
Bachelor’s Thesis Computing Science

Radboud University Nijmegen

An Algorithmic Approach to Fixing Friet

Author:
Kutay Sezer
s1075213

First supervisors/assessors:
Professor Joan Daemen,

PhD-candidate Jan Schoone

Second assessor:
Associate Professor Bart Mennink

August 18, 2024

Abstract

In this paper, we address the vulnerabilities that were discovered in the authenti-
cated encryption scheme Friet [14]. The authors of [17] demonstrated that the scheme
is susceptible to common cryptographic attacks that exploit input-output relations. To
mitigate these exploitable weaknesses, we propose a methodology that is aimed at re-
designing the linear component of the Friet primitive -the underlying function of Friet- to
improve its security. Our approach involves the analysis of matrix-based permutations.
We begin with square matrices with small dimensions and gradually work our way up
to analyze longer patterns. We prioritize ensuring that any potential redesign is resis-
tant to differential and linear cryptanalysis, which are powerful techniques for attacking
cryptographic schemes. Additionally, we consider the algebraic degree of a potential re-
design, which is another useful metric for security. Throughout this paper, we conduct a
series of analyses of the relationship between structural properties of matrices and their
impact on the primitive’s resistance to attacks. Although we did not manage to find a fix
for the Friet primitive, we did manage to highlight unique correlations between matrix
properties and cryptographic security. Our research as a result, significantly narrows
the search space required for future investigations of matrices and offers a methodology
for constructing a permutation that follows specified criteria.

Contents

1 Introduction 3
1.1 Problem Statement . 3
1.2 Methodology . 3

2 Preliminaries 5
2.1 Notation and Basic Definitions . 5

2.1.1 Finite Field Arithmetic . 5
2.1.2 Toffoli Gate . 5
2.1.3 Linear Algebra . 6
2.1.4 Bitstrings . 9

2.2 Cryptography Basics . 10
2.2.1 Encryption Scheme . 11
2.2.2 Permutations . 11
2.2.3 Round Function . 11
2.2.4 Distinguishers . 11
2.2.5 Advantage . 11
2.2.6 Security Claim . 12
2.2.7 Security Strength . 12
2.2.8 PRP Security Notion . 12
2.2.9 The Even–Mansour Construction 13

2.3 Cryptanalysis Techniques . 14
2.3.1 Differential Cryptanalysis . 14
2.3.2 Linear Cryptanalysis . 18
2.3.3 Algebraic Degree . 20

2.4 Table of Definitions . 21

3 Friet Definition and Concepts 24

4 The Weaknesses of Friet-PC 26

5 Strategy of Fixing Friet-PC 29

1

6 Unsuccessful Attempts at Fixing the Primitive 30
6.1 Attempt 1 . 30
6.2 Attempt 2 . 31
6.3 Attempt 3 . 32
6.4 Testing the Quality of the Candidates . 33
6.5 The Design Flaw of the Initial Attempts 38

7 Investigation of Suitable Linear Transformations 41
7.1 What Makes a Matrix Suitable . 42

8 Measuring the Security of the Permutation with a Chosen Matrix 50

9 Algebraic Degree Analysis 60

10 Conclusions 67

11 Future Work 69

2

Chapter 1

Introduction

In 2020 EUROCRYPT, a paper introducing a new authenticated encryption scheme with
built-in fault detection mechanisms called Friet was published.[14] Friet is a permutation-
based encryption scheme, its permutation Friet-P is constructed with a smaller permu-
tation Friet-PC. The authors report on the performance in software and hardware of the
permutation used in Friet. They additionally evaluate the fault-detection capabilities of
the software and simulate hardware implementations with attacks. The authors of Friet
claimed a security strength of 128 bits for the confidentiality and integrity of the Friet
encryption scheme.

However, in 2022, an article was published that outlined an attack methodology
breaking the confidentiality and integrity claims for Friet.[17] It highlights overlooked
weaknesses against differential and linear cryptanalysis. In the article, the authors prove
the existence of properties that, over n rounds, can be exploited with a probability of
1. They showcase that the weakness of Friet underlies in the design of the primitive
Friet-PC.

