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Abstract

With more people on the Internet than ever, websites need to be able to
handle an ever-increasing number of simultaneous users. For some websites,
this is not viable. These can use virtual waiting rooms to limit the number
of people on the site simultaneously. Existing virtual waiting rooms are gen-
erally unfair, as throughput is prioritised over fairness. This thesis designs
and implements a fair virtual waiting room, that still has an acceptable level
of throughput.
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Chapter 1

Introduction

Nowadays, handling a large number of people simultaneously trying to visit a
website is an important challenge that more and more online platforms need
to deal with. Whether it is ticket sales for a popular event like a concert,
or giving out vaccination timeslots, tackling this challenge is complex. One
way of addressing this problem is by using a virtual waiting room. This
waiting room takes the excess of users trying to access the site and puts
them into a queue so they can be let onto the site at a more manageable
rate.

Unfortunately, there is a distinct lack of academic literature on the topic
of distributed virtual waiting room. While several commercial solutions ex-
ist, these are often either closed-source or the interesting parts are abstracted
away behind closed-source products. There is also no specification of desir-
able properties of distributed waiting rooms in the academic literature.

The commercial solutions that aim to solve this problem focus on through-
put rather than fairness. Fairness in this context means how well the order
in which users join the waiting room compared to leaving the waiting room
matches up. If it is completely different, it has bad fairness. Most commer-
cial virtual waiting rooms make no claim as to their fairness. This thesis
aims to address these shortcomings.

To do this, we design a distributed virtual waiting room based on the
distributed priority queue system called QPID [3]. We modify QPID, adding
fault detection using SWIM [4] and user eviction using TAG [7]. We also
add the ability to arbitrarily change the servers the queue is running on.

This results in a distributed virtual waiting room that is fair, has an
acceptable level of throughput, and is horizontally scalable.

In this thesis, we make the following contributions:

• We specify the properties we expect from a virtual waiting room
(Chapter 2).

• We design and implement a distributed virtual waiting room based on
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an extended version of the QPID distributed priority queue (Chap-
ters 3,4).

• We show that this design is correct and that it satisfies the desirable
properties we propose in Chapter 2 (Chapter 5).

• We use deterministic simulation testing to demonstrate experimentally
that the implementation of the waiting room behaves fairly (Chap-
ter 6.1) and we show that it provides enough throughput for a real-
world application (Chapter 6.2).

Further, we discuss how our waiting room compares to existing solutions
(Chapter 7), and what further improvements can be made to it (Chapter 9).
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Chapter 2

Specification

The goal of this chapter is to explicitly lay out the required specifications
for a fair, distributed waiting room. We have not identified prior academic
literature on distributed virtual waiting rooms, we need to define what we
are discussing in this thesis. We start by defining what a waiting room
is. Next, we precisely specify what is meant by fair and distributed in the
context of this waiting room.

2.1 Virtual waiting room

A virtual waiting room sits in front of a regular website. If too many people
try to access the website simultaneously, it puts the excess of people into a
queue to ensure the site can handle all the incoming traffic.

When users are waiting in the queue, they are typically shown a special
page created by the waiting room. This page may show additional informa-
tion, like their expected wait time. As long as the user has this page open
in their browser, the user stays in the waiting room. Once they are through,
the waiting room’s page redirects them to the real site, and they can start
their visit.

To keep the users in the waiting room, the page, which is part of the
interface, automatically performs actions on the user’s behalf. The interface
further consists of the communication layer between the user’s device and
the nodes running the waiting room.

The interface can trigger interface operations. The possible interface
operations are enumerated below. The interface operations are performed
by the interface on one of the servers running the waiting room. Which
server is chosen for this is not part of the specification.

Some of these interface operations return small-sized data structures
to the interface which identify the client and allow clients to prove who
they are. These pieces of data are the tickets, for when the user is in the
queue, and passes, for when the user is on the site. These identifiers are
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cryptographically signed by the servers running the waiting room to prevent
tampering. The interface ensures that these identifiers are included in the
subsequent requests to the waiting room.

1. Join This request is triggered when the user first joins the waiting
room. It returns a ticket, which lets the user prove the time they
joined the waiting room in subsequent requests.

2. Check in This request is triggered repeatedly by the interface after
it has obtained a ticket. The interface uses the ticket obtained during
the Join operation to show who they are. The waiting room responds
with the user’s position in the queue, whether they can leave it yet,
and an updated ticket. The interface discards the old ticket and uses
the new ticket on subsequent requests.

3. Leave This request is triggered when the interface is informed that
the user has been evicted from the waiting room’s queue during the
Check in. This happens once they are at the front, and an additional
user is let on the site. To call this operation, the interface again sends
the ticket. The interface is given a pass, which allows the user to access
the site.

See figure 2.1 for a flow diagram of a typical user interaction, assuming
fault-free operation.

2.2 Fairness and reliability

The most important property of this waiting room is that it is fair. The
fairness of the waiting room is determined by how closely the order in which
users leave the waiting room follows a first-in-first-out ordering. We use the
normalised Kendall-Tau [5] distance metric to measure fairness.

In a distributed system, getting perfect fairness would usually imply a
significantly reduced maximum throughput. Therefore, we will allow small
deviations from the “perfect” ordering, also called relaxed ordering. While
using this relaxed ordering does mean that the users are not let out in
strictly the order they deserve, the number of “mistakes” in the ordering
can be reduced to a degree that makes the slight unfairness an acceptable
trade-off for the far greater throughput it allows. We aim to balance fairness
and throughput, leaning towards fairness wherever reasonable.

The normalised Kendall-Tau distance is a good fit for our use case be-
cause it punishes elements far away from their fair position more harshly
than elements close to their fair position. It does so by counting the number
of swaps of adjacent elements needed to go from one order to another. This
coincides with the number of required swaps when bubble-sorting an array,
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Waiting roomUser's interface

Waiting roomUser's interface

This repeats until user is allowed to
leave the waiting room

loop [Every "refresh interval"]

The user is disconnected from the queue,
and loses their position in the waiting room

break [The user stops checking in]

loop [Until pass expiry]

Join waiting room

Return ticket

Check in

Return position & new ticket

Leave waiting room

Return pass

Request site

Return site & updated pass

Figure 2.1: Flow diagram showing a typical user interaction without any
errors.
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hence why this metric is also called the bubble-sort distance. In this case,
we compare the order in which users are let out of the queue to the order
in which users joined the queue. The lower the Kendall-Tau distance, the
closer the order of the two lists matches, the better the fairness.

The waiting room should also be reliable, meaning that there should be
no single point of failure. The waiting room’s reliability (also called resilience
or high availability) is prioritized over the throughput. The waiting room
should be able to run on multiple servers, and any of these servers should be
able to go down without the waiting room ceasing to function. Of course, if
all of these servers go down simultaneously, the waiting room will become
unavailable.

These requirements are formalized as the following constraints that the
waiting room specified here should adhere to.

1. The normalised Kendall-Tau distance of the waiting room should be
close to zero (eg. τ < 0.005).

2. The number of users that access the website simultaneously should
stay close to the intended number of users. This means it may go
over, but not by too much. It also means that, if there are too few
users on the site, the waiting room should et users from the queue onto
the site.

3. There should be no single point of failure; any part of the waiting room
should be able to go down without the entire waiting room becoming
unavailable.

2.3 Environment assumptions

To achieve the requirements set out in the previous section, we make some
assumptions about the environment the waiting room will operate in. These
assumptions are outlined below.

These different nodes are networked together, and we assume that if a
network message is sent and the recipient has not failed, they will receive it
in a reasonable amount of time. This is an unrealistic assumption in real-
world deployments. However, this greatly simplifies the implementation.
Namely, we do not have to worry about network partitions, as these are
considered out of the scope of this project.

