directly relate to automata theory, but are used in this thesis. However, the
upcoming sections are not suitable as an introduction to these topics, and only serve as
a reference.

2.1 Ring and Field Theory

Weighted finite automata are defined over semirings, and we will often look at weighted
finite automata over fields, which are a special case of semirings. In this section, we will
introduce both of these concepts, starting with the ring. A ring is a mathematical struc-
ture where we can do addition and multiplication that follow specific properties.

Definition 2.1. A ring is a tuple (R,+, ·,0,1), where R is an arbitrary set, and +, · are
binary operators such that for each a,b,c ∈ R, it holds that

1. (a+ b) + c = a+ (b+ c);

2. a+ 0 = 0 + a = a;

3. a+ b = b+ a;

4. There is −a ∈ R such that a+ (−a) = 0;

5. (a · b) · c = a · (b · c);

6. 1 · a = a · 1 = a;

7. a(b+ c) = ab+ ac;

8. (a+ b)c = ac+ bc.

Examples of rings are the integers Z, the rational numbers Q, and the set of n × n
matrices over R for every n ∈N>0.

3
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A semiring is a ring without property 4. A field is a ring that also has the properties

9. a · b = b · a;

10. There is a−1 ∈ R such that a · a−1 = 1.

Examples of semirings include the natural numbers N, and the boolean semiring B =
({0,1} ,∨,∧,0,1). Examples of fields are the rational numbers Q and the real numbers
R. Notably, Z is not a field.

Definition 2.2. Let R be a ring. An element a ∈ R is called a zero divisor if a , 0 and
there exist b,c ∈ R such that ab = 0 and ca = 0. A domain is a ring that also has property
9 (also called a commutative ring) and does not contain any zero divisors.

Definition 2.3. Let R be a ring. An ideal of R is a set I ⊆ R such that for all a,b ∈ I and
r ∈ R it holds that

1. 0 ∈ I ;

2. a− b ∈ I ;

3. ra ∈ I ;

4. ar ∈ I .

The ideal generated by some a ∈ R is the set {ra | r ∈ R}. A domain D is called a principal
ideal domain if every ideal I of D is generated by some a ∈ D. Examples of principle
ideal domains are the integers Z, fields such as Q and R, and single variable polynomial
rings over a field, such as Q[X].

2.2 Linear algebra

Since our formal definition of a WFA will use matrices, it is natural that the concept
of a vector space will show up. However, vector spaces are only defined over fields,
while we are often working in Z, which is not a field, but it is a ring. In the case we are
working with a ring, we will use R-modules instead of vector spaces. The definition of
an R-module is completely analogous to the definition of a vector space, except for the
set of scalars forming a ring R instead of a field F.

To differentiate between the vector space and the module generated by a set, we will
use the notation ⟨v1,v2, . . . , vn⟩R, with R a ring, to denote the R-module or vector space
over R generated by the vectors (v1,v2, . . . , vn). In particular, we will use ⟨v1,v2, . . . , vn⟩Z
and ⟨v1,v2, . . . , vn⟩Q to denote the Z-module and vector space generated by (v1,v2, . . . , vn)
over Z and Q respectively. Often, the ring R is omitted from the notation ⟨v1,v2, . . . , vn⟩R
when it is clear from context which ring is used.
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The next lemma will be used to find an integer basis of a module M when given a
matrix whose columns span M.

Lemma 2.4 (Smith, 1861 [23], Newman, 1997 [18]). Let R be a PID, and let M =
⟨v1,v2, . . . , vm⟩ be an R-module of rank r. Let A ∈ Rn×m be a matrix whose columns are
v1,v2, . . . , vm. Then, the matrix A can be written in polynomial time as the product S · Â · T ,
where S ∈ Rn×n and T ∈ Rm×m are invertible matrices, and Â = diag(d1,d2, . . . ,dr ,0, . . . ,0)
such that di | di+1 for each 1 ≤ i < r.

Let Di(A) be the greatest common divisor of the i × i minors of A. Then,

di =
Di(A)
Di−1(A)

. (2.1)

Furthermore, the columns of the product S · Â are an R-basis of M.

Lemma 2.5 (Hadamard’s inequality). Let A be a complex matrix whose columns are the
vectors v1,v2, . . . , vn. Then,

|det(A)| ≤
n∏
i=1

||vi || .

Hadamard’s inequality, along with Equation 2.1, will play an important role in proving
the polynomial time complexity of the minimisation algorithm over the integers.

Definition 2.6. Let A be an m×n matrix, and let B be a p×q matrix. Then the Kronecker
product of A and B, denoted A⊗B, is the pm× qn block matrix given by

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...
am1B am2B · · · amnB

 .
The Kronecker product follows the Mixed product property, meaning that (A⊗B)(C⊗D) =
(AC)⊗ (BD) for matrices A,B,C,D.

Definition 2.7. Let A and B be m×n matrices. Then the Hadamard product of A and B,
denoted A⊙B, is the element wise product of A and B, given by

A⊙B =


a11b11 a12b12 · · · a1nb1n
a21b21 a22b22 · · · a2nb2n

...
...

. . .
...

am1bm1 am2bm2 · · · amnbmn

 .



Chapter 3

Weighted Finite Automata

In this chapter, we will provide an overview of the theory of weighted finite automata.
We start with an intuitive definition, and use that to arrive at the formal definition.
From there, we describe two different methods to construct new automata.

3.1 Definition

Deterministic finite automata and nondeterministic finite automata induce a language
that is a function Σ∗ → {0,1}. We extend this notion of a language to a function Σ∗ →
R, where R is an arbitrary semiring. Such a language is sometimes called a weighted
language. Instead of deciding for each word “yes“ (1) or “no“ (0), a weighted language
assigns a weight in R to each word in Σ∗. In this chapter, R will always be a semiring,
unless stated otherwise.

Likewise, we extend the class of nondeterministic finite automata to the class of weighted
finite automata. Informally, a weighted finite automaton (WFA) over R is a nondetermin-
istic finite automaton (NFA), where each transition is equipped with a weight in R, and
each state is equipped with an initial and final weight, also in R. A simple example of
a WFA over Q is illustrated in Figure 3.1. The initial weights are indicated by arrows
pointing towards a state, and the final weights are indicated by arrows leaving a state.
The weights of every transition is shown alongside the corresponding letter.

The weight of a path ((q0,q1,σ0), (q1,q2,σ1), . . . , (qn−1,qn,σn−1)), where each qi is a state
and each σi is a letter, is given by the initial weight of q0, multiplied by the weight of
each subsequent transition (qi ,qi+1,σi), and finally multiplied by the final weight of qn.
The weight of a word w is given by the sum of the weights of all paths accepting w. For
example, the weight of the word aa in the automaton of Figure 3.1 is given by the weight
of the two paths accepting aa, those being ((q0,q0, a), (q0,q1, a)), and ((q0,q1, a), (q1,q1, a)).
The weights of these paths are calculated by 2 ·1 · 12 ·1 = 1 and 2 · 12 ·1 ·1 = 1 respectively,
so the total weight of aa is 1 + 1 = 2.

6
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q02 q1 1
a : 1

2

a : 1 a : 1

Figure 3.1: Simple WFA over Q

In general, the weight of a word w in this automaton is |w|. To see this, notice that the
weight of every individual path is 1. Furthermore, for a word w, there are |w| paths
accepting that word, because we can choose for which letter we can take the transition
(q0,q1, a).

From this informal definition, it becomes clear why we require R to be a semiring. After
all, there is no inherent ordering between different paths, so we would like addition to
be commutative. However, this is not a requirement for multiplication, since there is
indeed a fixed ordering for the transitions in a path.

Weighted languages accepted by a WFA are called rational languages [2]. By instanti-
ating R to ({0,1} ,∨,∧,0,1), also known as the Boolean semiring where addition is the
logical operator “∨“ and multiplication is the logical operator “∧“, we see that WFAs
generalise NFAs, and thus every regular language is also a rational language. By instan-
tiating R to R, and further requiring that the weights of every transition from a state
qn sum to 1 for every n, we see that WFAs even generalise probabilistic automata, and
thus every stochastic language is also a rational language.