1.1 Problem Statement

In this paper, we aim to introduce a ground-up methodology for fixing Friet and
discuss the properties a potential fix would need to have.

Additionally, we aimed to highlight interesting properties we found regarding matrices
concerning cryptanalysis and algebraic degrees.

1.2 Methodology

We first try to fix the primitive by redesigning the linear section of the round function
while conserving the design rationale of the primitive and testing these redesigns. After
discovering that none of the redesigns proved to be secure against linear cryptanalysis.
We adopt a new strategy. Instead of making small modifications to the linear part of
Friet-PC, we decided on a different approach. We investigated whether any possible fix to

3

the linear section could make the new primitive resistant to both differential and linear
cryptanalysis regardless of keeping the step functions defined in Friet-PC (3.1). Our
goal was to find a solution that would improve the security of the system against these
types of cryptanalysis. We interpreted the linear section as a matrix of size 384 × 384,
however, due to the size of the search space required, we took advantage of the properties
of repeating patterns of bits. This allowed us to start from 3× 3 matrices, expand them
to 12 × 12, and analyze permutations constructed from them. In order, we tested for
“trail analysis for potentially dangerous input-output relations”, “lowest weight trail
analysis” and “algebraic degree analysis”.

4

Chapter 2

Preliminaries

In this section, we discuss core concepts in Finite Field Theory, important matrix con-
cepts, measuring the security strength of block ciphers, cryptanalysis concepts & terms,
and what an algebraic degree is.

2.1 Notation and Basic Definitions

Here, we give definitions to the fundamental mathematical concepts used in this paper.

2.1.1 Finite Field Arithmetic

A finite field with n elements Fn is a set with the operations multiplication and addition
where the operations satisfy certain rules.

More formally, a set F with the operations + and · with the identity elements 0 and
1 where 0 ̸= 1 form a field if:

The set of all elements of F and operation + form an abelian group.
The set of all non-zero elements of F and operation · form an abelian group.

a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ F

[1]
This paper only focuses on the finite field with two elements F2 = {0, 1}. In F2,

multiplication and addition operations are done in mod 2.
The XOR operation (⊕) and bitwise AND operation (∧) are synonymous with addition
and multiplication operations over F2. In this paper, we refer to elements of F2 as bits.

2.1.2 Toffoli Gate

A Toffoli gate maps bits (a, b, c) to (a, b, (c+ab)), which we denote as (a, b, c)→ (a, b, c⊕
a ∧ b) [12, 29]
The Toffoli gate is applied to individual bits. However, this operation can be extended
to bitstrings by applying the Toffoli gate in parallel to each bit. This way, we can define

5

a b c

a’ b’ c’

Figure 2.1: Visual representation of the Toffoli gate

an operation that takes three bitstrings of length n and apply the Toffoli gate on each
bit. We will refer to this construct as the Toffoli Stream operation.

2.1.3 Linear Algebra

In this paper, we regularly make use of linear algebra concepts. In the following sections,
we highlight useful matrix concepts and field concepts.

Field Arithmetic with Matrices

Similar to what we discussed in Section 2.1.1, we can perform arithmetic operations
with matrices over finite fields as well. A general linear group of degree n is the set
of n× n invertible matrices, together with the operation of matrix multiplication. Like
matrix multiplication over real numbers, the matrix multiplication over finite fields is
not commutative. [10] We are going to focus on the general linear groups of degree n
over the finite field F2, which is denoted as GL(n, 2).

Below is an example of matrix multiplication over the finite field F2.

Example: 1 0 1
0 0 1
1 1 0

 ·
0 0 1
1 1 1
0 1 0

 =

6

1 · 0 + 0 · 1 + 1 · 0 1 · 0 + 0 · 1 + 1 · 1 1 · 1 + 0 · 1 + 1 · 0
0 · 0 + 0 · 1 + 1 · 0 0 · 0 + 0 · 1 + 1 · 1 0 · 1 + 0 · 1 + 1 · 0
1 · 0 + 1 · 1 + 0 · 0 1 · 0 + 1 · 1 + 0 · 1 1 · 1 + 1 · 1 + 0 · 0


=

0 1 1
0 1 0
1 1 0


The three matrices above are a part of GL(3, 2).