Additionally, to simplify implementation, we assume that nodes either
fail completely or do not fail at all. There are no cases where a node is
partially available. Failures should also be relatively rare.

Finally, we assume that the clocks of the different nodes running the
waiting room are in sync, stay in sync while the waiting room is running,
and increment monotonically.
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The users intending to visit the website can connect to the waiting room
over the Internet, and the waiting room can connect to the web server run-
ning the website.
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Chapter 3

Distributed Priority Queue

We have based the design of the distributed waiting room on a distributed
priority queue. This chapter will explain what this is and why we need one.
Additionally, we will explain the queue we chose, QPID, and why this is a
good fit for our application.

3.1 What is a distributed priority queue?

A queue is a data structure that supports two operations: enqueue and
dequeue. The enqueue operation adds an element to the queue, and dequeue
removes an element from the queue. The dequeue operation always returns
the element at the front of the queue. Depending on how the queue was
configured, this is usually the element added least recently (FIFO, first-in-
first-out).

In a priority queue, the element at the front of the queue is the element
with the highest priority, also called weight. This weight is determined when
the element is added to the queue but may be updated later.

A queue being distributed means that the queue runs on several servers,
and the operations on the queue happen across these servers. For example,
if element A is enqueued at node 1 and then dequeue is called on node 2,
element A should be returned. The advantage of a distributed queue over
a non-distributed one depends on the trade-offs the queue makes. It could,
for example, support more elements in the queue simultaneously, allowing
for higher throughput [1]. An example of this is discussed in Section 7.2.2.
Another focus could be being resistant to server failure. This is also called
fault tolerance and is seen in the queue discussed in Section 7.2.1.

3.2 Requirements for waiting room use case

In our waiting room, we use a distributed priority queue. For the priorities
of the items, we will use the time at which users join the waiting room. Using

11



the join timestamps as the priority can ensure that users will be added in
the correct position if they need to be re-added to the queue. The dequeue
operation will let the users out in a first-in-first-out ordering.

For our use case, we need a distributed priority queue with the following
trade-offs:

1. The queue must be first-in-first-out ordered the vast majority of the
time. As discussed previously in Section 2.2, we use the normalised
Kendall-Tau distance as a metric for this. We want the waiting room
to always have τ ≤ 0.005. This target is picked arbitrarily.

2. The queue cannot have a single point of failure, meaning that if any
node unexpectedly goes down, as long as there is still at least one
node running, the queue should continue to function. It is acceptable
if some items in the queue are lost since we can re-add them.

3. The maximum number of items in the queue may not be limited by
the amount of memory available on any single node.

3.3 QPID

We chose to use QPID [3] for our distributed priority queue. QPID has some
of the properties we need built-in, and we were able to add the remaining
properties ourselves. A discussion of alternative distributed priority queue
designs, and why we did not choose them, is included in Section 7.2.

In QPID, each node of the network has its own local priority queue.
QPID then lets these multiple queues act like a single, global priority queue.
Each node can individually process enqueue (or in QPID terms: insert)
and dequeue (deleteMin) operations. Enqueued items are added to the
node’s local queue and never move to another node.

3.3.1 Operation

QPID uses a rooted spanning tree to connect all the nodes in the network.
Each node has a pointer (the QPID pointer) that points to itself or one of its
neighbours in the tree. This pointer indicates the direction to the root of the
tree. The tree’s root contains the item with the highest priority. Starting
from any node, following these pointers will lead to the root node.

The deleteMin operation is triggered whenever an element is dequeued.
This operation travels along the pointers until it finds the current QPID
root. There, the element at the front of the queue local queue is removed.
This will also be the element at the front of the global queue. Then, the
pointers in the network need to be re-aligned in order to let the next dequeue
operation complete successfully.

12



To re-align the pointers, a findRoot operation is triggered. This oper-
ation traverses the network, re-aligning the pointers to point to the node
that now holds the element with the lowest weight. Since the operation
that finds the new root always starts from the old root, QPID ensures that
there is always at most 1 root. Additionally, if these pointers are aligned
correctly, QPID also ensures the current root node has the item with the
highest priority.

To decide how to re-align the pointers, each node in the network main-
tains a so-called weight table. This table holds an entry for the current node
and all of its neighbours. These entries are initialised as the value with the
lowest priority. The value stored in the weight table at the current node’s
entry is the weight of the lowest item in that node’s local queue. The value
stored in node A’s weight table at the entry of node B is the lowest weight
of node B and all of its children in the spanning tree, as seen from node A.
This could be seen as the lowest value on that “branch” of the tree. The
QPID paper provides a nice visual example of how the values in the weight
tables are calculated [3].

The values in the weight table may become outdated, as QPID uses “lazy
updating” [3] to minimise the number of messages required. Whenever the
weight of the first element of a local queue changes, which happens when a
new element is inserted into an empty queue, a QPID update operation is
triggered. This operation traverses the tree, updating all the required weight
tables and potentially also triggering a findRoot at the old root if the root
needs to be changed. For a more detailed overview of all operations, refer
to the QPID paper.

3.3.2 Advantages and considerations

The values in the local queues are only stored on a single node. Additionally,
depending on the layout of the spanning tree, the number of values in the
weight tables increases slowly if more nodes are added. This means the
amount of memory used on each node increases an insignificant amount
with the number of nodes. Due to this, we can add as many nodes to the
network as we need to store all the entries in the queue.

Adding more nodes to the network does result in reduced throughput,
as the deleteMin operations will need to travel through more nodes before
reaching the root nodes, increasing the time taken to let a single user out
of the queue. Therefore, QPID works best in a setting with low latency
between nodes.

While QPID does not balance the incoming items across the nodes itself,
it works best if the items are spread evenly across the nodes. This can be
achieved by having whatever is triggering the enqueue operations send them
to a random node each time.

QPID maintains the distributed priority queue structure without exces-
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sive communication overhead, without moving items between nodes, and
without creating bottlenecks on any single node. However, there are also
some downsides to QPID. Namely, there is no built-in way to add and re-
move nodes. QPID starts out with one node chosen as the root node, and
all pointers pointing in the direction of that node. If nodes were added or
removed without additional considerations, the rooted tree structure could
be violated, breaking the assumptions QPID relies on for correctness. There
is also no built-in fault detection.

3.4 Modifications to QPID

Since QPID does not support some of the features we need in the waiting
room, we must add support for them ourselves. We briefly discuss these
required modifications here and go into detail in the next chapter.

The first feature we need is adding and removing nodes from the network.
As this operation happens infrequently, it is fine if it takes some time to
complete. The entries in our queue can be re-added if they are lost since
the waiting room repeatedly requests the user’s position in the queue. This
means we can recover from losing some of the elements in the queue. The
simplest way to implement the changes to nodes is to stop letting people
out of the queue, re-make and re-distribute the minimal spanning tree, and
then restart QPID. However, this is an inefficient solution. Therefore, we
specify a technique to add and remove nodes arbitrarily without stopping
the entire network, discussed in Section 4.7.

The second feature we need is to know the number of users in the queue.
This is required to let the correct number of people out of the queue and
onto the site (also called eviction). This would be easy to do with a central
authority that the nodes report to. However, this would be a single point
of failure. Therefore, we have implemented an approach for collecting this
information and doing the eviction inside the QPID network. This is further
discussed in the Section 4.5.
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Chapter 4

Distributed waiting room

In this chapter, we discuss the design implementation of the distributed
waiting room. An implementation of the waiting room described in this
thesis can also be found at https://github.com/zegevlier/waitingroom.
This chapter presents the main contribution of this thesis.