Figure 3.2 illustrates a more complex example of a WFA that computes the perfect
squares. However, verifying this computationally with our current definition is ineffi-
cient and cumbersome even for small words. Instead, we will reduce determining the
weight of a word to matrix multiplication.

q0

1

q1

1

q2

1

q3

1

a : 1

a : 1

a : 1 a : 2

a : 1 a : 1

Figure 3.2: WFA over N computing the perfect squares
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Definition 3.1. A weighted finite automaton over R is a tuple (n,Σ,α,µ,β), where

⋄ n is the amount of states;

⋄ Σ is a finite alphabet;

⋄ α is a row vector in Rn;

⋄ µ is a map Σ→ Rn×n;

⋄ β is a column vector in Rn.

From our informal definition, α corresponds to the initial weights in the sense that
αi is the initial weight of the state qi . Similarly, βi is the final weight of the state qi .
Furthermore, µ contains the weight of every transition, such that µ(σ )ij is the weight of
the transition (qi ,qj ,σ ). Notice that states do not have an explicit name in Definition 3.1.
While these names are not strictly necessary, we give names to states in diagrammatic
representations of WFAs for clarity purposes.

The weight of each word can now be computed relatively easily with matrix multiplic-
ation.

Definition 3.2. Let A = (n,Σ,α,µ,β) be a WFA over R. The semantics or weights of A,
denoted by JAK, is a language Σ∗→ R, such that JAK(w) = αµ(w)β, where µ(w) is defined
recursively by µ(ϵ) = In, where In is the n×n identity matrix, and µ(wσ ) = µ(w)µ(σ ).

Two WFAs A1 and A2 are said to be equivalent if JA1K = JA2K.

Example 3.3. The WFA of Figure 3.1 is the tuple A = (2, {a} ,α,µ,β), where

α =
q0 q1

( )2 0 µ(a) =

q0 q1( )
q0 1 1

2
q1 0 1

β =

( )
q0 0
q1 1 .

Here, the matrix entries are labeled by the names of the corresponding states, where the
row labels in the transition matrix represent the “from“ state, and the columns labels
represent the “to“ state. Whenever there is no arrow, the weight is treated as 0. The
weights of A are computed by

JAK(ϵ) = αβ = 0
JAK(a) = αµ(a)β = 1
JAK(aa) = αµ(a)µ(a)β = 2
JAK(aaa) = αµ(a)µ(a)µ(a)β = 3
JAK(. . . ) = . . . = . . .

.
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Example 3.4. The WFA of Figure 3.2 is the tuple A = (4, {a} ,α,µ,β), where

α =
q0 q1 q2 q3

( )1 1 0 0 µ(a) =

q0 q1 q2 q3


q0 1 1 0 0
q1 0 0 1 0
q2 0 0 1 2
q3 0 0 0 1

β =




q0 0
q1 0
q2 1
q3 1

.

Following this example, the state names will not be included as labels in the notation
of a WFA anymore. We can compute the weights of A with

JAK(ϵ) = αβ = 0
JAK(a) = αµ(a)β = 1
JAK(aa) = αµ(a)µ(a)β = 4
JAK(aaa) = αµ(a)µ(a)µ(a)β = 9
JAK(. . . ) = . . . = . . .

.

Of course, we can also prove that this automaton does indeed compute the perfect
squares. First, notice that

(
1 1 x y

)
·


1 1 0 0
0 0 1 0
0 0 1 2
0 0 0 1

 =
(
1 1 x+ 1 y + 2x

)
,

and by induction it follows that

αµ(an)β = αµ(a)nβ =
(
1 1 n

∑n
i=0 2i

)
· β

= n+
n∑
i=0

2i

=
n∑
i=0

(2i + 1)

= n2.

So far, we have only looked at WFAs with an alphabet consisting of just one letter. In
the next example, we will look at a WFA with the alphabet {a,b}.

Example 3.5. The WFA in Figure 3.3 is given by the tuple A = (3, {a,b} ,α,µ,β), where

α =
(
1 0 0

)
µ(a) =


1 1 0
0 1 0
0 1 0

 µ(b) =


1 1 −2
0 1 0
0 0 1

 β =


0
1
1

 .
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q01

q1 1

q2 1

a : 1
b : 1

b : −2

a : 1
b : 1

a : 1
b : 1

b : 1

a : 1

Figure 3.3: WFA over Z with multiple letters

This automaton computes |w|a − |w|b, and the weights are given by

JAK(ϵ) = αβ = 0
JAK(a) = αµ(a)β = 1
JAK(b) = αµ(b)β = −1
JAK(aa) = αµ(a)µ(a)β = 2
JAK(ab) = αµ(a)µ(b)β = 0
JAK(ba) = αµ(b)µ(a)β = 0
JAK(bb) = αµ(b)µ(b)β = −2
JAK(. . . ) = . . . = . . .

.

For simple rational languages, it is feasible to intuitively construct a corresponding
WFA. However, this becomes more difficult for more complicated rational languages.
In the next section, we will look at two techniques to construct WFAs when given its
language.
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3.2 Hankel Matrices

In Example 3.3, we looked at a WFA computing the perfect squares. Alternatively, we
can define a product construction to construct an equivalent WFA as a product of the
WFA in Figure 3.1 with itself. However, before we will look at this construction, we
will first introduce the Hankel matrix of a WFA, named after German mathematician
Hermann Hankel.

Definition 3.6. Let f : Σ∗→ R be a language. The Hankel matrix of f , denoted Hf , is a
matrix in RΣ∗×Σ∗ such that Hf (w1,w2) = f (w1w2) for each w1,w2 ∈ Σ∗, where Hf (w1,w2)
is the entry of Hf with row index w1 and column index w2. The Hankel matrix of a
WFA A is the Hankel matrix of its semantics JAK. For notational simplicity, we write
HA instead of HJAK.

We write Hf (w1, ·) and Hf (·,w2) to denote the row and column vector indexed by w1
and w2 respectively.

Example 3.7. The Hankel matrix HA of the automaton A in Figure 3.3 is given by the
matrix

ϵ a b aa ab ba bb ...



ϵ 0 1 −1 2 0 0 −2 · · ·
a 1 2 0 3 1 1 −1 · · ·
b −1 0 −2 1 −1 −1 −3 · · ·
aa 2 3 1 4 2 2 0 · · ·
ab 0 1 −1 2 0 0 −2 · · ·
ba 0 1 −1 2 0 0 −2 · · ·
bb −2 −1 −3 0 −2 −2 −4 · · ·
...

...
...

...
...

...
...

...
. . .

.

In this finite subsection of the Hankel matrix, we can already see some structure. For
example, the columns Hα(·, ab) and Hα(·,ba) are equal, and H(·,bb) can be written as
H(·,ϵ)−Hα(·, a)+Hα(·,b). In fact, this matrix has a finite rank, equal to 3. In Section 3.2.2,
we will see that the Hankel matrix of a WFA always has a finite rank.

3.2.1 Hadamard Product

Considering the Hankel matrix of a WFA represents its semantics, we will require that
the product of two WFAs A1 and A2 satisfies HA1×A2

= HA1
⊙HA2

, where ⊙ is element
wise matrix multiplication, also known as the Hadamard product, named after French
mathematician Jacques Hadamard, or the Schur product, named after German math-
ematician Issai Schur. To find a suitable construction, it is useful to consider our first
informal definition of a WFA. Namely, for every path of A1 and A2 accepting w, we
want a path accepting w in A1 ×A2 with weight equal to the product of the weights of
the two paths accepting w in A1 and A2. For every state q of A1 and every state r of
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A2, we create a state (q,r) such that every transition ((q,r), (q′ , r ′),σ ) has the weight of
the transition (q,q′ ,σ ) ofA1 multiplied by the weight of the transition (r, r ′ ,σ ) ofA2. In
matrix terms, this can be represented with the Kronecker product.

Definition 3.8. Let A1 = (n,Σ,α1,µ1,β1) and (m,Σ,α2,µ2,β2) be WFAs over R. The
Hadamard product of A1 and A2, denoted A1 ×A2, is a WFA B = (n ·m,Σ,α,µ,β) over R,
where

⋄ α = α1 ⊗α2;

⋄ µ(σ ) = µ1(σ )⊗µ2(σ ) for all σ ∈ Σ;

⋄ β = β1 ⊗ β2.