Invertibility Criterion

A matrix is invertible if and only if its determinant denoted with det(M) for matrix M ,
(modulo 2 if over F2) is not equal to 0. For example, all three matrices we discussed in
the previous section have a determinant of 1.

Order of a General Linear Group

The order of a general linear group is the size of the group. Over finite fields with q
elements, the order of a general linear group of degree n is given as:

n−1∏
k=0

(qn − qk) [10]

Example: The number of invertible 4×4 matrices over the finite field F2, i.e, the order
of the general linear group of degree 4 over the finite field with 2 elements is:

3∏
k=0

(24 − 2k) = (16− 20)(16− 21)(16− 22)(16− 23) = 15 · 14 · 12 · 8 = 20160

The order of a matrix M from a general linear group over a finite field is the smallest
natural number q > 0 such that M q = I. The order q divides the order of the general
linear group. This fact can be derived from Lagrange’s Theorem. [6]

Circulant Matrices

An n× n circulant matrix C takes the form

C =


c0 c1 . . . cn−2 cn−1

cn−1 c0 c1 cn−2
... cn−1 c0

. . .
...

c2
. . .

. . . c1
c1 c2 . . . cn−1 c0


A circulant matrix C is specified by one vector, c = (c0, c1, c2, . . . , cn−2, cn−1). Matrix
C is constructed by cyclically permutating the entries of values ci of the vector c (with

7

offset equal to the row index) [9]

Example: Take the vector c = (1, 0, 1, 1). Then the circulant matrix would look as
follows:

C =


c0 c1 c2 c3
c3 c0 c1 c2
c2 c3 c0 c1
c1 c2 c3 c0

 =


1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1


Circulant matrices with the matrix multiplication operation form a group. The invert-
ibility of a circulant matrix depends on the vector that forms it. It is mentioned in [8]
that if a row has an even number of ones, i.e., if the Hamming weight of the vector
forming the circulant matrix is even, then the circulant matrix is singular (not invert-
ible). This means half the circulant matrices that can be formed with vector c ∈ Fn

2 are
not invertible. On the contrary, the other half is invertible. Therefore, the order of the
group of n× n invertible circulant matrices over F2 is 2n−1.

Block Matrices

Block matrices are matrices in the form of:
A0,0 A0,1 . . . A0,m

A1,0 A1,1 . . . A1,m
...

...
. . .

...
An,0 An,1 . . . An,m


where Ai,j is another matrix.
A block matrix or a partitioned matrix is a matrix that is subdivided into rectangular

blocks of elements called blocks or submatrices. [7, 37]

This is a useful notation to represent one giant matrix as a matrix made out of
smaller blocks.

Example: Take the circulant matrix example we saw in the previous section. It can be
represented as follows:

C =

[
A0,0 A0,1

A1,0 A1,1

]
where A0,0 =

[
1 0
1 1

]
, A0,1 =

[
1 1
0 1

]
, A1,0 =

[
1 1
0 1

]
and A1,1 =

[
1 0
1 1

]
The matrices we consider in this paper are block matrices where the blocks are cir-
culant and these, along with the matrix multiplication operation form a group.

8

2.1.4 Bitstrings

A bitstring is a sequence that consists of only 1s and 0s. A bitstring is an element of
F∗
2, the space of all bitstrings. We represent them in a bold text format 1010. . . . A

bit vector is a vector over F2. We represent them in a vector notation (1, 0, 1, 0, . . .). A
bit vector with dimension Bitstrings and bit vectors are very similar concepts but they
are not the same thing. However, a bijective mapping from a bitstring {1, 0}n to Fn

2 is
possible. This is why we mostly use the bitstring notation to compactly represent bit
vectors in this paper. A bitstring x of length n, denoted as len(x) is an element of Fn

2 . A
binary operation (∗) over F2 between two bitstrings x = x0x1x2 . . . and y = y0y1y2 . . .
is defined as x ∗ y = z where zi = xi ∗ yi.