4.1 Components overview

The waiting room consists of four components. These components and their
roles are described in this section.

1. Users These are waiting in the waiting room, intending to visit the
website behind the waiting room. They are accessing the waiting room
over the Internet.

2. Interface The interface sits between the user and the nodes running
the waiting room. It is responsible for communicating with the waiting
room nodes and the website. It sends requests on behalf of the user
and routes these requests to either the correct node as defined in the
protocol or to the website once the user has left the queue.

3. Nodes These are the servers that run the waiting room’s queue. There
must be at least one node, but there may be more. The nodes keep
all their data in memory and do not require persistent storage.

4. Website This is the website behind the waiting room. Users can only
access this website once they have passed through the waiting room’s
queue.

See Figure 4.1 for an overview of the components.

15

https://github.com/zegevlier/waitingroom


Figure 4.1: Overview of the different components of the waiting room and
how they interact.

4.2 Interface operations

The operations discussed in this section are executed by the interface the
user sees when they visit the website and are put in the waiting room. This
interface includes both the front end, loaded in the user’s browser, and the
back end, loaded on the server running the waiting room. The interface
makes sure the messages are sent to the same node as was previously used,
except when that node has gone down, in which case a new, random node
is picked.

4.2.1 Join

A Join is executed when the user is put in the waiting room. The initial
join message is sent to a random node, determined by the interface. The
user is issued a ticket (see Section A.1) and enqueued into the QPID local
queue of the node the message got routed to, which triggers the QPID insert
operation.

4.2.2 Checkin

The interface provides the ticket it received from either the Join operation,
or the previous CheckIn operation. The node then verifies if the user is
already in the queue at the current node. If not, it queues them at this node.
This re-queueing happens only if the node the user was previously queued
at went down; the interface ensures that the re-queueing takes place. Since
the user is no longer in the queue when they re-queue, the user resides in
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the queue in at most one node.
The node then estimates the user’s position in the queue. If the user has

already reached the front of the queue and was evicted, it instead signals to
the interface that the user is allowed to leave the queue and enter the site.

Finally, it generates an updated ticket with the new information and
sends it to the interface.

4.2.3 Leave

When the user’s interface receives the signal that the user can leave the
queue, their interface calls this method using the ticket. The user’s interface
will then receive a pass that grants them access to the site. This pass
is automatically refreshed every time they send a request to the site. The
user’s ticket is removed from the list of evicted users, and their pass is added
to the list of users on the site. Periodically, the waiting room will remove
any expired passes from this list.

4.3 Priority queue

As discussed in Chapter 3.3, our system uses QPID as the priority queue.
However, we must modify QPID to make it work well in our system.

4.3.1 Removing unnecessary messages

The first modification is not strictly necessary but does improve perfor-
mance without any downsides for our use. In traditional QPID, when the
deleteMin operation is triggered on a node that is not the root, the oper-
ation is forwarded to the parent, and the result of this operation executed
on said parent is returned. Since we only need to know that a user can be
evicted at the node the user is queued at, we do not have to return this re-
sult to the node that started the deleteMin, as they would do nothing with
it; reducing the number of network messages transmitted. These returning
messages are only used to return a value, and do not update the QPID state
(e.g. the weight table or pointers), so we can safely remove them without
altering the correctness of QPID.

4.3.2 FIFO workaround

One of QPID’s assumptions is that the message channel between nodes is
first-in-first-out. We are not making that assumption, so we introduce an
approach to allow us to send the messages over a non-FIFO channel. We
can do this with a simple counter attached to a subset the QPID messages.

Each node keeps a table with node IDs of the other nodes in the network,
each with a corresponding count. This count is increased by one each time
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an update or findRoot message is sent. This count is then attached to the
message, and the receiving node ignores any messages with a count lower
than the one previously received.

As we assume that no messages are lost, and a new value overrides any
older values, this behaves identically to sending the messages over a first-in-
first-out channel.

4.3.3 Miscellaneous other changes

We include an extra timestamp in the findRoot message as well; this is
further explained in the upcoming section on user eviction. Finally, one ad-
ditional check is needed when receiving an updatemessage. This is discussed
in the section on fault detection and recovery.

The rest of the implementation is based on standard QPID, although
our codebase has been written from scratch.

The queue weights are made up of three components. When weights are
compared in QPID, these are compared in order. The first part is the time
the users joined the queue, then their ticket ID, and finally the node the
user is currently talking to. The first ensures that users are sorted in the
correct order. Users with a lower (earlier) join time will be sorted before
users with a higher (later) join time. Then, if two users joined at the exact
same time, the random value in their ticket ID is used to break that tie in a
random but consistent way. Finally, the node ID is to ensure that any users
that need to re-join the queue join the queue at a different position from
their old ticket. This is required as QPID does not allow duplicate entries.

The items in the local priority queues are “tickets”. The contents of
tickets are detailed in Section A.1 of the appendix. The most important
fields are the join time, user ID and the node the user is connected to. The
first two are used to look up the user’s entry in the local queue, and the
latter is used to see if a user is already in the local queue or needs to be
added.

4.4 Initialisation

When the network is initialised, one random node is picked as the starting
node. This node sets its own value in the QPID weight table to 0 and
sets its parent to itself. Once this happens, the node can start processing
users. For any subsequent nodes added to the network, these nodes send
a message to a node already in the network asking to join the network.
This existing node then starts a membership change, adding the new node.
Once this membership change is done, the newly added node will have all
the information it needs to serve users. Section 4.7 describes how these
membership changes work.
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4.5 User eviction

User eviction is the event when we let users out of the waiting room onto
the site. To do an eviction, we need to know the number of users on the site
at a given moment. We use this number and the number of people we want
on the site to determine the number of users we need to let out of the queue.
How many users we want on the site depends on the load that the website
can handle. In the current implementation, this amount needs to be set at
the start and cannot change, but it could easily be made more dynamic.

Each node knows how many users are on the site using passes issues by
that node. To do an eviction, we need to know the number of users on the
site in total. This count is not known to any single node. Therefore, we
need to aggregate this data across all nodes. We do this using TAG [7], a
simple tree-based aggregation protocol, on the QPID tree.

4.5.1 Triggering the eviction

At a specific interval specified by the administrator, we trigger an eviction
on all nodes simultaneously. We can do this simultaneously on all nodes,
under the assumption the nodes’ clocks are in sync (Section 2.3). When the
eviction is triggered, we do nothing unless the node triggering the eviction
is the root node. The eviction operation should only happen on the root
node, and using this mechanism we can ensure this happens without having
the nodes communicate with each other. On the node that is currently the
QPID root, we start the aggregation process discussed below.

QPID ensures that there are either one or zero root nodes at any moment.
If there is a root node at the time of the trigger, the eviction starts right
when the timer triggers. Otherwise, the eviction is skipped. Since a delayed
eviction only slows down letting users out of the queue, it is not a problem
if aggregations are sometimes skipped. Since the root only changes if the
element at the front of the queue changes, and this happens most often when
we are letting users out of the queue, there being no root likely means that
we are currently still processing the previous eviction. If we are, we do not
want to trigger a new eviction, as this would let users out of the queue who
should not be let out yet. Therefore, it is desirable to skip the eviction in
this case.

4.5.2 Aggregation

Before we can do the eviction, we need to know how many users are on the
site. Additionally, we collect the number of users currently in the waiting
room. This aggregation is started as the first step of the eviction process
after we decide to go ahead with the eviction on that particular node. The
goal of the aggregation is to collect the total number of users on the site and
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in the queue by summing up the amount on all individual nodes. We call
these numbers the “counts”. The algorithm for the aggregation is TAG [7].

