
Bachelor’s Thesis Computing Science

Radboud University Nijmegen

Learning Mealy Intersections

Author:
Julian Put
s1062379

First supervisor/assessor:
dr. Jurriaan Rot

Second assessor:
dr. Sebastian Junges

May 19, 2024

Abstract

A branch of automata theory is active automata learning, where models
for systems are created through interactions and observations. Two types of
systems learned using active automata learning are Mealy machines [11] and
learning products of DFAs [8]. In this thesis, we introduce learning Mealy
intersections. First we define what Mealy intersections are. Second, we
provide strategies to learn Mealy intersections. Finally, we apply our theory
on randomly generated automata and benchmarks implementing common
ISO standards.

Contents

1 Introduction 2

2 DFA intersections 4
2.1 Product on DFAs . 4
2.2 Learning Intersections . 7

2.2.1 Minimally adequate teacher 7
2.2.2 Learning algorithm . 9
2.2.3 Learning strategies . 12

3 Mealy intersections 15
3.1 Language of Mealy machines 15
3.2 Product on Mealy machines 16

3.2.1 Intersecting function on Mealy languages 17
3.2.2 ∩-Mealy machines . 17
3.2.3 Constructing products on Mealy machines 19

3.3 Learning Mealy Intersections 22
3.3.1 Learning Mealy machines 22
3.3.2 Learning strategies . 23

4 Experiments 28
4.1 Setup . 28
4.2 Detailed results . 30

4.2.1 Random Experiment 30
4.2.2 Benchmark Experiment 33

4.3 Summary and Discussion . 36

5 Related Work 37

6 Conclusions 38
6.1 Future work . 38

1

Chapter 1

Introduction

Automata provide a mathematical model of everyday responsive and inter-
active systems, like traffic lights, cryptographic protocols or coffee machines.

The main goal of Automata learning is creating models of black-box
systems. Within this field, a distinction is made between active and passive
learning, where interactions with the system either is or is not possible.

In passive automata learning, we are given data about the inputs and
corresponding outputs of an automata, and are tasked to create our own
automata with the same interactions. In active automata learning, we are
tasked to create a model for an automaton. Instead of receiving some data
about the automaton, we can interact with it ourselves and thus create
our own data. The most common form of active automata learning is the
Angluin style automata learning with the L∗ algorithm [2]. Since its release
in 1987, it has become the standard for active automata learning.

These learning methods can be applied in real-world instances model
checking, bug finding, minimizing code or machines, and many more [5].

This theory on learning automata can be extended by shifting our focus
from single automata to intersections of automata. Such an intersection of
automata has its relevance when finding interactions, like obtaining coffee
or sounding an alarm, which can be used in multiple environments with
different machines. A stub of this theory exists, where we learn the common
interactions of multiple Deterministic Finite Automata [8].

In the real world, we have systems modelled by DFAs alongside systems
modelled by other types of automata. One such automaton is a Mealy ma-
chine, which has interactions between the system and a user. For example, a
coffee machine filling cups with different types of coffee, depending on which
flashing buttons we pressed.

With the current theory, we can partially look at the intersections of
such interactive systems, by modelling each individual system as accepting
a single response. However, we cannot learn the common interactions over
all the possible responses from a coffee machine, because this would not be

2

DFAs, instead, it is a Mealy machine.
In this thesis, we seek to bridge this gap. Our first contribution is the

definition of intersection applied Mealy machines. Then we describe orthog-
onal strategies to learn intersections and empirically show their strengths
and weaknesses.

Our thesis is structured as follows. In Chapter 2, we introduce the
theory of intersection over DFAs and automata learning. In Chapter 3,
we define languages of Mealy machines and Mealy language intersections,
products of Mealy machines and strategies to learn intersections. In Chapter
4, we use our implementation of the strategies to learn the intersection of
both randomly generated mealy machines and benchmarks. In Chapter 5,
we briefly discuss where our research is placed in automata theory, and
specifically active automata learning. In Chapter 6, we conclude our thesis
and look for future research.

3

Chapter 2

DFA intersections

In this section, we discuss intersections and automata learning for the case
of DFAs. First, we show a definition of products over DFAs. Second, we
show a learning style to learn automata.

2.1 Product on DFAs

Before defining a product on DFAs, we first show the definition of a DFA
and its language.

Definition 2.1 (DFAs). A DFA is a tuple M = (Q, q0, F, δ, I), where

• Q is a finite set of states

• q0 ∈ Q is the initial state

• F ⊆ Q is the set of final states

• δ : Q× I → Q is a transition function

• I is the input alphabet

As we use multiple automata in the same equations, we use superscripts
to differentiate the properties of the automata. For example, QM are the
states of DFA M and δN is the transition function of DFA N .

For the remainder of this thesis, we assume we are working with a shared
input alphabet I.

The language LM of a DFA M is defined as follows.

Definition 2.2. The language LM : I∗ → {0, 1} of DFAM = (QM, qM0 , FM, δM, I)
is defined by

LM(w) = δ∗M(qM0 , w)

where δ∗M : QM × I∗ → {0, 1} is defined as

δ∗M(q, λ) = [q ∈ F]

δ∗M(q, aw) = δ∗M(δM(q, a), w)

4

If LM and LN describe the same language, then we say LM and LN

are equivalent. If we have multiple DFAs with a shared input alphabet I,
then we use them to construct new DFAs.

One method to construct new DFAs is taking their product [7]. For a
product M×N of DFAs M and N , the following should hold for all words
w ∈ I∗.

LM×N (w) ⇐⇒ LM(w) ∧ LN (w)

Definition 2.3 (product on DFAs). For DFAs M = (QM, qM0 , FM, δM, I)
and N = (QN , qN0 , FN , δN , I), we construct the product M×N as follows.

• QM×N = QM ×QN

• qM×N
0 = (qM0 , qN0)

• FM×N = {(qm, qn) ∈ QM×N |[qm ∈ FM] ∧ [qn ∈ FN]}

• δM×N ((qm, qn), i) = (δM(qm, i), δN (qn, i))

• I is the shared alphabet

Example 2.4. Let M be a DFA accepting words with an odd number of
a’s, visualised in Figure 2.1, and N a DFA accepting an even number of b’s,
visualised in Figure 2.2.

If we take the product M×N of M and N using Definition 2.3, then
we get the following visual representation in Figure 2.3.

Figure 2.1: Odd number of a’s Figure 2.2: Even number of b’s

5

Figure 2.3: Odd number of a’s and even number of b’s

Using this construction on M and N , we can distinguish four cases
where words are only accepted by M, N neither or both using the following
words.

• The word babab is neither accepted by M or N and thus not accepted
by M×N

• The word ba is accepted by M, but not N , thus not accepted by M×N

• The word baba is accepted by N , but not M, thus not accepted by
M×N

• The word ababa is accepted by both M and N and thus accepted by
M×N

Lemma 2.5. For all DFAs M and N , for all words w ∈ I∗, for all states
q ∈ QM, p ∈ QN

δ∗M×N ((q, p), w) ⇐⇒ δ∗M(q, w) ∧ δ∗N (p, w)

Proof. Base case a ∈ I.