Example:
1011⊕ 0110 = (1⊕ 0)(0⊕ 1)(1⊕ 1)(1⊕ 0) = 1101

Circular Shift Operation on Bitstrings

A circular shift operation to some direction is shifting bits in a bitstring to that direction
and wrapping the bits that exceed bitstring from the other side.

Example:
001011 ≪ 4 = 110010

The underlined section of the bitstring is to denote the chunk that wraps around from
the right side.

If a bitstring of length n is shifted to the left by k bits where k ≥ n, then this shifting
operation is equal to shifting the bitstring to the left by k mod n.

Suppose we rotate by k = c · len(x) + r the bitstring x. Where c ∈ N and 0 ≤ r <
len(x). Rotating a bit at position i by len(x) results in this bit moving i steps to the left,
then moving len(x)− i step to the left from the rightmost position because of wrapping
around. However, since the string is len(x) bits long, a bit that is len(x) − i from the
right side is at the ith position from the left side. Thus, the rotation operation of length
c · len(x) does not result in displacement of a bit from its initial position. So the total
rotation is equivalent to rotating by r bits to the left. This is equivalent to rotating by
k mod len(x) bits.

x ≪ k = x ≪ (k mod len(x))

Example:

1001 ≪ 5 = 0011 = 1001 ≪ (5 mod len(1001)) = 1001 ≪ (5 mod 4) = 1001 ≪ 1

Repeating Bitstring Patterns

We can create a bitstring that is made out of a repeating smaller bitstring pattern.

9

Example:
(10)4 = 10∥10∥10∥10 = 10101010

A bitstring made entirely out of a repeating bitstring pattern has useful properties we
can use.

Suppose we have the bitstrings x = pn1 , y = pn2 and z = pm3 where len(p1) = len(p2)

For unary operations δ ∈ {f, gk, hk} where f(x) =
−
x, gk(x) = x ≪ k, hk(x) = x ≫ k

and k ∈ N on bitstring z, it is the case that:

δ(z) = (δ(p3))
m

Example:

(10)4 ≫ 5 = 10101010 ≫ 5 = (10 ≫ 5)4 = (10 ≫ 1)4 = (01)4 = 01010101

For binary operations (∗) ∈ {∨,∧,⊕} on x and y, it is the case that:

x ∗ y = (p1 ∗ p2)n

Example:

(10)2 ⊕ (01)2 = 1010⊕ 0101 = (10⊕ 01)2 = (11)2 = 1111

These properties allow us to reduce the problem of computing the result of a function
on an n-bit bitstring (pair) to computing the result of a function on an k-bit bitstring
where k is the length of the bitstring pattern that makes up the larger bitstring. I.e.,
instead of computing function on f : Fn

2 → Fn
2 directly, we compute it on f : Fk

2 → Fk
2

on the pattern p that makes up the whole bitstring. This results in the new pattern p′.
Then we compute (p′)

n
k for the final result.

This reduction becomes especially useful for significantly reducing the workload and
space needed for doing computations with matrices on repeating patterns. If we have a
matrix M and a vector v⃗, where v⃗ consists of a single repeating pattern, we can simplify
the computation by reducing the dimensions of both M and v⃗. This is possible because
the repeating pattern in v⃗ implies that many of the operations in the matrix-vector
multiplication are redundant. This allows us to compress v⃗ to just the unique pattern
and adjust the matrix M accordingly. For example, suppose we have a vector v⃗ with
dimensions 8× 1 that is made up of a repeating pattern of length 2 and a 8× 8 matrix
M . This vector can be reduced to 2× 1 and the matrix can then be reduced to 2× 2.

2.2 Cryptography Basics

In this section, we introduce basic cryptography concepts regarding permutations, en-
cryption, and security strength.

10

2.2.1 Encryption Scheme

An encryption scheme consists of encryption and decryption operations.
Encryption is the cryptographic operation that enables data confidentiality. Data

confidentiality is the assurance that only authorized entities get access to the data. [6]
Decryption is the operation that recovers the data from the encrypted data. In symmetric
cryptography, both the encryption and decryption operations require a secret key. The
data that is used in encryption is called a plaintext and it is encrypted in a way that
only the parties with a secret key can decrypt it back. The encrypted data is called a
ciphertext.