When an aggregation happens, the node running the aggregation sends
a message to all its neighbours in the QPID network, asking them for their
counts. All of these nodes then ask all their neighbours, except the one they
got the message from, for their counts. This happens until a node has no
other neighbours, in which case it responds with how many users are on the
site at that node. Then, once the parent node has received a response from
all its children, it adds its own counts to the totals and forwards the result
to the node from which it originally got the request. This happens until the
root node has received responses from all its neighbours. The total counts
that end up at the initiator of the aggregation are the number of users on
the site and in the queue over the entire network. This is then used in the
actual eviction step.

4.5.3 Eviction

Finally, using the counts obtained in the previous step, we do the eviction.
The total number of people on the site is compared to the desired number
of people on the site. If fewer people are on the site than desired, we let
min(number of people in the queue, desired user count − number of people
on the site) users out of the queue. Letting a user out of the queue is done
by calling the QPID deleteMin operation. When this operation happens
at the root, the ticket at the front of the queue is dequeued and added to
a separate list containing users who have been evicted from the queue but
have not yet entered the site.

4.6 Fault detection

We need to be able to detect when a node goes down. We do this using
a simplified version of SWIM [4]. In our simplified version, this consists
of picking a random node from the network, sending it a ping, and, if it
does not reply within the specified timeout, assuming it is unavailable and
removing it from the network. Since we assume that all nodes can talk to all
other nodes in the network (Section 2.3), we do not need to do the indirect
probes of the traditional SWIM protocol.

Using SWIM, all nodes have a list containing all nodes in the network.
Each node periodically requests a ping from a random other node, which
must reply before the timeout. If the node does not reply, it is marked as
faulty and removed from the network. When we notice a node is defective
during fault detection, we trigger a membership change, with the faulty node
being removed.
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4.6.1 Optional components

SWIM offers several optional components. We only implement one of these,
and our reasoning for choosing whether or not to implement these is dis-
cussed here.

We implement the Round-Robin Probe Target Selection ([4] Section 4.3)
modification. The time-bounded detection of faults is desirable for our use
case. This makes it easier to write tests that determine whether a node
failure is dealt with correctly, as we can assume that if it is not detected
after a specific time, it will never be detected.

The infection style dissemination proposed in the modifications section
of the original paper ([4] Section 4.1) is not desirable for us, as this greatly
complicates the fault recovery. Sending a single membership change event
to all nodes rather than having each node receive it at a later point is a
sufficient method in our case.

The suspicion mechanism ([4] Section 4.2) would delay the detection of
faulty nodes. Since the entire queue may be paused if there is a defective
node, detection speed is more important than a reduced false-positive rate.
Additionally, the reduced risk of false positives is negligible for us, as we
assumed all nodes reply in a reasonable amount of time if they are online.

4.7 Membership changes

Membership changes happen when a node is declared faulty by the fault de-
tection system or a new node joins the network. These membership changes
need to uphold certain requirements to ensure the correctness of the queuing
in the waiting room. These requirements are outlined below:

1. The QPID spanning tree stays a spanning tree.

2. There is always, at most, one root in the QPID network.

3. All nodes in the network are informed of the membership change.

Since a membership change may be triggered at any node, all nodes must
have enough information to complete the membership change. To do this,
each node has the latest QPID spanning tree and a number indicating the
version of that tree (the spanning tree iteration number). This number is
increased each time the tree is modified and is included any time the tree is
sent to other nodes.

When a membership change happens, the spanning tree is modified lo-
cally on that node; then, the new tree is broadcast to all other nodes, along
with whether any nodes should be added or removed from the member-
ship list. These other nodes will then apply the modified spanning tree by
establishing or demolishing connections as outlined below.
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4.7.1 Modifying the spanning tree

Modifying the spanning tree is either done by adding or removing a single
node at a time. We want to ensure this change happens deterministically
to reduce the number of conflicts we get. If the same change is made to the
same spanning tree on two different nodes, the output should be the same.
The only strict requirement for these changes is preserving the spanning
tree structure. Desirable properties would include minimizing the number of
connections added or removed and keeping the spanning tree balanced. This
would reduce overall latency during the QPID communication, improving
maximum throughput. The spanning tree is modified by the node that
initiats the membership change.

First, we naively add the required node without any edges, or remove
the required node and remove all edges that connect to that node. Then, we
need to re-establish the spanning tree structure. We do this by establishing a
consistent way that nodes are reconnected when two disconnected spanning
trees are created.

We do this by finding all the connected components of the modified
graph and taking two random ones. In both components, we select one
node to connect to the other component. Which nodes are connected does
not matter, so some arbitrary heuristics may be used to determine this.
Once we have these two nodes, we connect them by adding a single edge.
We repeat this, starting from finding the connected components until only
one connected component exists. This process will return the spanning
tree structure to any graph consisting only of disconnected sub-graphs with
spanning trees. Removing or adding a single node to the graph will result
in this structure, so we can apply this operation to reconstruct the spanning
tree.

This method only creates a single connection when adding a node. When
removing a node, the number of connections added and removed depends
on the number of connections the original node had.

Once the modified spanning tree is created, the node that initiated the
membership change broadcasts the tree, along with which node needs to be
added or removed, to all other nodes in the network.

4.7.2 Applying a new spanning tree

Now we need to apply the new tree on all nodes on the network. When a
node receives a new spanning tree from another node, it first checks whether
the spanning tree it receives is newer than the one it currently has applied.
This is determined by the iteration number of the spanning tree. If it is
older, it is ignored. If it has the same iteration number, a conflicting change
is detected, and this conflict is dealt with as outlined below. If the spanning
tree iteration number is higher than the node currently has, it applies the
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new tree. Note that at this point, a node may not have been initialised yet
and thus may not have a QPID parent.

To apply the new tree, the node first determines the difference between
the connections it is supposed to have and the ones it currently has. For
any connections that were removed, we remove the entry from the weight
table. We also discard the current parent, which means the new parent
will be determined later. We then also set a flag that we need to trigger a
findRoot operation once this node has decided on its new parent.

For any connections that need to be added, we only add this entry to
our weights table.

Next, since we discarded the current parent if any connections were re-
moved, we need to pick a new parent. If we have also added connections, we
need to wait for an update from the other nodes before we can decide which
neighbour should be the new parent. If we have only removed connections,
we can immediately set the parent. How the parent is set is explained in
the next section. If only connections were added, the parent is not changed.

We then send an update message to each of our neighbours that does
not currently have the most up-to-date value. We determine this by keeping
track of the latest value that was sent, and if it is not the same, sending a
new update. This update message ensures that the values for both nodes in
their respective weight tables is up-to-date.

We may have already received the update from our neighbour if their
membership change message arrived earlier than ours. In this case, we can
determine our new QPID parent immediately. If we have not received these
update messages, we must wait until we receive this update before deciding
on our new parent. When we receive an update message when we do not
have a parent, we update the value in the weight table like normal, then we
see if we have received a response from all neighbours. If we have, we pick a
new parent. If not, we continue waiting for update messages. The decision
on the QPID parent is explained in the next section.

4.7.3 Picking the QPID parent

If we have removed entries from the weight table while applying the new
spanning tree, we need to decide on a new QPID parent. We can only
decide on a new QPID parent if we have all our neighbours in the spanning
tree as entries in our weight table. Before this, if we were to decide on the
QPID parent, this decision could be incorrect. Once we have all the required
entries, we know the weight of all of our neighbours and can thus decide on
the correct parent.