δ∗M×N ((q, p), a)

≡ δ∗M×N (δM×N ((q, p), a), λ)

≡ [δM×N ((q, p), a) ∈ FM×N]

≡ [δM(q, a) ∈ FM] ∧ [δN (p, a) ∈ FN]

≡ δ∗M(δM(q, a), λ) ∧ δ∗N (δN (p, a), λ)

≡ δ∗M(q, a) ∧ δ∗N (p, a)

6

Inductive case aw ∈ I∗.

δ∗M×N ((q, p), aw)

≡ δ∗M×N (δM×N ((q, p), a), w)

≡ δ∗M(δM(q, a), w) ∧ δ∗N (δN (p, a), w)

≡ δ∗M(q, aw) ∧ δ∗N (p, aw)

Theorem 1 (Intersection on DFAs). For all DFAs M and N , for all words
w ∈ I∗

LM×N (w) ⇐⇒ LM(w) ∧ LN (w)

Proof.

LM×N (w)

≡ δ∗M×N (qM0 , w)

≡ δ∗M(qM0 , w) ∧ δ∗N (qN0 , w) (lemma 2.5)

≡ LM(w) ∧ LN (w)

2.2 Learning Intersections

In this section, first, we discuss Angluin style automata learning [2] applied
to DFAs. This learning style consists of two main components. The first
is a teacher and the second is a learner. Then we briefly discuss strategies
built on top of learners.

2.2.1 Minimally adequate teacher

A minimally adequate teacher, also called an oracle, can truthfully answer
two types of queries about a hidden DFA N .

The first type of query M(w), a membership query, asks if w is accepted
by M.

The second type of query E(H), a equivalence query, asks if the given
DFA H, called a hypothesis, and N have equivalent languages.

If LH and LN are equivalent, then the teacher responds with true, other-
wise the teacher produces and responds with a counterexample w, which H
or N accepts, but not both. Thus for DFAs, these queries are the following.

M(w) = [w ∈ LN]

E(H) = [LH = LN]

7

Example 2.6 (DFA queries). Let Figure 2.1 be the hidden automaton N .
Then

• The membership query M(a) has the response true.

• The membership query M(aa) has the response false.

• The equivalence query with Figure 2.3 as hypothesis has a word w as
response, because the automata do not describe equivalent languages. A
response w could be ba, as this is accepted by N , but not our hypothesis.

• The equivalence query with Figure 2.4 as hypothesis has the response
true. The languages of the hypothesis and N are equivalent, even
though they do not have the exact same states and transitions.

Figure 2.4: Hypothesis for odd number of a

As discussed by Angluin, finding counterexamples using the minimally
adequate teacher concept can be problematic in practice [2]. In active au-
tomata learning, the teacher does not have a description of the states and
transitions of the hidden automaton. It does not have a precise description
of the hidden machine, and thus has to make a guess if the hypothesis is
equivalent based on testing

We have multiple approaches to find counterexamples.
We could use a breadth-first method given a maximum input length of n,

giving both the hypothesis and hidden machine every possible combination
of inputs of length n. This would always result in correct answers, if the
hidden automaton is smaller than n states. A downside of this method
is that it is very expensive, especially because we do not know n and the
worst-case for the product is quite large. For DFAs, the worst case product

8

of DFAs M and N is at least |M| · |N |1.
Another method is the random walk method. In this method, the teacher

starts an input sequence, also called a walk, from the initial state. It chooses
a random input and compares the input of the hypothesis and the hidden
automaton. For each input, there is a given chance the teacher resets both
machines, and starts a new walk from the initial state. This ends either
when a given number of inputs have occurred or a counterexample is found.

A more sophisticated approach is the RandomWMethod, which is a
randomised version of the Wmethod described by Chow [4]. The Ran-
domWMethod is given a number of walks per state and the length of each
walk n. First it computes the prefixes, also known as access sequences, for
each state.2 Then, for each prefix, we perform a given number of walks3,
consisting of the prefix, followed by n random inputs, followed by a random
distinguishing sequence from the characterisation set of the hypothesis.

The first advantage of this method, is its dependency on the size of
the hypothesis instead of a guess for the hidden automaton. As long as
counterexamples are found, this method can learn large automata without
the need for an upper bound of states. The second advantage is that repeated
validation of a single state is prevented, making it less expensive to test.
However, a disadvantage of any randomness such as the RandomWMethod,
is that states can still be missed by chance.

2.2.2 Learning algorithm

The second part of Angluin style learning is the learner. This learner can
be a learning algorithm, as described by Angluin [2].

The goal of the learner is to learn the hidden automaton. It can re-
ceive information about this automaton using the available membership and
equivalence queries from the teacher.

The standard learning algorithm to achieve this goal, L∗, described by
Angluin, makes use of an observation table, where the outcomes of mem-
bership queries are kept.

In the observation table, we have prefixes S, SI ∈ I∗ representing states,
and suffixes E, representing distinguishing sequences. For each prefix s ∈
S + SI, row(s) : E → {0, 1} with row(s)(e) = M(se). row(q) = row(p) if
for all e ∈ E, row(q)(e) = row(p)(e).

To create a hypothesis from this observation table, the observation table
has to be closed and preferably consistent.

The table is closed if for all q ∈ SI, there exists some p ∈ S such that
row(q) = row(p). If the table is not closed, we add q to S. The table

1For example if the languages of M and N have the languages {x ∈ Z | x ≡ 1 mod p}
with p = |M| for M and p = |N | for N , and |M| and |N | are relatively prime.

2Every unique state has an unique prefix.
3A total number of walks for each prefix for the entire learning process

9

is consistent if for all q, p ∈ S, if row(q) = row(p), then for all i ∈ I,
row(qi) = row(pi). If the table is not consistent, then for some e ∈ E
with row(qi)(e) ̸= row(pi)(e), we add ie to E , such that we can differentiate
states q and p. If the table is not consistent or closed, then either a prefix
or suffix is added and membership queries are given to the teacher until the
table is filled.

If we can construct a hypothesis, then we ask an equivalence query. If the
response is true, then we are finished, otherwise we add the counterexample
and its prefixes to S and repeat this process.

Example 2.7 (Example run of L∗). Let M be the hidden DFA from Fig-
ure 2.6. Then our initial observation table would be Table 2.14.

λ

λ 0

a 1

b 0

Table 2.1: Initial observation table

This observation table is not closed, because row(a) ̸= row(λ), thus we
add a to our states and use membership queries to fill the empty cells, re-
sulting in Table 2.2.

λ

λ 0

a 1

b 0

aa 1

ab 1

Table 2.2: Second observation table

This observation table is both closed and consistent, thus we create our
hypothesis as shown in Figure 2.5 and use an equivalence query with this
hypothesis.

4The horizontal line between prefixes separates S from SI.

10

Figure 2.5: First hypothesis

The teacher produces and returns a counterexample, for example aaba.
We add a, aa, aab and aaba to our states and update our observation table
as shown in Table 2.3.