An encryption scheme can be built in different ways. The most common method is
to combine existing building blocks and construct them from the bottom up. We call
these building blocks primitives. Mostly, the security of the construction depends on
the underlying primitive.

2.2.2 Permutations

A permutation of width b is a bijective mapping {1, 0}b → {1, 0}b.
A random permutation (RP), sometimes called a randomly chosen permutation, is

a function that is uniformly and randomly chosen from the set of all b-bit permutations.
RP is used as a framework for how permutation-based encryption should behave. [6]

A block cipher with a block size of b is a b-bit permutation that is parameterized
by a secret key. [6] Some of the operations during the permutation process depend on
this secret key.

2.2.3 Round Function

A round function is a function used within each iteration of a larger cryptographic
algorithm. The number of times function f is applied on some initial input is called
the number of rounds. A round function is accompanied by additional round-specific
parameters. For example in the context of this paper, a round constant.

2.2.4 Distinguishers

Given the real-world scheme where the queries are made to a block cipher BK and ideal-
world scheme where the queries are made to RP, a distinguisher (Adversary) is an
algorithm that predicts which one of the two options it is querying. It is denoted with
the symbol D.

2.2.5 Advantage

The advantage of a distinguisher D distinguishing between a block cipher BK and RP
given the distinguisher D is as follows:

AdvD = |Pr(D = 1 | BK)− Pr(D = 1 | RP)| [6]

11

The distinguisher outputs a 1 if it concludes that it is querying P . It outputs 0 otherwise.
Pr(D = 1 | BK) is the probability of the distinguisher outputting 1, given that it is
querying BK . This is the probability of the distinguisher guessing correctly. Pr(D =
1 | I) is the probability of the distinguisher outputting 1, given that it is querying RP.
This is the probability of the distinguisher guessing incorrectly. If the advantage is≫ 0,
then the distinguisher performs better than random guessing. If the advantage is ≈ 1,
then the distinguisher is close to guessing incorrectly 100% of the time, or it is close
to guessing correctly 100% of the time. In both cases, the distinguisher is significantly
more effective than random guessing. [6]

2.2.6 Security Claim

A security claim is an unambiguous statement that defines the minimum success prob-
ability an attack must have to be considered as breaking the primitive. Breaking is
well-defined and usually, it means distinguishing the output of the primitive from a se-
quence of random bits. The minimum success probability is typically expressed in terms
of the attacker’s effort in terms of computation (offline complexity) and data obtained
from the keyed primitive (online complexity). [6]

A security claim serves as a security specification. A user can assume there are no
attacks with higher success probability than specified in the claim. It also serves as a
challenge to break the primitive. [6]

With these concepts in mind, we provide an example of what a security claim would
look like.

Example: Consider AES with key size k. For any adversary D with computational
complexity N

AdvD ≤
N

2k

[6]

2.2.7 Security Strength

The security strength s of a block cipher BK given the advantage AdvD for the distin-
guisher D, can be calculated as follows:

log2

(
M +N

AdvD

)
< s

where M is the online complexity and N is the offline complexity. [6]

2.2.8 PRP Security Notion

Suppose we are given an implementation of a block cipher BK with secret key K and
RP.

12

Suppose an algorithm chose one of the two without revealing which one with equal
probability. Assuming we do not know which device we are communicating with, the
Pseudorandom Permutation (PRP) security notion of security is infeasibility of a
distinguisher to distinguish between BK and RP. We consider an adversary being able
to distinguish between the two if the probability of successfully guessing is significantly
more than 0.5. We can construct a security claim through online and offline queries, and
with how difficult it is to distinguish between BK and RP.