The idea behind this product aligns very closely with the regular product construc-
tion of two NFAs [10]. Indeed, the product of two WFAs over the Boolean semiring B
corresponding to two NFAs is a WFA over B corresponding to the product of the two
underlying NFAs.

Proposition 3.9. Let A1 = (n,Σ,α1,µ1,β1) and (Σ,m,α2,µ2,β2) be WFAs over R, and let
A1 ×A2 = (n ·m,Σ,α,µ,β) be their product. Then, HA1×A2

= HA1
⊙HA2

, and in particular,
JA1 ×A2K = JA1K · JA2K.

Proof. We use structural induction on w to show that

(α1 ⊗α2)µ(w) = (α1µ1(w))⊗ (α2µ2(w)) (3.1)

for all w ∈ Σ∗. For the base case w = ϵ, we have

(α1 ⊗α2)µ(ϵ) = (α1 ⊗α2)In·m
= (α1 ⊗α2)(In ⊗ Im)

= (α1In)⊗ (α2Im) (mixed product property)

= α1 ⊗α2.

For the induction step, assume that (α1⊗α2)µ(w) = (α1µ1(w))⊗(α2µ2(w)) for some w ∈ Σ∗
and let σ ∈ Σ. We have

(α1 ⊗α2)µ(wσ ) = (α1 ⊗α2)µ(w)µ(σ )

= ((α1µ1(w))⊗ (α2µ2(w)))µ(σ ) (IH)

= ((α1µ1(w))⊗ (α2µ2(w)))(µ1(σ )⊗µ2(σ ))

= (α1µ1(w)µ1(σ ))⊗ (α2µ2(w)µ2(σ )) (mixed product property)

= (α1µ1(wσ ))⊗ (α2µ2(wσ )).
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It now follows that for all w ∈ Σ∗,

JA1 ×A2K(w) = (α1 ⊗α2)µ(w)(β1 ⊗ β2)

= ((α1µ1(w))⊗ (α2µ2(w)))(β1 ⊗ β2) (3.1)

= (α1µ1(w)β1)⊗ (α2µ2(w)β2) (mixed product property)

= JA1K(w) · JA2K(w),

thus for all w1,w2 ∈ Σ∗,

HA1×A2
(w1,w2) = JA1 ×A2K(w1w2)

= JA1K(w1w2) · JA2K(w1w2)

= HA1
(w1,w2) ·HA2

(w1,w2),

which shows that element wise multiplication of HA1
and HA2

equals HA1×A2
.

We are now ready to construct a different WFA representing the function f (x) = x2.

Example 3.10. Let A be the WFA of Figure 3.1. The WFA A×A as illustrated in Fig-
ure 3.4 is the tuple (4, {a} ,α,µ,β), where

α =
(
4 0 0 0

)
µ(a) =


1 1

2
1
2

1
4

0 1 0 1
2

0 0 1 1
2

0 0 0 1

 β =


0

0

0

1

 .

q(0,0)4 q(0,1)

q(1,0) q(1,1) 1

a : 1
2

a : 1
2

a : 1
4

a : 1 a : 1

a : 1
2

a : 1
2

a : 1 a : 1

Figure 3.4: Product WFA
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We have now seen two equivalent WFAs computing the perfect squares, both with 4
states. A natural question is whether there exists another equivalent WFA with fewer
states. It turns out that this WFA does exist, making use of the linear relation x2 = 3(x−
1)2 −3(x−2)2 + (x−3)2, and we will construct this WFA in the upcoming section.

3.2.2 Fliess’ Theorem

In this section, we discuss Fliess’ theorem, which is one of the main results of the theory
of weighted finite automata, and can be used to construct a WFA when given its Hankel
matrix.

Theorem 3.11 (Fliess, 1974 [8]).

1. Let A be a WFA with n states. Then, rank(HA) ≤ n.

2. Let Hf be a Hankel matrix over a field F with rank n. Then there exists a WFA over F
with n states such that f = JAK.

Proof. We prove both parts of the theorem separately.

1. Assume that A = (n,Σ,α,µ,β) is a WFA over R with n states. Let Af ∈ RΣ∗×Zn be
the matrix with rank at most n such that the i-th row is given by αµ(i). Similarly,
let Ab ∈ RZn×Σ∗ be the matrix with rank at most n such that the j-th column is
given by µ(j)β. We now have rank(Af · Ab) ≤ min

(
rank(Af ),rank(Ab)

)
≤ n, and

(Af · Ab)ij = αµ(i)µ(j)β = αµ(ij)β = (HA)ij , so the i, j-th element of (Af · Ab) is
HA(i, j), which means HA =Af · Ab and thus rank(HA) ≤ n.

2. Intuitive idea. We (non-constructively) find a basis for all columns of the Hankel
matrix, and then construct a WFA in terms of this basis.

Construction. Assume that H is a Hankel matrix with rank n. Then there exists
a basis (H(·,v1),H(·,v2), ...,H(·,vn)) for all columns of H . Define the initial vector
α such that αj = H(ϵ,vj ).

By definition, there exist B1,B2, ...,Bn such that H(·,ϵ) =
∑n

i=1BiH(·,vi). Define the
final vector β such that βi = Bi .

For all σ ∈ Σ and vj , we can write H(·,σvj ) in terms of the basis such that H(·,σvj ) =∑n
i=1γ

σ
ijH(·,vi) for some γσ

1j ,γ
σ
2j , ...,γ

σ
nj . For each σ ∈ Σ, let M(σ ) be the matrix such

that M(σ )ij = γσ
ij . Define M(w) for w ∈ Σ∗ recursively by M(ϵ) = In and M(wσ ) =

M(w)M(σ ). We define the transition matrices µ such that µ(σ )ij = M(σ )ij .

These choices for the initial vector, final vector, and transition matrices may seem
arbitrary, but they do have an interpretation. We see each state as one of the basis
elements. The initial vector can be seen as “initialising“ these states to the empty
word. The transition matrices then ask, given we have written a specific word w
in terms of the basis, how do we write wσ in terms of this basis? Finally, the final



Chapter 3. Weighted Finite Automata 15

vector then applies the “starting“ coefficients to the basis elements, namely, how
to give the weight of the empty word in terms of the basis.

Correctness. Let w ∈ Σ∗ arbitrary, and P be the row matrix in FΣ∗ such that P is 1
at index w and 0 elsewhere. Then

f (w) = H(w,ϵ)

= PH(·,ϵ)

= P

 n∑
i=1

BiH(·,vi)


=

n∑
i=1

P BiH(·,vi)

=
n∑
i=1

BiPH(·,vi)

=
n∑
i=1

BiH(w,vi),

(3.2)

where we used the left distributivity of matrix multiplication in the third to last
step.

We will use structural induction on w = σ1,σ2, ...,σk ∈ Σ∗ to show that H(·,wvj ) =∑n
i=1M(w)ijH(·,vi). The base case w = ϵ follows from the fact that (In)ij = 1 if

and only if i = j. The base case w = ϵ ∈ Σ follows by definition of M(σ ). For the
recursive step, assume that equality holds for w1,w2 ∈ Σ∗. Let P again be the row
matrix in FΣ∗ such that P is 1 at index w1 and 0 elsewhere. Then for w = w1w2,
we have

H(·,wvj ) = H(w1,w2vi)

= PH(·,w2vi)

= P

 n∑
i=1

M(w2)ijH(·,vi)

 (IH)

=
n∑
i=1

PM(w2)ijH(·,vi) (distributivity)

=
n∑
i=1

M(w2)ijPH(·,vi)

=
n∑
i=1

M(w2)ijH(w1,vi)

=
n∑
i=1

M(w2)ijH(·,w1vi)
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=
n∑
i=1

M(w2)ij
n∑

k=1

M(w1)kiH(vk)

 (IH)

=
n∑
i=1

 n∑
k=1

M(w2)ijM(w1)kiH(vk)


=

n∑
k=1

 n∑
i=1

M(w2)ijM(w1)kiH(vk)

 (commutativity of sum)

=
n∑

k=1

 n∑
i=1

M(w1)kiM(w2)ijH(vk)

 (commutativity of product)

=
n∑

k=1

(M(w1)M(w2))kjH(vk)

=
n∑

k=1

M(w1w2)kjH(vk)

=
n∑

k=1

M(w)kjH(vk).