Entries in the weight table can be “empty”, which means they do exist
but have no value. A node’s weight is empty if there are no entries in the
local queue. If any of the weights in our table are not empty, we pick the
value in our weight table that is the smallest.
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When all of the weights in our weight table are empty, which happens
when no users are in the waiting room, we need to pick an arbitrary node to
point to. In our case, we pick the node with the lowest ID in the network.
We then take the neighbour on the path from the current node to the node
with the lowest ID as our parent. This ensures that we always only have a
single root.

Then, once we have decided on our new parent, if we had previously set
the flag that we needed to send a find root, we do so now. This ensures that,
if the correct root changed while the membership change was happening, the
network still ends in the correct state. Finally, we send another round of
update messages to all nodes that do not already have the latest value.
Again, this is done because otherwise, operations that happen during the
membership change can cause the network to get into an incorrect state.

4.7.4 Conflicting tree changes

Two spanning tree changes may happen at the same time. When this hap-
pens, these changes will have the same spanning tree iteration number. This
is detected because nodes receive two trees with the same iteration number.
If this happens, the tree is entirely reconstructed in a way that is not de-
pendent on the order in which the nodes were added.

This reconstruction from scratch is done by taking the node list, sorting
it on node IDs, and then adding each node to an empty spanning tree in this
sorted order. This will happen on all nodes that notice the conflicting trees,
and will result in the same trees on each node. These nodes then broadcast
this new tree to all other nodes, just as with the regular membership changes.

Because this results in the same tree on all nodes, the next time the trees
are broadcast, they will be the same and have the same version number. This
ensures that, eventually, the network will stabilise on a single tree that all
nodes agree on.

4.8 Scalability

We have now created a waiting room that can, just like QPID, run on an
arbitrary number of nodes. Due to the modifications made, all nodes need to
know of the existence of all other nodes, which the amount of memory needed
for each subsequent node added does increase more quickly than with just
QPID, but still not quickly enough to lead to problems. Adding more nodes
does increase the time it takes for the network to process one deleteMin

operation, and thus the throughput of the waiting room. However, for any
reasonable network size with nodes close together, this is unlikely to cause
problems.

Additionally, our waiting room can be put in front of virtually any web-
site. The waiting room can operate completely independently from the web-
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site. It knows how many users are on the site and how many users should be
on the site, and can thus operate without getting any additional operation
from the website. This makes deployment and scaling of the waiting room
easier.

The number of nodes in the waiting room can also be scaled up or down
without much overhead, which makes deploying it into an unpredictable con-
text easier than one where one needs to pre-allocate the number of nodes.
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Chapter 5

Analysis of Distributed
Virtual Waiting Room

In this chapter we discuss the correctness of two parts of our waiting room.
First we discuss the correctness of the network membership changes. Sec-
ond, we discuss the correctness of the counting aggregation part of the user
eviction.

5.1 Membership change correctness

We start by discussing the correctness of the membership change system.
For this discussion, we assume the entire membership change operation is
atomic, meaning that no other messages are happening while the mem-
bership change is happening. This is not true in the real application, but
significantly simplifies the correctness discussion here. Therefore, we only
show that the system works for an atomic membership change. We start
by defining the properties that need to hold for QPID to function properly.
Then we show that if these properties hold before the membership change,
they still hold after the membership change.

These invariants were already briefly outlined in Section 4.7.

1. First, the QPID spanning tree must stay a spanning tree. This means
any node must be able to reach any other node via exactly one path.

2. Second, there must be at most one QPID root node.

3. Finally, we need all nodes to be informed of the latest spanning tree,
and of the network members.

The membership changes work in three steps: Updating the spanning tree,
applying this spanning tree, and finding the QPID parent of every node.
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5.1.1 Spanning tree update

In the first step of updating the tree, we take the old spanning tree and add
or remove all the requested nodes. Which nodes are added and removed
is specified by what initiated the membership change, and all nodes should
support adding new nodes and removing all nodes except itself. This step
will result in a spanning tree that can then be applied to the network.

We start by naively adding and removing nodes on the old spanning
tree. Nodes that are added do not result in any changes to the edges. Nodes
that are removed remove all edges connected to that node as well. This
results in a graph that has one or more connected components, where all
the connected components are spanning trees.

Now we start a looping process, where each iteration of this loop de-
creases the number of disconnected spanning trees by one, until there is a
single spanning tree left. First, we find all connected components, which
will identify all these disconnected sections of the graph. Then, we connect
two of these components with a single edge, this connects these two separate
spanning trees to a single, larger spanning tree. Now, we repeat this until
there is a single spanning tree left.

This loop starts with a number of disconnected spanning trees, and re-
sults in a single connected spanning tree. We can clearly see that this loop
results in a single spanning tree. Assuming this spanning tree gets applied
correctly in the next step, the network has a single connected spanning tree.
With this, we have partially shown invariant 1.

5.1.2 Applying a new spanning tree

When applying a spanning tree, there are two things a node could need to do:
Adding a connection or removing a connection. Adding a connection means
we initiate communication between two nodes, and removing a connection
means we stop communicating between those nodes. This applies the new
spanning tree correctly, thus showing that, after this process, invariant 1
holds. Additionally, since this applying of the spanning tree happens on all
nodes, invariant 3 also holds.

In the algorithm, if we remove any connections from the node, we discard
the QPID parent. This means the QPID parent will be re-picked later. This
is required because the connection to the previous parent might have just
gotten removed. If only nodes were added, we know the current QPID
parent can stay parent. Since we send the update messages, if the parent
was incorrect, after the update is processed the parent will be correct. This
is not necessarily the case if any connections were removed. Therefore, we
reset the parent, wait until we have enough information to pick the new one,
and do so.

Now we have shown that invariant 2 holds when we have only added
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connections to nodes.

5.1.3 Picking QPID parents

If a node has discarded its old QPID parent, it can pick our new QPID
parent once it has the required up-to-date information. For this, it needs to
have the weight for all its neighbours in the spanning tree. Once it has this,
it can decide its new parent. If the entire tree is empty, all the entries in the
weight table will be empty. In this case, it sets the QPID parent towards
the node with the lowest ID. This is a single, consistent node and will let us
make sure there is only ever one root.

If there are elements in the tree, we apply the same method of setting the
parent as QPID does. The QPID paper mentions that the parent can only
be set if we know we have up-to-date information from all nodes. Since we
had previously sent the most up-to-date information to all nodes, we know
we have the latest information and can set the parent correctly. This shows
invariant 2 for all other nodes.

5.1.4 Conclusion

We have now shown that all 3 invariants hold. The network remains a
spanning tree, all nodes are notified of the update, and there is at most a
single root node.

5.2 Eviction counting correctness

For the user eviction, we need to know the number of users on the site and
in the queue across the entire network. This information is gathered in an
aggregation. This section discusses the correctness of this aggregation.

QPID ensures there is only ever one root, and since the aggregation can
only start on the root node, two aggregations can never start at the same
time. Since an aggregation can only be initiated on a single node, this node
can never trigger the aggregation twice at the same time, and the current
time is used as the aggregation iteration, we will never have two aggregations
with the same aggregation iteration.

Nevertheless, it is possible to have two counts running concurrently if
one takes a long time to complete. In this scenario, the aggregation with
the higher iteration value, whichever starts later, can still be completed
normally. The second aggregation causes the collected responses for the
first aggregation to be discarded at any nodes that had already acted on the
first aggregation. Additionally, since the iteration value is lower, all nodes
that processed the second aggregation first will ignore the first aggregation.
Responses for all but the current aggregation at a node are also ignored,
causing only the second aggregation to be collected.
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If a node is faulty during an aggregation, the aggregation will never
be completed. However, this is not a significant problem because another
aggregation will occur soon. Since one of our assumptions is that nodes
rarely go down, we can be confident that an aggregation will be completed
shortly.
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Chapter 6

Testing

In this section, we discuss how we tested the waiting room behaviour us-
ing testing. We implemented the waiting room described in this thesis in
code and simulated it running in different scenarios. We used this to test
whether there were any cases where the waiting room behaved incorrectly.
Additionally, we tested the waiting room’s throughput in a non-simulated
deployment to test its true throughput.