λ

λ 0

a 1

aa 1

aab 1

aaba 0

b 0

ab 1

aaa 0

aabb 1

aabaa 1

aabab 0

Table 2.3: Third observation table

Using this table, we can create the hypothesis as shown in Figure 2.6.
The equivalence query of this hypothesis results in true, thus this hypothesis
is equivalent to the hidden automaton M.

11

Figure 2.6: DFA accepting the languages |w|a ≡ 2 mod 3 and |w|a ≡ 1
mod 3

2.2.3 Learning strategies

As it is possible to learn DFAs, it could also be possible to learn constructions
built on DFAs, assuming we can produce a DFA using this construction. For
these constructions, we assume the learner has access to membership queries
for any combination of hidden automata.

If we want to learn the product of DFAs, then some strategies of querying
the DFAs could be more efficient than others.

Three of such strategies are described by Junges and Rot [8] for products
of DFAs.

If our goal is to learn the product of DFAs N1,N2 andN3, then we learn
the following language, where LNi is the language associated with DFA Ni.

LN1 ∩ LN2 ∩ LN3 (2.1)

The first of the strategies is the independent strategy, where the inter-
section is avoided by learning the individual automata and taking the prod-
uct afterwards. The membership and equivalence queries are the following,
where i is the ith DFA to be learned.

Mi(w) = [w ∈ LNi]

Ei(Hi) = [LHi = LNi]

We learn the intersection of equation 2.1 with the independent strategy using
the following steps.

1. We learn LN1 .

2. We learn LN2 .

12

3. We learn LN3 .

4. We take H1 ×H2 ×H3 as the product of the hypotheses H1,H2 and
H3.

5. H1 ×H2 ×H3 is the final product.

The second strategy is the word-by-word strategy, which queries every
machine at once, as if it were querying the final product. To accomplish
this, it uses the following queries.

M(w) =
∧
i

Mi(w)

E(H) = [LH =
⋂
i

LNi]

We learn the intersection of equation 2.1 with the word-by-word strategy
using the following steps.

1. We learn LN1 ∩ LN2 ∩ LN3 by querying each input to every machine.

2. The hypothesis H is the final product.

Lastly there is the machine-by-machine strategy, which learns the inter-
section iteratively.

Using this strategy, we first learn a single language L1 from the inter-
section, then we take the next language L2 from the intersection and learns
L1∩L2, and keep adding each individual language to the learned intersection
until the entire intersection is learned.

While learning these intermediate intersections, we know that if a word
w is not in L1 ∩ ... ∩ Li, then it is not in L1 ∩ ... ∩ Li ∩ Li+1. Thus in such
cases, we do not have to use the membership query for word w, reducing
the number of queries required to learn the intersection L1 ∩ L2 ∩ L3.

Learning the intersection in this manner uses the following queries.

M≤i(w) =

i∧
1

Mi(w)

Ei(Hi) = [LHi =

i⋂
1

LNi]

We learn the intersection of equation 2.1 with the machine-by-machine strat-
egy using the following steps.

1. We learn L1.

13

2. We learn L1 ∩ L2 by testing each word with H1. If the response is
true, then we query the word to the teacher, otherwise we write down
false as the response.

3. We learn L1∩L2∩L3 by testing each word with H2. If the response is
true, then we query the word to the teacher, otherwise we write down
false as the response.

4. The hypothesis H3 is the final product.

14

Chapter 3

Mealy intersections

In this section, we introduce Mealy machines and their language. Then
we provide the definitions of intersections on words, languages and Mealy
machines. Products on Mealy machines require specific properties, thus we
introduce ∩-Mealy machines. Finally we adapt learning strategies to learn
products of Mealy machines.

3.1 Language of Mealy machines

In this thesis, we use a notion of languages for Mealy machines. We use these
languages to implement the concept of giving input words and receiving
output words from Mealy machines.

If we have a Mealy machine M, then we have the languages M, LM,
such that LM and M produce an equal output for any input symbols.

Before formally defining the language of Mealy machines, we show the
definition of a Mealy machine.

Definition 3.1 (Mealy machines). A Mealy machine is a tuple M = (Q, q0, I, O, δ, λ),
where

- Q is a finite set of states

- q0 ∈ Q is the initial state

- I is the input alphabet

- O is the output alphabet

- δ : Q × I → Q is a transition function, determining the next state of
the machine, based on the current state and input

- λ : Q× I → O is an output function, determining the returned output,
based on the current state and input

15

The transition and output function for states q, q′ ∈ Q with input i ∈ I
and output o ∈ O are denoted as δ(q, i) = q′ and λ(q, i) = o respectively. A

visual representation of these function is q
i/o→ q′.

Now that we have shown the definition of a Mealy machine, we use the
properties of Mealy machines to formally define a language as follows.

Definition 3.2 (Language of Mealy machines). The language LM : I∗ →
O∗ of Mealy machine M = (QM, qM0 , IM, OM, δM, λM) is defined by

LM(w) = λ∗M(qM0 , w)

where λ∗M : QM × I∗ → O∗ is defined as

λ∗M(q, λ) = λ

λ∗M(q, aw) = λM(q, a)λ∗M(δM(q, a), w)

Remark 3.3. A consequence of using languages as defined in Definition 3.2,
is that multiple Mealy machines can have the same language, as it does not
require the Mealy machine to be minimal.

3.2 Product on Mealy machines

Products on automata are dependent on the definition of said automata.
As we have seen in Section 2.1, the definition of a product on DFAs is

self-evident. Because DFAs accept words based on the final states, there
exists little room for interpretation about what it means for an automaton
to be the product of other DFAs.

This is not the case for more complex automata, like the Mealy machine,
and thus we first define what it means for an automaton to be the product
of Mealy machines.

To help ourselves understand the meaning of intersections, we use the
following equation to define products of automata.

LM1 ∩ LM2 = LM1×M2 (3.1)

Using this equation, we have to define two functions.

1. ∩, the intersection of Mealy languages.

2. M1 ×M2, the product such that the equation 3.3 holds.

Remark 3.4. In this thesis, we mainly show the products of two or three
automata. However, this concept can be applied to more automata by taking
the product of products. The same holds for the intersection of languages.

16

3.2.1 Intersecting function on Mealy languages

Unlike the intersections described in Section 2.1, an intersection on words
can have multiple interpretations.

In this thesis, we interpret an intersection w ∩ v on the words w, v ∈ O∗

as the longest common prefix of w and v, followed by special symbols θ, such
that |w ∩ v| = max(|w|, |v|).

Definition 3.5 (Intersection on Mealy words). For words w, v ∈ O∗ of
equal length, the intersection ∩ : O∗ ×O∗ → O∗{θ}∗ is defined as

w ∩ v = lcp(w, v)θmax(|w|,|v|)−|lcp(w,v)|

Where lcp is the longest common prefix of w and v.