Now, let A be the automaton (n,Σ,α,µ,β). Then

f (w) =
n∑
i=1

βiH(ϵ,wvi) (3.2)

=
n∑
i=1

βi n∑
j=1

µ(w)jiH(ϵ,vj )

 (induction)

=
n∑
i=1

 n∑
j=1

βiµ(w)jiH(ϵ,vj )

 (distributivity)

=
n∑
i=1

 n∑
j=1

H(ϵ,vj )µ(w)jiβi

 (commutativity of product)

= αµ(w)β (definition of matrix multiplication)

= JAK(w),

Thus there exists an automaton A with n states with f = JAK.

This completes the proof of both parts of the theorem.
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Example 3.12. The Hankel matrix Hf of the language f (w)→ |w|2a is given by

ϵ a aa aaa aaaa aaaaa ...



ϵ 0 1 4 9 16 25 · · ·
a 1 4 9 16 25 36 · · ·
aa 4 9 16 25 36 49 · · ·
aaa 9 16 25 36 49 64 · · ·
aaaa 16 25 36 49 64 81 · · ·
aaaaa 25 36 49 64 81 100 · · ·

...
...

...
...

...
...

...
. . .

.

Notice that Hf (·,w)−3Hf (·,wa)+3Hf (·,waa) = Hf (·,waaa) for all w ∈ {a}∗. Since the vec-
tors Hf (·,ϵ), Hf (·, a) and Hf (·, aa) are linearly independent, it follows that these vectors
form a basis for the columns of Hf .

Following the construction from Theorem 3.11 we have to write H(·,ϵ) in terms of the
basis. We easily find H(·,ϵ) = 1 ·H(·,ϵ) + 0 ·H(·, a) + 0 ·H(·, aa). This gives us the final
vector

β =


1
0
0

 .
For the transition matrix µ(a), we have to write H(·, a), H(·, aa) and H(·, aaa) in terms of
the basis. In this case we find

H(·, a) = 0 ·H(·,ϵ) + 1 ·H(·, a) + 0 ·H(·, aa)

H(·, aa) = 0 ·H(·,ϵ) + 0 ·H(·, a) + 1 ·H(·, aa)

H(·, aaa) = 1 ·H(·,ϵ)− 3 ·H(·, a) + 3 ·H(·, aa),

giving the transition matrix

µ(a) =


0 0 1
1 0 −3
0 1 3

 .
Finally, the initial vector is given by

α =
(
Hf (ϵ,ϵ) Hf (ϵ,a) Hf (ϵ,aa)

)
=

(
0 1 4

)
.

The resulting WFA, computing the perfect squares, is illustrated in Figure 3.5.
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q01

q2 4

q1 1

a : 1

a : −3

a : 1

a : 1

a : 3

Figure 3.5: WFA computing the perfect squares with 3 states

The choice of basis has a direct influence on the resulting WFA. In Example 3.12, we
could have chosen any three columns of Hf as a basis. For example, consider the basis
(H(·, a),H(·, aaa),H(·, aaaaa)). Simple linear algebra gives us

H(·,ϵ) = 15
8 ·H(·, a) − 5

4H(·, aaa) + 3
8H(·, aaaaa)

H(·, aa) = 3
8 ·H(·, a) + 3

4H(·, aaa) − 1
8H(·, aaaaa)

H(·, aaaa) = −1
8 ·H(·, a) + 3

4H(·, aaa) + 3
8H(·, aaaaa)

H(·, aaaaaa) = 3
8 ·H(·, a) − 5

4H(·, aaa) + 15
8 H(·, aaaaa).

This gives another WFA with

α =
(
1 9 25

)
µ(a) =


3
8 −1

8
3
8

3
4

3
4 −5

4

−1
8

3
8

15
8

 β =


15
8

−5
4

3
8

 .
This WFA is clearly a lot more complicated, but still equivalent to the WFA in Fig-
ure 3.5. While Fliess’ theorem can be used to find so called minimal automata, it def-
initely does not guarantee that the end result is in its simplest form. However, it is
possible to find a minimal equivalent WFA using only integer weights for any WFA
whose semantics are integer valued, but that requires a more involved algorithm, and
will be the main focus of the next chapter. Unfortunately, the same does not hold for
semantics over the natural numbers. In general, many decision problems for WFAs
over arbitrary semirings are undecidable [14].



Chapter 4

Minimisation

In this chapter, we will build up to an algorithm that, given a WFA A, determines if
JAK is integer valued, and if it is, returns a minimal WFA equivalent to A using only
integer weights, and otherwise returns a word w such that JAK(w) <Z. This algorithm,
first published in [5], is a variation of the classical minimisation algorithm for WFAs
over fields [22, 4]. We will first introduce this classical algorithm, and then describe
how it can be adapted to minimise WFAs over the integers. Finally, we will briefly
discuss an implementation of the minimisation algorithms in Python.

4.1 Minimisation over fields

In this section, a WFA is always defined over a field F, unless stated otherwise.

The core ideas of minimisation are closely related to Fliess’ theorem, where we saw that
the amount of states in a WFA is bound by the rank of its Hankel matrix. In the proof
of Theorem 3.11, we bounded the rank of the Hankel matrix by the rank of the matrices
Af and Ab. These matrices span the forward space and backward space of a WFA.

Definition 4.1. Let A = (n,Σ,α,µ,β) be a WFA. The forward space of A, denoted FA, is
the vector space

〈
αµ(w) | w ∈ Σ∗

〉
. The backward space of A, denoted BA, is the vector

space
〈
µ(w)β | w ∈ Σ∗

〉
.

To find a WFA with states equal to the rank of its Hankel matrix, we will first construct
a WFA with n equal to the dimension of the forward space, called the forward conjugate,
and then construct a WFA with n equal to the dimension of the backward space of this
forward conjugate, called the backward conjugate. In order to construct these conjug-
ates, we need to find a basis of the forward and backward space, which we will use to
write α, µ and β in terms of this basis.

Polynomial time algorithms that find these bases are stated in Figure 4.1. They date
back to [24], but the given version is from [5].

19
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1 def compute_forward_basis(n,Σ,α,µ,β):
2 F = {α}
3 while there is (f ,σ ) ∈ F ×Σ such that f µ(σ ) < ⟨F⟩:
4 F = F ∪

{
f µ(σ )

}
5 return F
6

7 def compute_backward_basis(n,Σ,α,µ,β):
8 B = {β}
9 while there is (b,σ ) ∈ B×Σ such that µ(σ )b < ⟨B⟩:

10 B = B∪
{
µ(σ )b

}
11 return B

Figure 4.1: Polynomial time algorithms to compute a forward basis and backward basis
of a WFA [5]

Lemma 4.2. The algorithm compute forward basis in Figure 4.1 computes a basis of the
forward space of a WFA inO(n3 |Σ|) time. Likewise, the algorithm compute backward basis

computes a basis of the backward space in O(n3 |Σ|).

Proof. Let A = (n,Σ,α,µ,β) be a WFA. Since
{
αµ(w) | w ∈ Σ∗

}
is the smallest set contain-

ing a that is closed under postmultiplication with µ(σ ) for all σ ∈ Σ, its span FA is the
smallest vector space with this property. When compute forward basis returns F, by
the loop condition, it holds that all elements of F are closed under postmultiplication
with µ(σ ), and by distributivity of matrix multiplication, all elements of ⟨F⟩ are also
closed under postmultiplication with µ(σ ). The minimality of ⟨F⟩ follows from the fact
that its dimension increases by one each iteration of the loop. Thus, F is the basis of the
forward space of A.

Similarly,
〈
µ(w)β | w ∈ Σ∗

〉
is the smallest vector space that is closed under premulti-

plication with µ(σ ) for all σ ∈ Σ. When compute backward basis returns B, by the loop
condition, all elements of B are closed under premultiplication with µ(σ ), and from
distributivity of matrix multiplication, ⟨B⟩ is also closed under premultiplication with
µ(σ ). The minimality of ⟨B⟩ again follows from the fact that its dimension increases by
one each loop iteration. Thus, B is the basis of the backward space of A.