6.1 Simulation Testing

In this section, we discuss how we used simulation testing. Simulation testing
replaces some components of a system with simulations of these components.
This means the system can be tested in a more structured, extensive way.

6.1.1 Implementation

For our implementation1 of the waiting room we used the popular program-
ming language Rust2. All code that is directly related to the waiting room
was implemented from scratch, using libraries for functionality like JSON
parsing, logging, collecting metrics, randomness, etc. The non-simulation
version also notably uses libraries for the HTTP server.

6.1.2 Hand-made tests

We used several hand-made tests to verify the waiting room’s behaviour.
These tests can be found in the code3. While these tests could point out
major issues after changes were made, they are obviously not enough to
conclude definitively that the system works correctly.

1https://github.com/zegevlier/waitingroom
2https://www.rust-lang.org/
3https://github.com/zegevlier/waitingroom/blob/main/

waitingroom-distributed/src/distributed/test.rs
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6.1.3 Deterministic simulation testing

For a more convincing set of tests, we turned to deterministic simulation
testing. This technique was popularized by FoundationDB [11]. It involves
writing the system being tested so that it behaves fully deterministically,
then running behaviour tests on it while (deterministically) randomly trig-
gering disruptions to the system, and then checking whether the system
behaved as it should have.

Determinism means that if the program is run several times with the
same input, it results in the same output every time. This might seem
true for most programs, but if a program uses time, IO, multiple threads,
randomness, etc., it is no longer deterministic. These factors might not
behave the exact same way the second time the program is run, meaning they
may introduce variation into the output, causing non-determinism. These
nondeterministic parts can be avoided by using deterministic simulations of
these parts, as done in our implementation.

In these tests, the goal is to verify if the waiting room behaves as ex-
pected. This means we do not look at the internal state of the waiting room,
we just look at the behaviour that can be observed from the outside. This
lets us be confident in our design, while still being able to change how the
waiting room works without having to change the tests as well.

The waiting room here is much simpler than the database the Founda-
tionDB team built, so it was easier to write it deterministically. In our tests,
we used a deterministic random number generators, a simulated time, and
a simulated network between nodes. Then, while developing the waiting
room, we ran the tests explained below. If these tests failed, we knew we
had a bug in our code.

As described earlier, to test whether the system is operating correctly, we
introduce disturbances. This could be a latency spike in the network, a node
losing connectivity to another node, or a node completely stopping abruptly.
In our simulations, we only introduce the disturbances of a node losing power
and a node being added to the network. For each test we specified how
many times either of these things should happen, and the testing system
would make it happen that many times. These disturbances are introduced
randomly, the timing of which is decided using a pseudo-random-number
generator seeded with the run ID. This way, we can still repeat the runs,
but each different run will also have a different set of disturbances.

The advantage of deterministic testing is that, if the tests trigger a bug,
it is trivially easy to reproduce this bug as many times as needed to solve
the issue. This was helpful during development. Additionally, it means that
the testing results are perfectly reproducible under the same version of the
waiting room.
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Methodology

As described Section 4.7, nodes need to already know at least one other
member of the network before they are able to join the network. To accom-
plish this, we first initialise a single node on its own, then initialise all other
starting nodes by having them join the network at the original node. Then,
we decide when to initiate the disturbances in the network. We do this
before the loop starts, to make sure we always run all the disturbances we
want to run. We use the same system to decide when to have the simulated
users join the waiting room.

Next, we start the main loop of our simulation. Each iteration of this
loop represents one millisecond of time. During this loop, the following
actions happen in order:

• First, increase the simulated time of the system by 1.

• It checks if the waiting room is in a consistent state. This is further
explained below.

• Then, it lets all nodes process any messages they receive at that time-
step.

• Then, it calls all the functions that happen on a timer. These are the
eviction, fault detection and cleanup functions.

• Then, we let the simulated users refresh their tickets if their refresh
time is it. We also let them leave the queue once they have been
evicted.

• Then, if we currently need to have a user join the queue, we add a new
user to the simulation.

• Then, if we need to do one of the disturbances, we do that.

• Finally, we check if the waiting room is done processing users. When
this happens, or when the waiting room has taken so long that we can
be certain it will never finish, we exit the loop.

Finally, at the end of the run, we calculate several metrics, including the
total time taken and the Kendall-Tau distance between the order users were
put into the queue and let out. We determine this order by, for each user
in the simulation, taking the timestep at which they entered the queue and
the timestep at which they were evicted from the queue, then comparing
the two resulting lists.

As part of the simulation testing, we test whether several properties
hold. The most important of which are that there is always at most one
root, and that the QPID node invariant, as described in the QPID paper
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([3] Equation 1, start of Chapter 5), holds. Since these properties might not
hold if a node has gone down and the recovery has not happened yet, we
do not fail the test until the test has passed at least once after we run the
disturbance that removes a node from the network.

When running our tests, we were able to configure several properties.
The most important of these are detailed in Table 6.1, along with an expla-
nation of what they mean. Whenever multiple properties are named, every
combination is tested. This results in 27 different tests. For each test, we
collect the total amount of time after we stopped letting users in and the
Kendall-Tau distance between the order in which users were put in and users
left the queue. Each test is repeated 1000 times, and the average of these is
reported.

Due to limitations in the simulation framework, we were not able to
simulate more than 2500 users in a single run. Therefore, we carried out the
throughput tests in a non-simulated environment (see Section 6.2).

33



Parameter Value(s) Explanation

Target user count 20/100/INF
The target number of users on the site. If fewer users are on

the site, more are let on.

Ticket refresh time 600ms How often a user’s ticket is refreshed.

Pass expiry time 0 seconds

How long it takes for a pass to expire, 0 seconds means the

pass expires immediately, making it so there are always 0

users on the site.

Fault detection period 0.5 second How often the fault detection is ran.

Fault detection timeout 0.2 seconds The amount of time a node has to respond to the fault detection probe.

Eviction interval 1 second How often the eviction is ran.

Latency between nodes Unif. random between 10-20ms The simulated latency between any two nodes.

Starting node count 8 The number of nodes at the start of the simulation.

Total user count 100/500/2500 The total number of users that join and go through the waiting room.

Nodes added/removed count 0/1/5

We start with a certain number of nodes. Then, throughout the

simulation, we both add and remove nodes. The number of nodes

added is always the same as the number of nodes removed,

and the amount is listed in this parameter.

Test duration 100 seconds
The amount of simulated time in which all users join and

disturbances happen.

Table 6.1: Test Parameters



Results

Each run had a combination of a different number of nodes that was added
and removed, a target number of users, and a different total number of users.
For each run, we collected the total simulated time taken and Kendall-Tau
distance between the real and fair order. See Table A.1 for a table with the
raw results.

We never reached the throughput limit of the waiting room in our testing.
This means that we cannot accurately make predictions of the maximum
throughput using these simulations. Therefore, we test for this throughput
separately (Section 6.2). We were, however, able to collect the Kendall-Tau
distance for all of these different runs.

Figure 6.1: Kendall Tau VS. number of nodes added and removed with 100
users in total through the waiting room.