Remark 3.6. In this thesis, we generally give a single input to multiple
Mealy machines. With the definition of Mealy machines as in Definition 3.1,
we have that w and v as in Definition 3.5 are generally of an equal length.
In such cases, we use the following equation instead.

w ∩ v = lcp(w, v)θ|w|−|lcp(w,v)|

Definition 3.7 (Intersection on Mealy languages). For Mealy languages
LM, LN and word w, the intersection ∩ : I∗ → O∗{θ}∗ is defined as

LM ∩ LN (λ) = λ

LM ∩ LN (w) = LM(w) ∩ LN (w)

Example 3.8. Let w be a word with |w| = 5 such that LM(w) = abaaa
and LN (w) = abbba. Then

LM ∩ LN (w) = LM(w) ∩ LN (w)

= lcp(LM(w),LN (w))θ|w|−|lcp(LM(w),LN (w))|

= lcp(abaaa, abbba)θ5−|lcp(abaaa,abbba)|

= abθ5−|ab|

= abθθθ

Thus the intersection of abaaa and abbba is abθθθ.

3.2.2 ∩-Mealy machines

The primary automata model we use, beside the classical Mealy machine, is
the ∩-Mealy machine.

A ∩-Mealy machine is an extension of the classical Mealy machine de-
scribed in Definition 3.1. There are two additions which differentiates a
∩-Mealy machine from a classic Mealy machine.

17

The first is a special symbol θ ∈ O, which indicates that every following
input character will have θ as output.

The second addition is a sink ρ. For any input given to a ∩-Mealy
machine, if the output is θ, then the transition function must result in ρ.

Thus we formally define a ∩-Mealy machine as follows.

Definition 3.9 (∩-Mealy machines). A ∩-Mealy machine is a Mealy ma-
chine M = (Q, q0, δ, λ), where

- Q is a finite set of states, with ρ ∈ Q

- q0 is the initial state

- δ : Q× I → Q is a transition function, with

• for all q ∈ Q and i ∈ I, if λ(q, i) = θ, then δ(q, i) = ρ

- λ : Q × I → (O + {θ}) is an output function, with for all i ∈ I,
λ(ρ, i) = θ

Remark 3.10. Definition 3.9 does not require every transition to ρ to have
an output θ. In figure 3.1, we have a Mealy machine, which adheres to
the requirements of a ∩-Mealy machine. However, this is not a minimal
machine. Every transition from q1 results in the output θ, thus for every
state q ∈ Q and input i ∈ I, transitions δ(q, i) = q1 could be replaced by
δ(q, i) = ρ without changing the language of the automaton, resulting in the
minimal automaton seen in Figure 3.2.

Figure 3.1: Non-minimal ∩-Mealy
machine

Figure 3.2: Minimal ∩-Mealy ma-
chine

18

3.2.3 Constructing products on Mealy machines

Lastly, we have to define the product construction, such that the language
of this product is equivalent to the intersection of the languages of the indi-
vidual Mealy machines.

We construct this using a similar to Definition 2.3.

Definition 3.11. For ∩-Mealy machines M and N , the product M×N
as

• QM×N = QM ×QN + ρ

• qM×N
0 = (qM0 , qN0)

• λM×N (ρ, i) = θ

• λM×N ((qm, qn), i) =

λM(qm, i) if λM(qm, i) = λN (qn, i)

θ otherwise

• δM×N (ρ, i) = ρ

• δM×N ((qm, qn), i) =

ρ if λM×N ((qm, qn), i) = θ

(δM(qm, i), δN (qn, i)) otherwise

Example 3.12 (Product on Mealy machines). Let the Mealy machine from
Figure 3.3 be M and Figure 3.4 be N .

M and N differ on two inputs. The first is b in state q0 and the second
is a in state q1. From Definition 3.11, we have that these transitions should
result in an output θ and the state ρ.

From M and N , we can observe that it would not be possible to reach
the combination of states (q0, q1) or (q1, q0), thus these would not appear in
the product of M and N .

With these observations, if we take the product of M and N using Def-
inition 3.11, we create the product shown in Figure 3.5.

19

Figure 3.3: Small Mealy machine
Figure 3.4: Small Mealy machine
with changed outputs

Figure 3.5: Product of small Mealy machines

Lemma 3.13. For all ∩-Mealy machines M and N , For all words w ∈ I∗,
states q ∈ QM and p ∈ QN

λ∗M×N ((q, p), w) = λ∗M(q, w) ∩ λ∗N (p, w)

Proof. Base case a ∈ I.

λ∗M×N ((q, p), a)

= λM×N ((q, p), a)λ∗M×N (δM×N ((q, p), a), λ)

= λM×N ((q, p), a)

20

Case λM(q, a) = λN (p, a).

λM×N ((q, p), a)

= λM(q, a)

= lcp(λM(q, a), λM(q, a))θ|λ
M(q,a)|−|lcp(λM(q,a),λM(q,a))|

= lcp(λM(q, a), λN (p, a))θ|λ
M(q,a)|−|lcp(λM(q,a),λN (p,a))|

= λM(q, a) ∩ λN (p, a)

Case λM(q, a) ̸= λN (p, a).

λM×N ((q, p), a)

= θ

= lcp(λM(q, a), λN (p, a))θ|λ
M(q,a)|−|lcp(λM(q,a),λN (p,a))|

= λM(q, a) ∩ λN (p, a)

Inductive case aw ∈ I∗.

λM×N ((q, p), aw)

= λM×N ((q, p), a)λ∗M×N (δM×N ((q, p), a), w)

Case λM(q, a) = λN (p, a).

λM×N ((q, p), a)λ∗M×N (δM×N ((q, p), a), w)

= λM(q, a)λ∗M×N (δM×N ((q, p), a), w)

= lcp(λM(q, a), λM(q, a))λ∗M×N (δM×N ((q, p), a), w)

= lcp(λM(q, a), λN (p, a))(λ∗M(δ(q, a), w) ∩ λ∗N (δ(p, a), w))

= lcp(λM(q, a), λN (p, a))lcp1θ
|w|−|lcp1|

= lcp2θ
|aw|−|lcp2|

= lcp(λ∗M(q, aw), λ∗N (p, aw))θ|aw|−|lcp(λ∗M(q,aw),λ∗N (p,aw))|

= λ∗M(q, aw) ∩ λ∗N (p, aw)

where

lcp1 = lcp(λ∗M(δM(q, a), w), λ∗N (δN (p, a), w))

lcp2 = lcp(λM(q, a)λ∗M(δM(q, a), w), λN (p, a)λ∗N (δN (p, a), w))

Case λM(q, a) ̸= λN (p, a).

λM×N ((q, p), a)λ∗M×N (δM×N ((q, p), a), w)

= θλ∗M×N (ρ, w)

= θaw

= lcp(λ∗M(q, aw), λ∗N (p, aw))θ|aw|−|lcp(λ∗M(q,aw),λ∗N (p,aw))|

= λ∗M(q, aw) ∩ λ∗N (p, aw)

21

Theorem 2 (Product on Mealy machines). For all ∩-Mealy machines, for
all words w ∈ I∗

LM×N (w) = LM(w) ∩ LN (w) (3.2)

Proof.