Figure 2.2: Distinguishing attack setup

Offline queries are queries that we make to the internal implementation of B with
arbitrary keys. In this case, we have access to the implementation of B so we can
implement the algorithm and choose a key K and make queries to BK .
Online queries are queries that we make to the real instance of BK or RP, we are not
aware of which one we are querying and we do not know the secret key K. [6]

2.2.9 The Even–Mansour Construction

When we have a permutation that we want to measure the security of, a way we can
achieve this is by constructing a simple block cipher from it.

A simple method of achieving this is the Even-Mansour construction. First, an XOR
operation is applied on the plaintext with key K1. It is then followed by an application
of a publicly known unkeyed permutation F . Finally, an XOR operation is applied
to the result with key K2. This construction allows us to make distinguishing queries
between RP and a block cipher constructed from a permutation F . [4] In the context
of this paper, we can show why the properties discovered in the primitive of Friet form
a problem.
According to [4], the upper-bound for a block cipher constructed with an Even-Mansour

construction would be secure up to 2−
b
2 computational effort where b is the block size.

13

Figure 2.3: Visual representation of the Even-Mansour construction

2.3 Cryptanalysis Techniques

Cryptanalysis of a cryptographic scheme is the study and application of various tech-
niques to break/weaken the scheme by identifying and exploiting its vulnerabilities.
There are commonly used methods of cryptanalysis. Three of these are the core top-
ics of this paper. These are called differential cryptanalysis, linear cryptanalysis, and
algebraic degree analysis. In the following sections, we define these and their concepts.

2.3.1 Differential Cryptanalysis

Differential cryptanalysis is a type of cryptanalysis that studies how differences in input
can affect the resulting difference in the output. We denote a difference with either ∆
or other Greek letters like α, β, etc. There are different ways a difference is calculated
but usually, the XOR operation is used. The difference ∆ between a pair of bitstrings
is equal to x⊕ y.

Given the permutation f , input x and the input difference ∆in, the output difference

14

∆out is given as follows:
∆out = f(x⊕∆in)⊕ f(x)

[2]

Differentials and Differential Probability

A differential is a pair of differences. It is denoted as (∆x,∆y) for some difference ∆x

and ∆y.
The differential probability, denoted with DP(∆x,∆y) is the probability of the output
difference being ∆y, given that the input difference was ∆x. The differential probability
is calculated as such:

DP(∆in,∆out) =
|{x | x ∈ Fn

2 , f(x)⊕ f(x⊕∆in) = ∆out}|
2n

[2]

where f is a function and n is the length of the inputs.
The all-zero differential is trivial, since if there is no difference between inputs, then

there will be no difference in the output. For this reason, assume that we do not consider
the all-zero difference in any of the analyses we did in this paper. [17]

Differential Trail

A differential trail of r-rounds, denoted with T = (∆0,∆1, . . . ,∆r) is the ordered tuple
of the differences that we compute with the initial difference ∆0 and r rounds of round
function application on the initial input. The DP of a trail over r rounds is calculated as
DP (T) the probability that input pair (x, x+∆0) with x uniformly random will exhibit
the sequence of differences through the rounds. [14] Calculating the DP of a trail directly
is difficult since the outcome of one round’s differential could influence the outcome of
another round’s differential; instead, we approximate the differential probability of the
trail T as follows:

DP(T) ≈
r−1∏
k=0

DPfk(∆k,∆k+1)

where fk is a round function. This equation approximates the DP of a trail. Assuming
differentials in the trail are independent, the equation calculates the exact DP of the
trail. The weight of a trail is defined as − log2(DP(T)) for a trail T .

Propagation of Differences through Linear Operations

In this section, we list the effects of linear operations on difference(s). Let λ be a linear
operation and ∆in the input difference for λ, then ∆out is the image of ∆in resulting
from the application of λ. For the differential (∆in,∆out) it is always the case that
DP(∆in,∆out) = 1

Branching Property:

15

The branching operation is a process where a single input value is duplicated and
propagated along multiple outgoing paths. The input is copied to each outgoing arrow
and they carry the same input value.

Given the input difference ∆in, the resulting differences branching out of an inter-
section point will also have the same value.