We have plotted the results of these experiments in three graphs, each
for a different number of users that go through the waiting room (Fig-
ure 6.1, 6.2, 6.3). We plot the average Kendall Tau distance over the 1000
runs against the number of nodes that were added and removed in each of
these runs. Take note of the different Y-axis on each of the graphs.

In Figure 6.1 and 6.2, the average Kendall-Tau distance for the different
target user counts is nearly identical, as all users are immediately let onto
the site in all of these tests. This means the dots for the markers overlap
nearly completely.

We can see that having more users in the simulation results in a lower
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Figure 6.2: Kendall Tau VS. number of nodes added and removed with 500
users in total through the waiting room.

Figure 6.3: Kendall Tau VS. number of nodes added and removed with 2500
users in total through the waiting room.
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(= better) Kendall Tau distance. This is because the swaps are more likely
when there are few users in the queue, which happens more often when
there are fewer users going through the waiting room. Additionally, we
can observe that the distance increases if we have more nodes added and
removed. This is because during the membership changes there is are more
chances for users at the front of the queue to be let out in the wrong order.

Notably, in Figure 6.3, for a target user count of 20, we see only a small
increase at the 5 nodes failed vs the 1 node failed, which can be explained
if we look at the time taken for that test and the other tests in that set.
We can see that these tests, in contrast to all the others, take significantly
longer than the 100s to complete. This means that, at the end of the test,
we still have a lot of users in the queue. This can be explained by the rate at
which they are let out being lower than the rate at which they join. Since,
like previously discussed, the swaps only happen when users join towards
the front of the queue, and this happens less when there are more users in
the queue, the number of swaps is lower here than in other situations. From
this we can conclude that the waiting room’s order becomes more accurate
when there are more users in the queue.

6.2 Live Environment Testing

We also tested the waiting room in a live environment, which is closer to
a real deployment than the simulation. These tests help us verify that the
waiting room’s throughput is not too limited for real-world deployments.

6.2.1 Methodology

As opposed to the simulation testing in the previous section, these test ran
with seperate processes for each of the nodes, communicating over HTTP.
As opposed to a real deployment, for our tests we ran all nodes, along with
our interface and demo website on a single server (Hetzner Dedicated vCPU
CCX13 with 2vCPUs and 8 GB RAM). The users were still simulated, this
ran on a seperate VM in the same datacenter as the testing server. All
simulated users ran on the same node. The latency between these servers
was ∼ 0.25ms.

As all nodes ran on the same system, the latency between them was near
0. This is unrealistic for a multi-region deployment but is close to what can
be expected from a real deployment of several servers in the same physical
rack.

For these tests, as the goal was to examine the maximum throughput of
the waiting room, we did not simulate any nodes going down. Similarly, we
also did not add any nodes after the waiting room started.

We simulated the users using a program that would send many simul-
taneous requests. In each run, we had 5000 simulated users going through
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Number of nodes 3 8 16

Time Run 1 (s) 136.86 156.17 218.51

Time Run 2 (s) 138.79 140.55 222.72

Time Run 3 (s) 137.43 152.97 200.61

Average time taken (s) 137.69 149.90 213.94

Average users / s 36.3 33.4 23.4

Table 6.2: Table showing the results of the live testing.

the queue, with up to 500 user simulations running simultaneously. These
users would follow the waiting room’s instructions to refresh the page after
a number of seconds and would stop once they had obtained the pass that
allows them on the site. These users also communicate with the waiting
room over HTTP.

We ran three different tests, one with 3 nodes, one with 8 nodes, and
one with 16 nodes. We ran the 3 node and 8 node tests, as these would give
expected ranges for real-world deployments. The 16 node test was chosen
to more clearly display how the throughput changes with more nodes. We
collected the amount of time it took to let all 5000 users through the queue.
Each time, we could see the CPU usage spiking to 100%, which means we
were sending enough requests to fully saturate the waiting room. Each test
was repeated 3 times, and the nodes were restarted between tests.

6.2.2 Results

We got the results shown in Table 6.2.
As we can see, the waiting room is more than capable of handling 30+

users/second of throughput, which is more than enough for most sites. This
shows that we can provide a fair waiting room that is fast with negligible
overhead.

We can see that the throughput goes down when the number of nodes
goes up. This is expected behaviour, as each delete request will need to,
on average, travel further to get to the correct node. The chance of two
consecutive deletes needing to happen on the same node is also smaller.
Even though the throughput is lower, it is still likely fast enough for most
use cases.

The throughput could be improved by using a more powerful system
to run the nodes. Additionally, there is still a lot of low-hanging fruit
optimisation-wise in the implementation. This proof of concept shows that
the algorithm does not inherently bottle-necked the waiting room.
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Chapter 7

Related Work

In this section, we discuss other waiting rooms and their implementations.
Additionally, we will discuss other options for distributed queues, and why
we did not use these to build our distributed waiting room.

7.1 Other distributed virtual waiting rooms

We were unable to find any academic papers discussing virtual waiting
rooms. There are, however, several commercial companies that have blog
posts or documentation explaining how their implementation of a virtual
distributed waiting room works. These are discussed below, along with the
advantages and disadvantages of their approach compared to ours.

7.1.1 Cloudflare

Cloudflare’s waiting room [9] works by grouping all users into buckets at
1-minute intervals. The different nodes running the waiting room then com-
municate to aggregate the number of users in each bucket. Subsequently,
the waiting room “evicts” (lets out of the queue) either entire buckets or
parts from the queue. If a user is in a partially evicted bucket, it is random
whether they will be in the part that gets let out or not.

This method has a major advantage over the user-by-user approach of
our waiting room: the maximum amount of data that needs to be transferred
between nodes is limited and predictable. This, combined with the other
scaling mechanisms described in Cloudflare’s blog posts, ensures that the
throughput of the Cloudflare waiting room is virtually unlimited. However,
this trade-off means that the order users are let out of the queue often
deviates from the fair, first-in-first-out ordering. This trade-off is suitable
for use cases where the site operator only needs to give the impression of
fairness. Take, for example, online ticketing services. They do not inherently
care about who buys the ticket, but for publicity reasons, they want to
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ensure that the order feels fair for the user. There are other cases where
true fairness is more important. Take, for example, a government handing
out vaccination timeslots on a first-come-first-serve basis.

Another benefit of Cloudflare’s approach is that the waiting room is only
activated when too many users are trying to reach the site. In contrast, our
waiting room enqueues all users regardless of the number of users on the site.
While this creates more friction for users, it avoids the need for a complex
system [10] that ensures that needs to decide when to start queueing. This
needs to not happen too early, as this creates unnecessary user friction, nor
to late, as this would overload the site. Although the implementation of
such a system in our waiting room is technically possible, it was considered
out of scope for this thesis.

In summary, the trade-offs of the Cloudflare waiting room differ from
ours. We prioritize fairness, while they emphasize throughput.

7.1.2 AWS

AWS has a virtual waiting room template [2] that can be deployed on AWS
onto one’s own account. This template is open source1, and they provide
documentation2. This waiting room works by giving all the users in the
waiting room an incrementing ID. The users are then added to a database,
which stores information about when they joined and left the waiting room.
Then, a globally shared counter is updated, and all users with an ID lower
than the current count are let on to the site. The user can also get an
estimate of their position by querying how many users in the database have
not been let out and have an ID lower than the current user’s.

In AWS’s waiting room, all users are stored in a central place, namely
DynamoDB. Additionally, the global counters are stored in ElastiCache for
Redis. These are AWS products, and thus this waiting room can only run
on AWS infrastructure. This requires complex deployments and has hard-
to-predict pricing. Additionally, ensuring a complex system like this has no
single point of failure is difficult, even with the managed databases offered
by large cloud providers.