LM×N (w)

= λ∗M×N ((qM0 , qN0), w)

= λ∗M(qM0 , w) ∩ λ∗N (qN0 , w) (lemma 3.13)

= LM(w) ∩ LN (w)

3.3 Learning Mealy Intersections

In this section, we briefly discuss Angluin style learning in the context of
Mealy machines. Then we discuss strategies over learning algorithms to
learn products of Mealy machines.

3.3.1 Learning Mealy machines

In the context of Mealy machines, the minimally adequate teacher has access
to both membership and equivalence queries. However, the membership
queries for Mealy machines differ in the exact responses.

For a Mealy machine N , membership queries, also known as output
queries [11] [12], ask what response is given for w ∈ I∗ as input to N , thus
they are defined as follows.

M(w) = LN (w)

For equivalence queries, there is no difference between the definition in
the context of DFAs or Mealy machines. In both contexts, the query asks
if the given hypothesis has the same language as the hidden automaton N .
Thus for Mealy machines, we use the same definition as in Section 2.2.1.

E(H) = [LH = LN]

For learners operating on a structure like an observation table in the L∗

algorithm, we keep track of each output symbol for every input symbol. So
instead of an observation table filled with 0’s and 1’s, we have a table with
various output symbols, such as shown in Table 3.1.

22

a b

λ A B

a A C

b A B

aa A B

ab A C

Table 3.1: Example observation table

3.3.2 Learning strategies

In this section we discuss the three learning strategies mentioned in Sec-
tion 2.2.3 applied to Mealy machines with examples showing their strengths.

The first strategy is the independent, the second is the word-by-word
and the third is the machine-by-machine strategy.

If we are learning the product of n Mealy machines, then we are learning
the following intersection.

LN1 ∩ ... ∩ LNn = LN1×...×Nn (3.3)

The strategies learn the intersection on the left part of equation 3.3. If
we apply Theorem 2, we have that the Mealy machine N1 × ... ×Nn, with
LN1×...×Nn = LN1 ∩ ... ∩ LNn , is the product of N1, ..., Nn.

The strategies act on the construction found in the left part of the equa-
tion 3.3 to learn the automaton on the right part.

Independent strategy

The independent strategy first learns the individual languages LN1 , ...,LNn

and then takes their intersection. From Definition 3.11, we can produce a
product of Mealy machines. Thus to learn the intersection, it suffices to
learn each individual machine.

To learn each machine, we use the following membership and equivalence
queries.

Mi(w) = LNi(w)

Ei(Hi) = [LHi = LNi]

The membership query simply asks the teacher to return the output to
a specific numbered hidden machine Ni, and the equivalence query asks if
the current hypothesis for machine Ni produces an equivalent language to
Ni.

Example 3.14 (Extreme case for independent strategy). Let M and N be
the automata represented by Figure 3.6 and Figure 3.7 respectively.

23

For M and N , usually every a has output A and b output B. However
M gives output A on the third occurring b and N gives output B on the third
a. This results in there always being a difference on the third occurrence of
either a or b if we were to give a word to both M and N .

The minimised product of M and N is shown in Figure 3.8. We can
see that M × N is larger than the individual automata, thus it is likely to
be more efficient to learn M and N individually.

This difference in states can be even more extreme as we increase the
size of M an N , with their product growing in an exponential manner.

Figure 3.6: Mealy machine with
the third A flipped

Figure 3.7: Mealy machine with
the third B flipped

24

Figure 3.8: Product of Figure 3.6 and 3.7

LN1 ∩ ... ∩ LNn = LN1×...×Nn (3.3)

Word-by-word strategy

The word-by-word strategy learns the intersection, however, instead of learn-
ing the individual languages, it learns the entire intersection directly.

Learning this intersection makes use of Definition 3.5 such that the mem-
bership queries are the following.

M1,...,n(w) = lcp(LN1(w), ...,LNn(w))θ
|w|−|lcp(LN1

(w),...,LNn (w))|

These membership queries ask the teacher to return the output of the
machines Ni as if the teacher would first have taken the intersection.

If the observation table is consistent and closed, then it creates an hy-
pothesis H1,...,n and queries the following equivalence query.

E1,...,n(H1,...,n) = [LH1,...,n =
n⋂

i=1

Li]

Example 3.15 (Extreme case for word-by-word strategy). Let M be Fig-
ure 3.1 and N Figure 3.7. In the initial state, M and N have different
outputs for each input. Thus the language of their product consists only of

25

θ’s. Taking the product of these machines would result in a trivial ∩-Mealy
machine with Q = {ρ}. Learning this single state Mealy machine would
obviously be more advantageous than learning M and N individually.

Figure 3.9: Basic Mealy machine

Machine-by-machine strategy

Finally, we have the machine-by-machine strategy. This learns the left part
from equation 3.3 in an iterative manner. It first learns LN1 . Then it learns
LN1 ∩ LN2 . Then it learns LN1 ∩ LN2 ∩ LN3 , adding a language to the
intersection, until the entire intersection is learned.

The membership query is as follows.

M1,...,i+1(w) = LNi+1(w)

Because we have already learned the intersection up to machine Ni, we
can first produce LN1,...,i(w) ourselves. If this results in θ, then we already
know what the intersection would produce, and thus do not have to query
the teacher. If it results in a normal output, then we only have to query
machine Ni+1, because we can take the intersection ourselves.

The equivalence queries used for this strategy with 1 ≤ i ≤ n are as
follows.

E1,...,i+1(H1,...,i+1) = [LH1,...,i+1 = LN1,...,i ∩ LNi+1]

Because the strategy makes use of an order in which machines are learned,
it can have large effects on the amount of states we learn.

Example 3.16 (Order of machines). Let M and N be the machines from
Example 3.14, and P be a Mealy machines of which an intersections with
M or N would result in a trivial ∩-Mealy machine. The following languages
are equivalent, because the order of words over which we take an intersection
does not matter.

LM ∩ LN ∩ LP = LM ∩ LP ∩ LN (3.4)

We could learn the left part of this equation, resulting in the following steps.

26

1. LM is learned.

2. LM∩LN is learned, from Example 3.14, this intersection is quite large.

3. A trivial ∩-Mealy machine is learned.

However, learning the right part is favourable with the following steps.

1. Again, LM is learned.

2. A trivial ∩-Mealy machine is learned.

3. Because we query a trivial machine, we do not have to use membership
queries to learn our final intersection.

Thus the order in which the intersection is learned can have a large effect
on the amount of learning we have to do.

27

Chapter 4

Experiments

In this section, we apply the three strategies defined in Section 3.3.2 to learn
the product of various Mealy machines. First we discuss the setup and our
metrics. Then, for each of the experiments, we provide details about the ex-
periments, followed by our data and observations of the experiment. Lastly
we provide more general observations and a discussion of the experiments.

4.1 Setup

For our experiments, we use our implementation1 of the three strategies2

mentioned in Chapter 3. As the learner, we make use of the aalpy imple-
mentation of L∗ [10].