Since each element of F and B has n entries, ⟨F⟩ and ⟨B⟩ can have dimensions of at most
n. Each iteration of the while loop, the dimensions of ⟨F⟩ and ⟨B⟩ increase by one. Thus,
the while loop can iterate at most O(n) times. Note that in each iteration, we only have
to check the condition of the while loop for words we have not checked before. For each
word, there are |Σ| pairs to check. Thus, there are O(n |Σ|) pairs (f ,σ ) ∈ F×Σ and (σ,b) ∈
Σ×B to check in total. Each check is equivalent to checking whether the dimension of
⟨F⟩ or ⟨B⟩ is equal to the dimension of

〈
F ∪

{
f µ(σ )

}〉
and

〈
B∪

{
µ(σ )b

}〉
respectively. This

can be done by combining every vector in a matrix and using Gaussian elimination.
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Traditionally, this takes O(n3) time, but we do not need to reduce the entire matrix
every time. We can store the reduced matrix after each iteration, and add the new
vector to this reduced matrix. Then, only this new vector needs to be reduced, lowering
the complexity to O(n2). In summary, we have to check O(n |Σ|) pairs, and each check
takes O(n2) time, resulting in a O(n3 |Σ|) time algorithm.

We will use these bases to construct new WFAs. The basis of the forward space will
be used to construct the forward conjugate, which encodes the information of the initial
vector α in µ and β. Likewise, the basis of the backward space will be used to con-
struct the backward conjugate, which encodes the information of the final vector β in α
and µ.

Definition 4.3. LetA = (n,Σ,α,µ,β) be a WFA, and let F be a matrix whose rows form a

basis of FA. The forward conjugate of A, denoted
−→
A , is the WFA (−→n ,Σ, −→α , −→µ ,

−→
β ), where

⋄ −→α F = α;

⋄ −→µ (σ )F = Fµ(σ );

⋄ −→β = Fβ.

From the fact that the rows of F form a basis of FA, which contains α, it follows that −→α
is well defined, and also unique. Furthermore, the rows of Fµ(σ ) are vectors in FA, and
thus −→µ (σ ) is well defined and unique for all σ ∈ Σ.

When F is formed using the algorithm in Figure 4.1, something interesting happens.
Since we start with W = {ϵ}, we have that αµ(ϵ) = α is in the basis. From −→α F = α, it then
follows that −→α is a vector being equal to 0 at every entry, except for one entry where it
is equal to 1. This essentially trivialises the initial vector.

The definition for the backward conjugate is analogous, but mirrored.

Definition 4.4. Let A = (n,Σ,α,µ,β) be a WFA, and let B be a matrix whose rows form

a basis of BA. The backward conjugate of A, denoted
←−
A , is the WFA (←−n ,Σ,←−α ,←−µ ,←−β ),

where

⋄ ←−α = αB;

⋄ B←−µ (σ ) = µ(σ )B;

⋄ B
←−
β = β.

For the backward conjugate, we now have that β will be trivialised when B has been
found using the algorithm in Figure 4.1.
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Of course, these constructions would not make sense if they change the semantics of
the WFA. However, it turns out that the forward and backward conjugate are indeed
equivalent to the original WFA. To prove this, we will first use induction to show that
−→µ (w)F = Fµ(w) and B←−µ (w) = µ(w)B for all w ∈ Σ∗.

Lemma 4.5. Let A = (n,Σ,α,µ,β) be a WFA, and let F be a matrix whose rows form a basis

of FA. If
−→
A = (−→n ,Σ, −→α , −→µ ,

−→
β ) is constructed using F, then −→µ (w)F = Fµ(w) for all w ∈ Σ∗.

Proof. We will use induction on the length of w ∈ Σ∗. For the base case w = ϵ, we have
−→µ (ϵ)F = F = Fµ(ϵ). For the induction step, assume that −→µ (w)F = Fµ(w) for some w.
Then, for σ ∈ Σ, we have

−→µ (σw)F = −→µ (σ )−→µ (w)F

= −→µ (σ )Fµ(w) (IH)

= Fµ(σ )µ(w) (definition of −→µ )

= Fµ(σw).

By induction, we have −→µ (w)F = Fµ(w) for all w ∈ Σ∗.

The result for←−µ is analogous, with the proof using exactly the same steps.

Lemma 4.6. Let A = (n,Σ,α,µ,β) be a WFA, and let B be a matrix whose columns form

a basis of BA. If
←−
A = (←−n ,Σ,←−α ,←−µ ,←−β ) is constructed using B, then B←−µ (w) = µ(w)B for all

w ∈ Σ∗.

Proof. We will use induction on the length of w ∈ Σ∗. For the base case w = ϵ, we have
B−→µ (ϵ) = B = µ(ϵ)B. For the induction step, assume that B−→µ (w) = µ(w)B for some w.
Then, for σ ∈ Σ, we have

B←−µ (wσ ) = B←−µ (w)←−µ (σ )

= µ(w)B←−µ (σ ) (IH)

= µ(w)µ(σ )B (definition of −→µ )

= µ(wσ )B.

By induction, we have B−→µ (w) = µ(w)B for all w ∈ Σ∗.

This symmetry is not completely unexpected. Because we are working in a field, mul-
tiplication is commutative. If we look back at how we first defined the weight of a
specific path – multiplying the weights in order – it now does not matter if we walk
this path backwards, since the resulting weight will still be the same due to the com-
mutativity.
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Proposition 4.7. Let A = (n,Σ,α,µ,β) be a WFA, and let F be a matrix whose rows form a

basis of FA. If
−→
A = (−→n ,Σ, −→α , −→µ ,

−→
β ) is constructed using F, then

−→
A is equivalent to A.

Proof. Recall that equivalence means that J
−→
A K = JAK. For all w ∈ Σ∗, we have

J
−→
A K(w) = −→α −→µ (w)

−→
β

= −→α −→µ (w)Fβ (definition of
−→
β )

= −→α Fµ(w)β (Lemma 4.5)

= αµ(w)β (definition of −→α )

= JAK(w),

so
−→
A is equivalent to A.

For
←−
A , the result is again analogous, but the proof is mirrored.

Proposition 4.8. LetA = (n,Σ,α,µ,β) be a WFA, and let B be a matrix whose columns form

a basis of BA. If
←−
A = (←−n ,Σ,←−α ,←−µ ,←−β ) is constructed using B, then

←−
A is equivalent to A.

Proof. For all w ∈ Σ∗, we have

J
←−
AK(w) =←−α←−µ (w)

←−
β

= αB←−µ (w)
←−
β (definition of←−α )

= αµ(w)B
←−
β (Lemma 4.6)

= αµ(w)β (definition of
←−
β )

= JAK(w),

so
←−
A is equivalent to A.

It now follows directly that the forward conjugate of the backward conjugate and the
backward conjugate of the forward conjugate of a WFA are equivalent to the original
WFA.

Corollary 4.9. Let A be a WFA, and let Â be the forward conjugate of
←−
A , or the backward

conjugate of
−→
A . Then, Â is equivalent to A.

Proof. If Â is the forward conjugate of
←−
A , then first apply Lemma 4.6 and then Lemma 4.5.

Otherwise, if Â is the backward conjugate of
−→
A , first apply Lemma 4.5, followed by

Lemma 4.6.



Chapter 4. Minimisation 24

For this section, it remains to show that Â is not just equivalent toA, but also minimal.

We saw that the forward conjugate
−→
A “trivialises“ the initial vector α. This means that

the backward space B−→A of
−→
A now contains all information of A. It then makes sense

to expect that the dimension of B−→A is the minimal amount of states of a WFA that is
equivalent to A. The idea for the forward space of a backward conjugate is analogous.
In the next theorem, we will formalise this idea. However, we need an intermediary
result.

Lemma 4.10. LetA = (n,Σ,α,µ,β) be a WFA, and let
←−
A = (←−n ,Σ,←−α ,←−µ ,←−β ) be the backward

conjugate of A. Let
←−
Ab be the matrix whose rows form the set

{
←−µ (w)

←−
β | w ∈ Σ∗

}
. Then, the

rows of
←−
Ab are linearly independent.