Figure 2.4: Visual representation of the effect of branching operation on differences

Constant XOR Property:
Given an input difference ∆in and a constant value c, the result of the XOR opera-

tion will be equal to the input difference. Adding a constant to two inputs that differ
by ∆ will still differ by the same value since the bits that are changed in one input also
change the same way in the other.

16

Figure 2.5: Visual representation of the effect of an XOR operation with a constant on
differences

XOR Property:
Given incoming differences ∆0,∆1, . . . ,∆n the result will be equal to

⊕n
i=0∆i.

Figure 2.6: Visual representation of the effect of XOR operation differences

Rotation Property:
The rotation operation has the same effect on a difference as it does in a regular

input. so a rotation by k bits to the left on the input difference ∆in results in ∆in ≪ k.

17

Generalized Property:
Suppose we have a linear transformation f that modifies an input bitstring and

outputs another bitstring. Given the matrix representation M of this linear transforma-
tion and the input difference ∆in, the relation between the input difference and output
difference ∆out for f is as follows:

∆out = M ·∆in

This follows from the fact that

DP(∆in,∆out) = 1 if and only if ∆out = M ·∆in and 0 otherwise

2.3.2 Linear Cryptanalysis

Linear cryptanalysis is a method of identifying and representing linear relationships
between the plaintext and ciphertext (and key bits).

Linear Masks

Identifying linear relationships between plaintext and ciphertext pairs for a given func-
tion is carried out with a pair of bitstrings called linear masks, or masks for short.
They are denoted with Γ or other Greek letters. A mask is a vector of bits used to
denote which bits of a bitstring x are used for the approximation of a function. Given
a mask α and a bitstring x, the mask value is calculated as α · x where (·) is the dot
product.

Correlation and Linear Potential

A pair of input and output masks is called a linear approximation. Correlation
measures the “closeness” of the linear approximation of a function f to the function
itself. It takes values between -1 and 1. The equation for the correlation of a linear
approximation is as follows:

Corr(Γin,Γout) = 2 · |{x | x ∈ F
n
2 , Γin · x = Γout · f(x)}|

2n
− 1 [11]

where n is the length of the input, f is the original function we are trying to approximate,
Γin and Γout are the input-output masks and (·) operation is the dot product. Similar
to the advantage score in Section 2.2.5, we want the correlation to be far from 1 and -1.
I.e., we want the absolute value of the correlation ≈ 0 for a secure cipher algorithm. [17]

The all-zero linear approximation is considered trivial because it holds true regardless
of the actual values of the input and output bits. For this reason, assume that we do
not consider the all-zero masks in any of the analyses we did in this paper.

In this paper, we mostly use the linear potential (LP) metric instead of correlation.
It is calculated as:

LP(Γin,Γout) = (Corr(Γin,Γout))
2

18

We want the LP value to be close to 0 for a safe cipher algorithm.

Linear Trails and Propagation

Similar to differential cryptanalysis, each round function application affects the input
mask. This means we can construct a trail of linear masks resulting from r rounds. Sim-
ilarly, we can analyze the propagation of masks and list the possible values they can take
at certain points in the permutation process. However, unlike differential cryptanalysis,
we follow the propagation of an output mask. I.e., we choose an output mask and see
how it propagates through the rounds and see what the possible values we can have for
the input mask that makes LP ≈ 1. Similar to calculating the approximate value of DP
of a differential trail, the LP of a linear trail is calculated as the product of LP values
of consecutive linear approximations within a trail. However, unlike DP of a trail, the
LP of a trail is not an approximation and is the exact value.

Propagation of Linear Masks through Linear Operations

Similarly to differences, we can derive rules for the propagation of linear masks through
linear operations, and similarly to DP values, given an output mask Γout and an in-
put mask Γin that results from the effect of a linear transformation λ, it follows that
Corr(Γin,Γout) = 1

XOR Property:
For an XOR operation, given an outgoing output mask Γout, the incoming masks

Γ0,Γ1, . . . ,Γn−1,Γn are all equal to Γout.