The teacher uses the RandomWMethod3 strategy for our equivalence
queries. This method checks multiple times for each state in the hypothesis,
if after a given number of random inputs, the state is in the hypothesis. If
this is not the case, then a counterexample has been found.

We chose this equivalence query method, because the cost of the equiv-
alence queries scales with the number of states in our hypotheses instead
of the maximum depth or states possible states the product can have. As
we have seen from Example 3.14, products can be both very small and very
large. Methods based on the maximum number of states would require the
teacher to verify that a given hypothesis is equivalent up to the maximum
number of states, even though the products we are learning are generally
small.

This choice for the equivalence queries has a negative side effect. The
teacher can respond that a given hypothesis is correct while it is not. In-
creasing the number of times we search for a counterexample per state,
reduces the likelihood of these incorrect results. In this particular setting,

1Using Python 3.11
2Can be found at https://github.com/JulianPut/learning-mealy-intersections
3With min(10 ·#I, 100) walks per state and 10 inputs per walk

28

increasing the length of the randomly generated inputs is likely less effective
due to the existence of the sink.

After each experiment, we collect the following data from the learning
process.

• #MQ, the number of membership queries requested by the learner.

• #EQ, the number of equivalence queries requested by the learner.

• #StepsMQ, the number of input symbols performed by the teacher for
the membership queries. In general, this is the length of our member-
ship query. This is the main metric we use for determining efficiency,
as this is the total cost of receiving information about our hidden
product.

• #StepsEQ, the number of input symbols performed by the teacher for
the equivalence queries.

• #S, the number of states learned by the word-by-word strategy, as
learning using this strategy directly produces the product.

• %CP , the percentage of cases where the learner learns the correct
product of automata. As we are only working with minimal automata,
we can assume that if the learner has learned the correct automaton,
then the automaton is equivalent to the product.

Because each strategy learns the intersection slightly differently, we count
the data as follows.

For the independent strategy, for each metric, we sum the data to learn
each individual automaton. For example, if we learn the product of au-
tomata M and N requiring 20 and 30 membership queries respectively,
then #MQ is 50.

For the word-by-word strategy, the teacher computes the membership
queries lazily. Generally, this results in a lower #Steps for each query.
Instead of first computing the entire longest common prefix, it checks for
each machine if the first output is the same, then the next input, until
outputs are different, or every input is processed. For example, if we have
n machines and a membership query of length k, then the number of steps
performed could be 2, if the first two machines have different outputs for the
first input symbol, k times n, if every machine produces an equal output for
the entire word, or somewhere in between if the machines have a partially
equal output.

For the machine-by-machine strategy, we sum the data of each interme-
diate learned intersection. The learner first queries the automaton we have
already learned. If one of the symbols results in θ, then we know the follow-
ing input symbols would result in θ in the product, thus we do not have to
query the teacher.

29

4.2 Detailed results

In this section, we provide the experiments and results from applying the
theory to learn the product of Mealy machines.

We have chosen to perform two experiments.
The random experiment is performed on randomly generated mealy ma-

chines. As generating random mealy machines is quite fast, we can learn a
lot more products than if we have to find real benchmarks.

However, in practice we do not desire to learn the product of random
mealy machines, thus in addition to our random experiment, we have a
benchmarks experiment. In this experiment, we learn the product of ex-
isting benchmarks4. These benchmarks are inferred by applying learning
algorithms to real world applications.

4.2.1 Random Experiment

For our first experiments, we learn the products of multiple randomly gen-
erated mealy machines.

These automata are generated using the aalpy library5 given the follow-
ing variables.

• The number of machines to be generated, #M .

• The number of states each generated machine should have, #states.

• The input alphabet. The exact used symbols do not matter, thus in
our data we use #I as the size of the input alphabet.

• The output alphabet. For our generated machines, we use {a, b} as
our output alphabet.

• The distribution of output symbols in the generated output function,
Or. Given a 4:1 distribution, we can expect that the output function
consists of 80% a’s and 20% b’s.

Example 4.1 shows such a generated Mealy machine using these vari-
ables.

Example 4.1 (Generated mealy machine). A generated random mealy ma-
chines using aalpy with 5 states, {0, 1} as input and {a,b} as output alphabet
with an 4:1 distribution in the output function.

4Selection taken from https://automata.cs.ru.nl.
5Documentation can be found at https://des-lab.github.io/AALpy/.

30

Figure 4.1: Generated mealy machine

We can observe a bias to the output a in Figure 4.1, this is due our
introduced distribution in the output function

Our first run of variables uses 4 machines, 5 states per machine, 3 input
symbols and a 1:1 distribution. Then we have runs which increase one of
these variables. Our final runs have a difference in the number of states
for each individual machine. Each run is performed 100 times and has its
average data taken.

31

Table 4.1: learning random intersections
Variables Independent Word-By-Word Machine-By-Machine

#M #states #I Or #MQ #StepsMQ #EQ #StepsEQ #Stepstotal %CP #MQ #StepsMQ #EQ #StepsEQ #Stepstotal %CP #MQ #StepsMQ #EQ #StepsEQ #Stepstotal %CP #S

4 5 3 1:1 279 5631 8 4693 10324 100 16 226 1 301 527 98 308 4030 7 5072 9102 98 2

4 5 3 2:1 290 5737 8 4739 10476 100 47 1682 1 738 2420 87 476 6092 8 7201 13293 88 4

4 5 3 4:1 331 6070 10 4844 10914 99 639 35139 3 5122 40261 64 1572 19605 15 15789 35394 67 18

4 5 3 8:1 368 6356 12 4924 11280 96 3248 186182 9 22460 208642 29 5301 70339 27 42761 113100 27 61

4 5 3 16:1 393 6573 13 4992 11565 95 5224 295932 13 36178 332110 13 7916 104307 34 59895 164202 9 94

4 5 3 32:1 406 6726 13 5048 11774 97 8374 483126 16 54304 537430 19 11465 156048 38 82194 238242 8 129

4 5 4 4:1 482 7771 9 6178 13949 100 3572 183755 8 23391 207146 34 6595 77204 24 50750 127954 31 58

4 5 5 4:1 650 9580 8 7564 17144 100 11736 531245 13 60838 592083 17 18580 195584 32 110534 306118 15 109

4 5 6 4:1 852 11473 7 8954 20427 100 31023 1279265 21 133768 1413033 7 40437 386112 40 201261 587373 8 184

4 6 3 4:1 439 7810 12 6037 13847 100 1433 93704 5 10627 104331 67 3277 46395 21 29432 75827 64 26

4 8 3 4:1 656 11389 15 8469 19858 98 4223 286270 7 25117 311387 50 10102 151830 32 68937 220767 48 68

4 10 3 4:1 914 15278 18 10949 26227 100 19513 1620200 12 84374 1704574 42 30373 536011 45 158924 694935 42 166

6 5 3 16:1 590 9867 19 7492 17359 96 11099 1213224 13 63130 1276354 27 27051 415294 60 168949 584243 22 160