7.2 Distributed Priority Queues

While looking for a distributed priority queue for our project, we considered
several different options. We briefly discuss these options here, and we
evaluate their characteristics in the context of deployment in our distributed
waiting room design.

1https://github.com/aws-solutions/virtual-waiting-room-on-aws
2https://docs.aws.amazon.com/solutions/latest/virtual-waiting-room-on-aws/

welcome.html
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7.2.1 FOQS

First, there is FOQS [8]. This queue utilizes a database, in this case, MySQL,
to store all the users and provide the ordering. This offloads the task of
keeping track of and sorting the entries in the queue to the database. This
means the waiting room application only communicates with the database.
This queue is distributed, because the database used for this can be made
to be distributed.

This approach has several benefits. For example, the complex part of the
queue is built on existing, well-tested software and algorithms. Additionally,
the nodes the users would connect to are completely stateless (they do not
store any data), meaning they are much easier to deploy at scale. Finally,
as FOQS queues are backed by a database, it becomes easy to support
auxiliary operations, such as seeing how many users are in the queue or
removing someone not at the front of the queue.

However, FOQS has some noteworthy downsides as well. First, this
approach shifts the problem of providing redundancy and strict ordering
to the database rather than the application, which means we have far less
control over how this happens. Additionally, it adds a layer of complexity
in the deployment of the waiting room, as FOQS need the database storage
to persist across server failure.

7.2.2 A scalable relaxed distributed priority queue

There is also another approach [6] that builds upon a local priority queue,
similar to QPID. This approach randomly picks several nodes in the network
to query and picks the element with the lowest priority returned by any of
these nodes. This has some compelling benefits, namely that adding and
removing nodes from the system is very easy. Additionally, the logic at each
node is extremely simple and explainable since all they need to do is manage
a local queue.

However, there are also some notable downsides to this approach. Firstly,
the queue provides quite poor fairness when compared to QPID. As the order
is based largely on probabilities, an unlucky user can be let out far behind
their fair position. This possible unfairness only increases with the number of
nodes and can make applications with a lower throughput extremely unfair.

This approach was too considered unfair for our waiting, but if fairness
is less of a priority this mechanism could be a great option.
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Chapter 8

Conclusions

In this thesis, we designed and implemented a distributed virtual waiting
room. As opposed to other virtual waiting rooms, this one focused on fair-
ness over throughput. This resulted in an exceedingly fair waiting room,
with still an acceptable level of throughput. Our waiting room also has ex-
cellent scalability, with nearly no theoretical limit on the number of users in
the queue simultaneously.

In order to make this waiting room, we took an existing distributed prior-
ity queue, QPID, and added several features to it. These include supporting
changing the network members while the queue is operating, being able to
run on a non-FIFO network, and detecting and automatically recovering
when servers go down. Additionally, we optimised QPID for our use case.
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Chapter 9

Future work

While the waiting room we have designed and implemented here is already
fully functioning in the testing, we are missing some features that a real-
life deployment could benefit from. Additionally, we have only outlined the
correctness of this system. In this chapter, we will discuss these areas for
future work.

9.1 Better position estimates

Currently, the position estimates provided to the user are calculated by
multiplying their position in the node’s local queue by the number of nodes
in the network. For a small number of users, or when the user is near
the front of the queue, this estimate significantly deviates from their real
position. For example, if the user is at the front of the queue but not yet
evicted, and there are 8 nodes in the network, their position estimate would
be 8, while their true position would be 1. Future work should use a more
complex system to estimate the user’s true position in the queue, and should
also provide the user with an estimated wait time.

9.2 Not queuing users when traffic is low

As discussed in the previous chapter on related work, we currently queue all
users trying to reach the site. This occurs even if there are very few users
on the site, resulting in users being let out of the queue almost immediately.
This creates unnecessary friction for the user. Future work should implement
this as well, possibly using a similar system of “user slots” that Cloudflare’s
waiting room uses [9]. These user slots allow each node to let a limited
number of users through without queuing them. This reduces friction for
users. Future research should add this feature to this waiting room.
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9.3 More thorough analysis

Another way in which the waiting room could be improved is by providing
a formal correctness for the membership changes. We informally discussed
the correctness of this waiting room in the Section 5.1, but this was far from
a formal proof. We conducted extensive tests to verify the behaviour, which
provided confidence in our design. However, these tests were conducted on
a simulation and it is almost certain we missed an edge case that could
cause the system to malfunction. Future research should focus on creating a
formal proof that verifies the modifications made to QPID work as intended,
even in failure scenarios.

9.4 Advanced simulation testing

While our simulation testing is able to test a lot of situations, there are
still many situations possible in the real world that cannot be simulated
yet. These include users dropping out of the queue, messages from users
and other nodes being handled interlaced, etc. Due to technical limitations
we were also not able to test with more than 2500 users in the queue at
the same time. Future work should improve this testing setup by making it
possible to test these scenarios as well.
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Chapter 10
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Appendix A

Appendix

A.1 Data structures

A.1.1 Ticket

identifier (TicketIdentifier):
The ticket identifier is a random number used to uniquely identify a
ticket. This same identifier is set on the pass the user gets when they
are let out of the queue.

join time (Time):
The time at which the user joined the queue.

next refresh time (Time):
The time at which the ticket should be refreshed next. They may
refresh it sooner, but this is the time at which it should be refreshed
automatically by the user’s client.

expiry time (Time):
The time at which the ticket will expire if it is not refreshed. The
ticket will become invalid at this time.

node id (NodeId):
The node ID where the ticket was last refreshed.

previous position estimate (usize):
The previous position estimate of the user. If the current position
estimate is greater than this, the user is still shown their previous
position estimate to prevent them from seeing their position go up, as
this would be very discouraging.

eviction time (Option<Time>):
The eviction time is the time at which the user was let out of the
queue. When they call the refresh function after they have been let
out, they’ll be able to leave.
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A.1.2 Pass

identifier (TicketIdentifier):
The identifier of the ticket that this pass was created from.

node id (NodeId):
The node ID the pass was last refreshed on.

queue join time (Time):
The time the original ticket was added to the queue.

pass creation time (Time):
The time the pass was created.

expiry time (Time):
The time the pass expires if it is not refreshed.

eviction time (Time):
Eviction time is when the user was let out of the queue.
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A.2 Simulation results

Note that these are the simulation results without any rounding applied to
them. The first three columns are inputs, the last two are the averages of
the outputs when running the simulations 1000 times.

Target user count Total num of users Nodes added/removed Kendall Tau Simulated time taken (ms)

100 100 0 0.000751 100276

100 100 1 0.000765 100324

100 100 5 0.000843 100436

100 2500 0 3.25e-05 101191

100 2500 1 3.73e-05 101238

100 2500 5 5.64e-05 101586

100 500 0 0.000157 100601

100 500 1 0.000159 100640

100 500 5 0.000178 100740

20 100 0 0.000751 100276

20 100 1 0.000765 100324

20 100 5 0.000843 100436

20 2500 0 3.01e-05 137183

20 2500 1 3.20e-05 139685

20 2500 5 3.90e-05 145619

20 500 0 0.000157 100601

20 500 1 0.000159 100642

20 500 5 0.000177 100744

99999999 100 0 0.000751 100276

99999999 100 1 0.000765 100324

99999999 100 5 0.000843 100436

99999999 2500 0 3.25e-05 101191

99999999 2500 1 3.74e-05 101241

99999999 2500 5 5.80e-05 101596

99999999 500 0 0.000157 100601

99999999 500 1 0.000159 100640

99999999 500 5 0.000178 100740

Table A.1: Simulation results
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