Proof. Let
←−
A = (←−n ,Σ,←−α ,←−µ ,←−β ) be the backward conjugate of A = (n,Σ,α,µ,β), and let

B be the matrix used to construct
←−
A . Then we have

rank(
←−
Ab) = dim

〈
←−µ (w)

←−
β | w ∈ Σ∗

〉
= dim

〈
B←−µ (w)

←−
β | w ∈ Σ∗

〉
(B has full column rank)

= dim
〈
µ(w)B

←−
β | w ∈ Σ∗

〉
(Lemma 4.6)

= dim
〈
µ(w)β | w ∈ Σ∗

〉
(definition of

←−
β )

=←−n .

By construction,
←−
Ab has←−n rows, and thus the rows of

←−
Ab are linearly independent.

Lemma 4.11. Let A = (n,Σ,α,µ,β) be a WFA, and let
−→
A = (−→n ,Σ, −→α , −→µ ,

−→
β ). Let Af be the

matrix whose rows form the set
{−→α −→µ (w) | w ∈ Σ∗

}
. Then, the columns of

−→
A f are linearly

independent.

Proof. Let
−→
A = (−→n ,Σ, −→α , −→µ ,

−→
β ) be the forward conjugate of A = (n,Σ,α,µ,β), and let F

be the matrix used to construct
−→
A . Then we have

rank(
−→
A f ) = dim

〈−→α −→µ (w) | w ∈ Σ∗
〉

= dim
〈−→α −→µ (w)F | w ∈ Σ∗

〉
(F has full row rank)

= dim
〈−→α Fµ(w) | w ∈ Σ∗

〉
(Lemma 4.5)

= dim
〈
αµ(w) | w ∈ Σ∗

〉
(definition of −→α )

= −→n .
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By construction,
−→
A f has −→n columns, and thus the columns of

−→
A f are linearly inde-

pendent.

Theorem 4.12. Let A be a WFA. Then, the forward conjugate Â of the backward conjugate
←−
A and the backward conjugate Â of the forward conjugate

−→
A are minimal.

Proof. Intuitive idea. Let
−→
A f ∈ RΣ∗×−→n be the matrix such that the i-th row is given by

−→α −→µ (i). Similarly, let
−→
A b ∈ R

−→n ×Σ∗ be the matrix such that the j-th column is given by
−→µ (j)

−→
β . We have

−→
A f ·

−→
A b = HA. Since

−→
A is a forward conjugate,

−→
A f has full column-

rank. This means that the rank of HA is determined by the rank of
−→
A b. If we construct

the backward conjugate of
−→
A , then the amount of states of this backward conjugate is

equal to the rank of
−→
A b. Thus, the amount of states of the backward conjugate of

−→
A is

equal to the rank of HA, which means that it is minimal by Theorem 3.11.

Formalisation. We will first prove the statement about the forward conjugate Â =

(n̂,Σ, α̂, µ̂, β̂) of the backward conjugate
←−
A = (←−n ,Σ,←−α ,←−µ ,←−β ). Let F be a matrix used to

construct Â. By the first part of Theorem 3.11, we have to show that n̂ = rank(HA). Let
←−
A f ∈ RΣ∗×←−n be the matrix such that the i-th row is given by←−α←−µ (i), and let

←−
Ab ∈ R

←−n×Σ∗

be the matrix such that the j-th column is given by←−µ (j)
←−
β . By Lemma 4.10, the rows

of
←−
Ab are linearly independent. We have

n̂ = rank(F)

= rank(F
←−
Ab) (the rows of

←−
Ab are linearly independent)

= dim
〈
←−α←−µ (w)

←−
Ab | w ∈ Σ∗

〉
(definition of F)

= rank(
←−
A f
←−
Ab) (definition of

←−
A f )

= rank(H←−A ) (
←−
A f
←−
Ab = H←−A )

= rank(HA) (H←−A = HA).
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The proof for the statement about the backward conjugate of Â = (n̂,Σ, α̂, µ̂, β̂) of the

forward conjugate
−→
A = (−→n ,Σ, −→α , −→µ ,

−→
β ) is, as expected, analogous. Let

−→
A f ∈ RΣ∗×−→n be

the matrix such that the i-th row is given by −→α −→µ (i), and let
−→
A b ∈ R

−→n ×Σ∗ be the matrix

such that the j-th column is given by −→µ (j)
−→
β . By Lemma 4.11, the columns of

−→
A b are

linearly independent.

We have

n̂ = rank(F)

= rank(
−→
A f B) (the columns of

−→
A b are linearly independent)

= dim
〈−→
A f
−→µ (w)

−→
β | w ∈ Σ∗

〉
(definition of B)

= rank(
−→
A f
−→
A b) (definition of

−→
A f )

= rank(H−→A ) (
−→
A f
−→
A b = H−→A )

= rank(HA) (H−→A = HA).

This completes the proof.
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4.2 Minimisation over the integers

In the previous section, we described how to minimise WFAs over fields. However, Z
is not a field, so it is not possible to directly use this method to minimise a WFA over
Z. Despite this, some modifications to the standard minimisation algorithms do allow
us to minimise WFAs with integer-valued semantics, using only integer weights, even
if the original WFA uses weights in Q. Such an algorithm was defined in [5], and we
study it here. This algorithm can be seen as an implementation of the fact that Q is a
Fatou extension of Z [3]. Formally, this means that any formal power series of Z which
is Q-rational is also Z-rational. In WFA terms, this means for every WFA A1 over Q

such that JAK(w) ∈ Z for every w, there exists a WFA A2 over Z that is equivalent
to A1.

Because we are dealing with Z, which is a principal ideal domain, but not a field, we
have to make a distinction between the forward and backward space, and the forward
and backward module. The definition of the forward and backward module is ana-
logous to the forward and backward space, except that we use a module instead of a
vector space. In other words, the forward and backward module is the ring version
of the forward and backward space. We use

〈
αµ(w) | w ∈ Σ∗

〉
Q

and
〈
µ(w)β | w ∈ Σ∗

〉
Q

to
respectively denote the forward and backward space over Q, and

〈
αµ(w) | w ∈ Σ∗

〉
Z

and〈
µ(w)β | w ∈ Σ∗

〉
Z

to respectively denote the forward and backward module over Z.

The idea of the algorithm is as follows.

1. Construct the backward conjugate
←−
A of A. It now holds that for all w ∈ Σ∗, for

every element s of the vector←−α←−µ (w), there exists a v ∈ Σ∗ such that s = JAK(v).

2. Find a basis of the forward space of
←−
A . If we find some w ∈ Σ∗ such that←−α←−µ (w) <

Z
n, then JAK is not strictly integer valued, and we have found a counterexample.

3. Find a set of words WF such that
{
αµ(w) | w ∈WF

}
spans the forward module of

←−
A , using the basis from the previous step as a starting point. Again, check if
every vector is strictly integer valued to find a counterexample.

4. Use the set WF of the previous point to construct an integer basis of the forward

module of
←−
A .

5. Use the basis of the forward module to construct the forward conjugate of
←−
A .

This forward conjugate is minimal, uses only integer weights, and is equivalent
to A.

A pseudo-code version of the algorithm is shown in Figure 4.2. Steps 2 and 3 have been
separated into the function compute Z generators.

One might wonder why it is necessary to first find a basis of the forward space of
←−
A , and

only then find a basis of the forward module. This order ensures that each intermediate
module has the same rank, which makes it possible to put a polynomial upper bound on
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the amount of iterations it takes to find a forward generating set of the forward module.
It is not known whether there exist other search orders which ensure a polynomial
upper bound [5].

First of all, we want to formalise the argument made in step 1, which is that all elements

of the vectors αµ(w) while finding the basis of the forward space of
←−
A have the form

JAK(v).

Proposition 4.13. Let A = (n,Σ,α,µ,β) be a WFA, and let
←−
A = (←−n ,Σ,←−α ,←−µ ,←−β ) be its

backward conjugate. Then, for every w ∈ Σ∗, we have
(←−α←−µ (w)

)
i
∈ JAK(Σ∗) for every i ≤←−n .

Proof. Let the WFA A = (n,Σ,α,µ,β) be given, and assume that its backward conjugate
←−
A = (←−n ,Σ,←−α ,←−µ ,←−β ) was constructed using the matrix B. Fix w ∈ Σ∗. We have←−α←−µ (w) =
αB←−µ (w) = αµ(w)B, where we used Lemma 4.6 for the last equality. Recall that the
columns of B have the form µ(v)β for v ∈ Σ∗. This means that the i-th entry of αµ(w)B
is given by αµ(w)µ(v)β = αµ(wv)β = JAK(wv) ∈ JAK(Σ∗).