8 5 3 16:1 786 13148 25 9982 23130 93 7349 1344294 7 42062 1386356 52 42808 751888 76 254532 1006420 45 160

10 5 3 16:1 983 16452 32 12479 28931 90 1469 319440 3 9420 328860 69 45902 842344 82 278376 1120720 68 60

4 (3, 5, 7, 11) 3 1:1 419 8160 9 6501 14661 100 17 279 1 310 589 100 191 2214 5 3461 5675 100 1

4 (11, 7, 5, 3) 3 1:1 420 8163 9 6495 14658 100 19 325 1 342 667 98 958 14471 11 12776 27247 97 2

6 (3, 5, 7, 11, 13, 17) 3 1:1 1036 19397 18 14794 34191 100 12 136 1 208 344 100 215 2204 7 3874 6078 100 1

6 (17, 13, 11, 7, 5, 3) 3 1:1 1004 19225 17 14779 34004 99 12 132 1 211 343 100 2918 53223 17 33200 86423 100 1

3 (2, 2, 20) 2 16:1 513 9583 9 5416 14999 94 46 1895 1 777 2672 79 83 1309 3 1573 2882 76 6

3 (3, 3, 20) 2 16:1 539 10044 11 5798 15842 95 269 12110 3 2831 14941 57 307 4621 7 4031 8652 55 18

From the first three rows of Table 4.1, we observe that the increase
in their respective variables results in an increase in the number of states
in the final product, with as consequence that both the Word-By-Word
and Machine-By-Machine strategies have a worse efficiency compared to the
Independent strategy.

From the fourth group, we observe that an increase in the amount of
machines can cause a decrease in the size of the product, resulting in the
word-by-word strategy performing better than the independent strategy.

In the fifth group, we change the order in which we learn automata, from
either small to large or large to small automata. We can observe from this
group that the order from small to large is favourable in the learning process
using the machine-by-machine strategy.

4.2.2 Benchmark Experiment

In the second experiment, we learn the products of benchmarks implement-
ing the same model.

In Table 4.2, the individual benchmarks for each model is listed, together
with its minimal size (#S).

The benchmarks listed are produced by using model learning to learn
the models and afterwards model checking was used to verify that these
protocols follow their respective ISO standard. For example, the MAESTRO
benchmarks are inferred by Aarts, de Ruiter and Poll [1] and the TCP
benchmarks by Fiterau -Brostean, Janssen and Vaandrager [6]6.

The benchmarks are listed in the order we learn them, which can have
an impact on the number of steps and queries performed by both the word-
by-word and machine-by-machine strategy.

The input alphabet of each benchmark is not necessarily equivalent to
other versions of the same model. For our product, the input alphabet is the
union of the input alphabet of each individual benchmark. If we query an
input to a machine which does not recognise this input, then θ is returned.

For each model, we learn the product of the benchmarks once.

6More information can be found at automata.cs.ru.nl

33

Table 4.2: Model benchmarks part 1

Models benchmarks #S

MasterCard
1 learnresult MasterCard fix 5

10 learnresult MasterCard fix 6

MAESTRO

4 learnresult MAESTRO fix 6

ASN learnresult MAESTRO fix 6

Rabo learnresult MAESTRO fix 6

Volksbank learnresult MAESTRO fix 7

SecureCode

4 learnresult SecureCode Aut fix 4

ASN learnresult SecureCode Aut fix 4

Rabo learnresult SecureCode Aut fix 6

QUICprotocol
QUICprotocolwith0RTT 7

QUICprotocolwithout0RTT 5

SSH

BitVise 66

DropBear 17

OpenSSH 31

TCP client

TCP FreeBSD Client 12

TCP Linux Client 15

TCP Windows8 Client 13

TCP server

TCP FreeBSD Server 55

TCP Linux Server 57

TCP Windows8 Server 38

GnuTLS client full
GnuTLS 3.3.8 client full 15

GnuTLS 3.3.12 client full 9

GnuTLS client regular
GnuTLS 3.3.8 client regular 11

GnuTLS 3.3.12 client regular 7

GnuTLS server full
GnuTLS 3.3.8 server full 16

GnuTLS 3.3.12 server full 9

GnuTLS server regular
GnuTLS 3.3.8 server regular 12

GnuTLS 3.3.12 server regular 7

OpenSSL client

OpenSSL 1.0.1g client regular 6

OpenSSL 1.0.1j client regular 10

OpenSSL 1.0.1l client regular 6

OpenSSL 1.0.2 client regular 6

OpenSSL server

OpenSSL 1.0.1g server regular 7

OpenSSL 1.0.1j server regular 16

OpenSSL 1.0.1l server regular 11

OpenSSL 1.0.2 server regular 10

TLS RSA BSAFE server

RSA BSAFE C 4.0.4 server regular 6

RSA BSAFE Java 6.1.1 server regular 9

X-ray-system-PCS

learnresult1 7

learnresult3 6

learnresult4 6

learnresult5 8

learnresult6 8

34

Table 4.3: learning benchmarks part 1

Models algorithm #MQ #StepsMQ #EQ #StepsEQ #Stepstotal %CP #S

Mastercard

idp 2330 18253 2 9245 27498 100

6wbw 1365 13911 1 4896 18807 100

mbm 2505 15390 2 9037 24427 100

MAESTRO

idp 4956 41786 4 21542 63328 100

10wbw 1974 51526 1 9105 60631 100

mbm 5544 42349 4 24388 66737 100

SecureCode

idp 2961 22741 3 11585 34326 100

5wbw 1140 18381 1 3947 22328 100

mbm 2736 17449 3 10338 27787 100

QUICprotocol

idp 294 5262 3 4167 9429 100

10wbw 297 5688 2 3794 9482 35

mbm 495 6235 4 6355 12590 18

SSH

idp 22537 218248 6 81361 299609 1

17wbw 6388 115372 1 12733 128105 0

mbm 14214 131586 5 60399 191985 0

TCP client

idp 4035 52275 4 33882 86157 14

16wbw 1789 43437 2 13856 57293 48

mbm 5022 50055 7 39178 89233 12

TCP server

idp 33948 500452 26 170190 670642 0

52wbw 6635 177457 5 31772 209229 0

mbm 39882 536644 23 186662 723306 0

GnuTLS client full

idp 1394 11808 2 7257 19065 12

10wbw 867 12219 1 4504 16723 16

mbm 1492 11241 2 7697 18938 1

GnuTLS client regular

idp 954 13801 2 9889 23690 100

3wbw 374 2254 1 2154 4408 100

mbm 872 8098 2 7353 15451 100

GnuTLS server full

idp 2876 30414 3 18035 48449 35

10wbw 1426 21367 1 7960 29327 44

mbm 3079 28670 3 19022 47692 35

GnuTLS server regular

idp 1106 15863 2 11336 27199 100

8wbw 520 12194 1 5283 17477 100

mbm 1170 15540 2 11936 27476 100

OpenSSL client

idp 1400 22409 4 16795 39204 100

7wbw 350 18560 1 4101 22661 100

mbm 1351 18459 4 15774 34233 100

OpenSSL server

idp 2059 33246 4 24569 57815 0

8wbw 399 20874 1 4624 25498 100

mbm 1547 20869 4 17881 38750 100

TLS RSA BSAFE server

idp 976 13778 2 10050 23828 100

6wbw 392 4816 1 4006 8822 100

mbm 784 7894 2 8013 15907 100

X-ray-system-PCS

idp 2266 29801 5 22041 51842 100

8wbw 657 24680 1 5751 30431 100

mbm 2462 24650 5 24859 49509 100

Comparing the sizes of the individual models with their product, we
observe that the product is approximately equal in size to the individual
models.