We can use this to not only find that the semantics of A are not strictly integer valued,
but also to find an explicit word w such that JAK(w) <Z. If we remember which words
were used to construct the basis of the backward space of A, then the i-th entry of
←−α←−µ (w) is given by JAK(wv), where v is the word such that the i-th column of B is µ(v)β.
This is the reason why WB, the words used to construct B, is passed as an argument to
compute Z generators.

Remark 4.14. Lines 4 to 6 in compute Z generators are not included in the original
algorithm in [5]. However, they are necessary. If A is an automaton such that JAK is
integer valued except for the empty word, then this only be detected in lines 4 to 6, and
not in the rest of the algorithm.

It is not necessary to directly prove that not finding a counterexample during the al-
gorithm implies that no such counterexample exists. The construction of the final WFA
uses only integer weights, which means that its semantics must also be strictly integer
valued. Because this WFA is equivalent to the original WFA, the semantics of the ori-
ginal WFA must be strictly integer valued as well.

Before we state and prove the final theorem, we will prove that compute Z generators

terminates in polynomial time, with the respect to the length of the encoding of
←−
A . We

have already shown that lines 8 to 13 terminate in polynomial time in Lemma 4.2.
Thus, it remains to show that lines 15 to 20 terminate in polynomial time. We cannot
use the same argument as we used in Lemma 4.2 here, because proper sub-modules
can have the same rank. For example, 8Z ⊊ 4Z ⊊ 2Z ⊊ Z are all modules of rank 1.
However, we can put an upper bound of the length of a chain of sub-modules of the

same rank, which is exactly why we first find a basis for the forward space of
←−
A .
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Proposition 4.15. Let n,k ∈N . Let R be a PID, and M = ⟨v1,v2, . . . , vm⟩ be a sub-module of
Rn. Let A be the n ×m matrix whose i-th column is vi . Let M ⊊ M1 ⊊ M2 ⊊ · · · ⊊ Mk be a
chain of sub-modules of Rn, all having the same rank r. Then k is bounded by the number of
prime factors of the greatest common divisor of the r × r minors of A.

For a detailed proof, see appendix A of [5].

Since Z is a PID, we can use this proposition to bound the length of a chain of Z-
modules, using the fact that the number of prime factors of an integer n is bound
by log2(n).

It is now time for the final result of this thesis.

Theorem 4.16. The algorithm compute Z basis in Figure 4.2 returns, given a WFA A
over Q, a minimal equivalent WFA over Z if JAK is integer valued, and otherwise a word w
such that JAK(w) < Z, in polynomial time with respect to the length of the binary encoding
of A.

Proof. Minimising over Z. Let A = (n,Σ,α,µ,β) be a WFA over Q, and assume that

JAK is integer valued. By Lemma 4.2, lines 24-31 compute a backward conjugate
←−
A of

A. The algorithm then proceeds to compute Z generators. By Lemma 4.13 and the
fact that JAK is integer valued, it follows that the condition on lines 5, 10, and 17 will
never evaluate to True. When the algorithm reaches line 21, by Lemma 4.2, F spans the

forward module of
←−
A . Using Lemma 2.4, we can find a matrix F̂ whose rows form a Z-

basis of the forward module of
←−
A , and whose rows also form a Q-basis of the forward

space of
←−
A . Thus, computing the forward conjugate Â of

←−
A using F̂ gives a minimal

WFA that is equivalent to A by Lemma 4.12. Furthermore, since the rows of F̂ form an
integer basis, the equations in Definition 4.3 have integer solutions, so Â is a WFA over
Z.

Finding a counterexample. Now, let A = (n,Σ,α,µ,β) be a WFA over Q, and let there
be some w ∈ Σ∗ such that JAK(w) <Z. Since the algorithm returns a WFA over Z on line
39, which is not possible when JAK is not integer valued, the algorithm must return on
line 36, and thus have found some w,σ, i such that ←−α←−µ (wσ )i < Z. Since ←−α←−µ (wσ ) =

αµ(wσ )B, where B is the matrix used to compute the backward conjugate
←−
A , and

the i-th row of B is equal to µ(WB[i])β, it follows that←−α←−µ (wσ )i = αµ(wσ )µ(WB[i])β =
αµ(wσWB[i])β = JAK(wσWB[i]) <Z, and thus wσWB[i] is a counterexample.

Time complexity. By Lemma 4.2, we only have to prove that the lines 15-20 terminate
in polynomial time. In particular, this means that the amount of iterations of the while
loop on line 15 must be polynomial. By Lemma 4.2, we have that F is an m× n matrix
with rank m when we first reach line 15. Thus, the ⟨F1⟩Z ,⟨F2⟩Z , . . . ,⟨Fk⟩Z form a chain
of Z-modules of rank m, where each subsequent Fi is the matrix F at the beginning
of each iteration of the while loop. By Lemma 2.4, and in particular equation 2.1, it
follows that d1 ·d2 · · · · ·dm is the greatest common divisor of all m×m minors of F1. Let
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K be the least upper bound of the absolute values of the entries of F. Using Lemma 2.5,
it follows that d1 · d2 · · · · · dm ≤ Kmm

m
2 , where d1,d2, . . . ,dm are the diagonal entries of

the Smith Normal Form of F. Then, according to Lemma 4.15, the length of the chain
⟨F1⟩Z ,⟨F2⟩Z , . . . ,⟨Fk⟩Z is bound the number of prime factors of Kmm

m
2 , which is bound

by log2(Kmm
m
2 ). Since the length of words WF at the start of the while loop is at most n,

and the rows of F have the form αµ(w) with w ∈WF , it follows that theabsolute value of
the entries of F are bounded by nn−1Ln, where L is the least upper bound of the entries
of α, β, and µ(σ ) for σ ∈ Σ. Thus, the amount of iterations of the while loop is bounded
by log2(Kmm

m
2 ) ≤ log2((nn−1Ln)nn

n
2 ) = n(n − 1

2 ) log2(n) + n2 log2(L), since m ≤ n. Since n
and log2(L) are both polynomial with respect to the length of the binary encoding ofA,
it follows that the while loop iterates at most a polynomial amount of times.

Finally, we must ensure that we can find solutions to matrix equations in Definition 4.3
and 4.4 in polynomial time. While the entries of F and B are exponential with respect
to L, finding a solution to these equations is polynomial with respect to the size of the
encoding of L [20], which is logarithmic with respect to L.

4.2.1 Application of the algorithm

In this section, we will apply the algorithm on the WFAA = (3, {a,b} ,α,µ,β), where

α =
(

1
2

3
2 0

)
µ(a) =


−1 −4 0
1 2 0
1
3 1 −2

 µ(b) =


0 6 0
1 −1 0
2 2 −1

2

 β =


0
2
−1

2

 .
This WFA does not represent anything particularly interesting, but it does cover a
quite complete set of cases while performing the algorithm, so it works well as an ex-
ample.

First, we need to find a basis of the backward space of A. We start by setting

WB = {ϵ} B = β =


0
2
−1

2

 ,
and we need to check the loop condition, namely if there is some w ∈WB and σ ∈ {a,b}
such that µ(σw)β < ⟨B⟩

Q
. In this case for w = ϵ and σ = a, we see that

µ(a)β =


−1 −4 0
1 2 0
1
3 1 −2

 ·


0
2
−1

2

 =


−8
4
3


is linearly independent from B, so we update

WB = {ϵ,a} B =


0 −8
2 4
−1

2 3

 .
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Next, we find that for w = ϵ and σ = b, we have

µ(b)β =


0 6 0
1 −1 0
2 2 −1

2

 ·


0
2
−1

2

 =


12
−2
17
4

 ,
is again linearly independent from B, so we now get

WB = {ϵ,a,b} B =


0 −8 12
2 4 −2
−1

2 3 17
4

 .
Since B has full rank, we know that the loop will terminate and we continue with the
next part of the algorithm, which is computing the backward conjugate of A. Recall

that this requires finding matrices←−α ,←−µ (a),←−µ (b) and
←−
β such that

←−α = αB B←−µ (a) = µ(a)B B←−µ (b) = µ(b)B B
←−
β = β.

With some linear algebra, we find

←−α =
(
3 2 3

) ←−µ (a) =


0 −2

9
13
3

1 −1
3 −1

2

0 −8
9 −2

3

 ←−µ (b) =


0 4

39
11
13

0 −40
13

201
52

1 − 2
39

41
26

 ←−
β =


1

0

0

 .
We continue with finding a basis of the forward space of

←−
A . Using steps analogous to

finding the backward space of A, we find that

WF = {ϵ,a} F =
(
3 2 3
2 −4 10

)
,

and go to finding a basis of the forward module of
←−
A . For w = ϵ and σ = b, we find

that

αµ(β) =
(
3 −6 15

)
cannot be written as an integer combination of the rows of F, so we update

WF = {ϵ,a,b} F =


3 2 3
2 −4 10
3 −6 15

 .
Now, for all w ∈WF and σ ∈ Σ, αµ(wσ ) can be written as a linear combination of rows
of F. For example, for w = a and σ = b we have

αµ(ab) =
(
10 12 2

)
= 4 ·

(
3 2 3

)
−
(
2 −4 10

)
.
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Now, we can use the Hermite Normal Form of F to find an integer basis of the forward

module of
←−
A . We have

HNF(F) =


1 −6 −7
0 8 −12
0 0 0

 ,
and the final automaton is thus given by conjugating

←−
A with the matrix consisting of

the non-zero rows of HNF(F), namely the matrix(
1 −6 −7
0 8 −12

)
.

With some basis linear algebra, we find that the final automaton is given by

←−α =
(
3 −2

) ←−µ (a) =
(
6 −4
8 −5

)
←−µ (b) =

(
−7 3
−12 6

)
←−
β =

(
1
0

)
.

4.2.2 Implementation in Python

An implementation of the algorithm of the previous section has been made in Python,
making use of the SymPy library [15]. The code of this library is available on GitHub1.
It defines a class WeightedAutomaton, which uses the matrix representation of a WFA.
This class provides several methods for working with WFAs, such as computing the
weights of words and minimisation over the integers. Currently, the implementation
supports WFAs over Z and Q, but it can be extended to other semirings. However,
note that minimisation only works over fields, and minimisation over the integers only
works for WFAs over Z or Q.

The repository contains some examples on how to use the minimisation over the in-
tegers. The output of this procedure is given as a WFA using SymPy matrices, which
are symbolic and interpreted. While the implementation does attain a polynomial time
complexity, the actual running time is limited by the speed of the SymPy library, which
is not particularly fast for large matrices, especially in the initialisation of matrices.
Currently, it is not practical to use the implementation for WFAs with over 100 states.
However, after minimisation it is possible to use the much faster numerical NumPy
matrices for weight calculations. This makes the program applicable in practical situ-
ations where WFAs without too many states are used and performance is important.
Lowering the amount of states of a WFA can significantly reduce the complexity of
weight calculations. It is not useful to also implement the minimisation itself for nu-
merical matrices, as floating point rounding errors arise quickly.

1https://github.com/JLaumen/weighted-automata

https://github.com/JLaumen/weighted-automata
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1 def compute_Z_generators(WB,n,Σ,α,µ,β):
2 WF = {ϵ}
3 F = {α}
4 for i in range(n):
5 if αi+1 <Z:

6 return WB[i]
7 # Finding a basis of the forward space

8 while there is (w,σ ) ∈WF ×Σ such that αµ(wσ ) <
〈
αµ(v) | v ∈WF

〉
Q
:

9 for i in range(n):
10 if αi+1 <Z: # Check if integer valued

11 return concat(wσ, WB[i])
12 WF = WF ∪ {wσ }
13 F = F ∪

{
αµ(wσ )

}
14 # Finding a basis of the forward module

15 while there is (w,σ ) ∈WF ×Σ such that αµ(wσ ) <
〈
αµ(v) | v ∈WF

〉
Z
:

16 for i in range(n):
17 if αi+1 <Z: # Check if integer valued

18 return concat(wσ, WB[i])
19 WF = WF ∪ {wσ }
20 F = F ∪

{
αµ(wσ )

}
21 S,Â,T = smith normal form(F)

22 return SÂ
23

24 def compute_Z_automaton(n,Σ,α,µ,β):
25 WB = {ϵ}
26 B = {β}
27 # Finding a basis of the backward space

28 while there is (w,σ ) ∈WB ×Σ such that µ(σw)β <
〈
µ(v)β | v ∈WB

〉
Q
:

29 WB = WB ∪ {σw}
30 B = B∪

{
µ(σw)β

}
31 # Conjugate the automaton with B

32
←−
A = (←−n ,Σ,←−α ,←−µ ,←−β )

33 F = compute_Z_generators(WB,
←−n ,Σ,←−α ,←−µ ,←−β )

34 if F ∈ Σ∗:
35 # Return counter-example

36 return F
37 S,Â,T = smith normal form(F)

38 # Conjugate
←−
A with F

39 return (n̂,Σ, α̂, µ̂, β̂)

Figure 4.2: Algorithm to minimise a WFA over the integers [5].
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Related Work

Minimisation of WFAs over fields goes back to [22], but no explicit algorithm was
provided. Explicit procedures were first introduced in [4] and [9], and later improved
in [13]. The algorithms and proofs in this paper for minimisation over fields closely
resemble [12], although this thesis provides a more intuitive description in addition to
the proofs, and also provides an extensive introduction to WFAs, which is not included
in most modern papers. A proof of Fliess’ theorem is also given in [2], but no concrete
example of applying Fliess’ theorem is given.

Minimisation over the integers has been defined in [5], which uses this minimisation
in order to learn integer WFAs. Learning WFAs over PIDs, including the integers,
has been studied in the past [25], but [5] is the first paper to do so in polynomial
time. In this paper, we focus on the minimisation itself, rather than its application
in learning WFAs. We also work out a concrete example of the integer minimisation
algorithm.

Weighted finite automata have been practically implemented in the past1, but as far
as we know, the library provided in this thesis is the first to implement minimisation
over either fields or the integers, and is also the first to use symbolic operations instead
of numerical methods, eliminating the problem of floating point rounding errors when
using rational weights.

1https://github.com/jasperhoogland/jautomata
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Chapter 6

Conclusion

In this thesis, we have discussed the theory of weighted finite automata, with an em-
phasis on the minimisation of these WFAs over the integers. In Chapter 3, we started
by approaching WFAs intuitively, and used this to arrive at a formal definition. We
then defined the product construction for WFAs and proved its correctness. We fin-
ished Chapter 3 by studying one of the main results of the theory of WFAs, and used
this to motivate the minimisation of WFAs over the integers.

In Chapter 4, we defined and proved a classical minimisation algorithm for WFAs over
fields. We then adapted this algorithm to work with integers, using the algorithm
defined in [5], and proved the correctness of this adaptation. Finally, we discussed
an implementation of this algorithm in Python, which is the main contribution of this
thesis.

Since WFAs are often used in computationally expensive applications such as model-
ling neural networks [26], reducing the computational complexity of weight calcula-
tions can be of great importance. The implementation provided with this thesis can
be used in several different practical applications, while the thesis itself serves as an
overview and motivation of the theory behind it.
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6.1 Future work

The algorithm for minimising WFAs over integers can be generalised to minimising
WFAs over PIDs and their corresponding quotient fields. Both Lemma 2.4 and Pro-
position 4.15 do work for arbitrary PIDs, and the quotient fields of these WFAs can be
used to work with the forward and backward spaces of these WFAs. Future work can
include generalising our implementation for arbitrary PIDs. However, minisation over
the integers already covers the most important use case.

What remains open is the time complexity of minimisation over arbitrary PIDs. While
Lemma 4.15 does provide an upper bound with respect to the amount of prime factors,
it is not clear how this relates to the length of the encoding of a WFA. More work is
needed to study the relationship between the amount of prime factors and the length
of the encoding.

Finally, [5] states that it is unknown whether there are other polynomial time search
orders for finding a basis of the forward module of a WFA. While this question is not
directly as interesting as the future work stated in the previous paragraphs due to a
polynomial search order already existing, other search orders might provide more in-
sight in the time complexity of minimisation of WFAs over arbitrary PIDs.
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