From Table 4.3, we observe that the products produced using the Word-
By-Word strategy are generally the most likely to be correct and efficient to

35

produce. Between the Independent and Machine-By-Machine strategy, one
of the two is generally a bit more efficient, but which one differs between
models.

4.3 Summary and Discussion

First, we summarise our observations of the results, afterwards we briefly
discuss some problems we encountered during the experiments.

From our random experiment, we observe that the independent strategy
is the most consistent. The efficiency of the word-by-word and machine-by-
machine can drastically change based on the specification of machines.

From our benchmarks experiment, we observe that the Word-By-Word
strategy is the most efficient for our benchmarks, where the sizes of the
product and individual machines only differ slightly.

In general, the larger the product compared to the individual machines,
the less efficient the Word-By-Word and Machine-By-Machine strategies are
compared to the Independent strategy. Thus there is no general best strat-
egy between the discussed strategies.

For our implementation of the teacher, we used the RandomWMethod
with 10 walks per input per state and 10 inputs per walk. After further
experimentation on both the benchmarks and randomly generated machines,
we observed that these were by no means thorough enough to yield correct
intersections. We experimented with 300 walks per state and 12 inputs
per walk, and other combinations with a similar total inputs. This slightly
increased the correctness of our intersections, but increased #StepsEQ, and
thus the time to run, dramatically.

Some of the benchmarks have been changed to be compatible with the
aalpy library. These changes are mainly removing html tags in the input and
output, as these conflict with our method of constructing Mealy machines
from the benchmarks, and removing redundant states.

36

Chapter 5

Related Work

There exists a lot of theory surrounding automata learning. In 1987, active
automata learning was introduced with the L∗ algorithm [2]. This style of
learning has branched to various types of machines, but the core principles
have stayed the same.

In more recent years, this Angluin style of learning has been applied to
more types of machines. For example the N∗ algorithm [9], which learns
non-deterministic finite Mealy machines, using the adaptations NL∗ from
Bollig et al. [3] to learn non-deterministic automata and an L∗ adaptation
from Shahbaz [11] to learn mealy machines.

Not only can this learning style be applied to types of machine, it can also
be applied to constructions built on top of automata. One such construction
is the intersection of DFAs, which has been explored by Junges and Rot [8],
where learning strategies are introduced to potentially learn constructions
more efficiently.

Since to the best of our knowledge, there does not exist any theory about
learning intersections of Mealy machines, we extended the work of Junges
and Rot [8] by applying the ideas presented to Mealy machines. However,
not only does there not exist any theory about learning Mealy intersections,
to the best of our knowledge, there does not exist any theory about Mealy
intersections in general.

37

Chapter 6

Conclusions

In this thesis, we discussed what a Mealy intersection is and how we can
learn this type of intersection.

We first introduced a definition for languages of Mealy machines and
the intersection of these languages. Then we introduced products of Mealy
machines, using ∩-Mealy machines, an extension on the conventional Mealy
machine. After adapting learning strategies to be compatible for Mealy
machines, we used them to learn the product of both random and benchmark
Mealy machines. From these experiments, we found that each strategy has
its use cases.

6.1 Future work

One of the potential applications of Mealy intersections is finding common
behaviour between multiple Mealy machines. We assumed such common
behaviour has to be deterministic. However, one might find it sufficient to
have a probabilistic chance of common behaviour between the given Mealy
machines. This could change the product of our Mealy intersections to a
probabilistic model. For example, given a probability threshold and the
number of machines over which we take the intersection, we could learn a
partial non-deterministic Mealy machine.

In this thesis, we have applied the theory of learning Mealy intersections
to already available benchmarks. However, we have yet to apply our theory
directly on real world black box systems. In future work, we can learn
intersections directly, instead of first learning each individual system.

As we have mentioned in Section 3.2.1, we can interpret intersections
for Mealy machines in multiple ways. One such interpretation makes use of
a backwards output, where we first add each output to a stack, and after
adding every output, we can apply conditions for popping and returning out-
puts from the stack. For example, we could apply this idea to intersections
of Mealy machines. With the condition that we flush our stack if we pop

38

a θ, our entire output is a single θ, if the Mealy machines do not have the
exact same behaviour for the given input. For future work, we can explore
the feasibility of this concept.

39

Bibliography

[1] Fides Aarts, Joeri de Ruiter, and Erik Poll. Formal models of bank
cards for free. In ICST Workshops, pages 461–468. IEEE Computer
Society, 2013.

[2] Dana Angluin. Learning regular sets from queries and counterexamples.
Inf. Comput., 75(2):87–106, 1987.

[3] Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker.
Angluin-style learning of NFA. In IJCAI, pages 1004–1009, 2009.

[4] Tsun S. Chow. Testing software design modeled by finite-state ma-
chines. IEEE Trans. Software Eng., 4(3):178–187, 1978.

[5] Colin de la Higuera. A bibliographical study of grammatical inference.
Pattern Recognit., 38(9):1332–1348, 2005.

[6] Paul Fiterau-Brostean, Ramon Janssen, and Frits W. Vaandrager.
Combining model learning and model checking to analyze TCP im-
plementations. In CAV (2), volume 9780 of Lecture Notes in Computer
Science, pages 454–471. Springer, 2016.

[7] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, 1979.

[8] Sebastian Junges and Jurriaan Rot. Learning language intersections. In
A Journey from Process Algebra via Timed Automata to Model Learn-
ing, volume 13560 of Lecture Notes in Computer Science, pages 371–
381. Springer, 2022.

[9] Ali Khalili and Armando Tacchella. Learning nondeterministic Mealy
machines. In ICGI, volume 34 of JMLR Workshop and Conference
Proceedings, pages 109–123. JMLR.org, 2014.

[10] Edi Muskardin, Bernhard K. Aichernig, Ingo Pill, Andrea Pferscher,
and Martin Tappler. Aalpy: an active automata learning library. Innov.
Syst. Softw. Eng., 18(3):417–426, 2022.

40

[11] Muzammil Shahbaz and Roland Groz. Inferring Mealy machines. In
FM, volume 5850 of Lecture Notes in Computer Science, pages 207–222.
Springer, 2009.

[12] Frits W. Vaandrager, Bharat Garhewal, Jurriaan Rot, and Thorsten
Wißmann. A new approach for active automata learning based on
apartness. In TACAS (1), volume 13243 of Lecture Notes in Computer
Science, pages 223–243. Springer, 2022.

41