Figure 2.7: Visual representation of the effect of XOR operation on linear masks

19

Rotation Property:
For rotation operations, the resulting input mask is the output mask rotated in the

opposite direction by the same amount. I.e., given an output mask Γout, the rotation
operation n bit to the left would result in the input mask Γout ≫ n.
Branch Property:

For a branching operation, given the outgoing masks Γ0,Γ1, . . . ,Γn−1,Γn, the incom-
ing mask is equal to

⊕n
i=0 Γi.

Figure 2.8: Visual representation of the effect of branch operation on linear masks

Generalized Property:
Suppose we have a linear transformation f that modifies an input bitstring and out-

puts another bitstring. Given the matrix representation M of this linear transformation
and the output mask Γout, the relation between the output mask and input mask Γin

for f is as follows:

Γin = MT · Γout

This follows from the fact that

Corr(Γin,Γout) = 1 if and only if Γin = MT · Γout and 0 otherwise

[5]

Note: We do not consider the effect of adding a constant operation, since it is out-
side the scope of our research.

2.3.3 Algebraic Degree

Algebraic degree analysis is a method used to evaluate and potentially attack crypto-
graphic algorithms by focusing on the algebraic properties of these algorithms, particu-
larly their representations as multivariate polynomial equations.

20

Monomials

A monomial is an algebraic expression that is a product of variables and a coefficient.
For example, x · y2 is a monomial comprised of the variables x and y, and the coefficient
1. This paper focuses on variables whose domain is over F2. The degree of a monomial
whose variables’ domain is over F2 is the number of variables in the expression. For
example, x · y · z has a degree of 3.

Over F2, it is the case that for all Boolean variables x, x2 = x holds.

Polynomials

Polynomials are a sum of monomials. The degree of a polynomial is the degree of the
monomial that has the highest degree. A polynomial is multivariate if there are multiple
variables. The variables have a domain in F2.

Example:

P (x, y, z, t, k, l) = xy + z + tkl

deg(P (x, y, z, t, k, l)) = deg(tkl) = 3

Vector Boolean Functions

A boolean function is a polynomial from Fn
2 to F2. A vector boolean function is a func-

tion from Fn
2 to Fm

2 where m > 1. [3] It can be considered an array of boolean functions.

Example:
f(x, y, z) = [x+ z + y, xyz, x+ yz]

The (algebraic) degree of a vector boolean function is the degree of the boolean function
with the highest degree. In the example we gave, it is 3 from the degree of the function
xyz.

2.4 Table of Definitions

21

Syntax Semantics

len(x) The Number of bits in bitstring x

x∥y Bitstring x is concatenated with the bit
string y from the right side.

xn a bitstring value made out of repeated
concatenation of bitstring x. This pattern
is repeated n times.

P(S) The powerset of S is a set which contains
all subsets of set S.

log2(n) Logarithm operation in base 2 is applied
to a real number n.

F2 F2 = {0, 1}. More information in Section
2.1.1

Fn
2 The notation Fn

2 denotes the set of all or-
dered n-tuples over the finite field F2.

wt(x) Number of bits in bitstring x that have a
value of 1.

x For each bit in bitstring x, if the bit is 1,
then it becomes 0; otherwise it becomes 1.

x ∧ y For each bit position, if at least one of the
values in bitstring x and bitstring y is 0,
then the resulting bitstring will have 0 in
that position. Otherwise, it will have 1.

x ∨ y For each bit position, if at least one of the
values in bitstring x and bitstring y is 1,
then the resulting bitstring will have 1 in
that position. Otherwise, it will have 0.

x⊕ y The numbers are added modulo 2 for each
bit position in bitstrings x and y.

x ≪ n Each bit in bitstring x is shifted left by n
bits. If a bit exceeds the left side, then the
bit wraps around from the right side of the
bitstring. More detailed information is in
Section 2.1.4.

x ≫ n Each bit in bitstring x is shifted right by
n bits. If a bit exceeds the right side, then
the bit wraps around from the left side of
the bitstring. More detailed information
is in Section 2.1.4.

Pr(X = x | Y = y) The probability of an event x occurring
given that event y was observed.

22

I A matrix where the diagonals are equal to
1 and the rest of the cells are equal to 0.

MT The transpose of a matrix M is obtained
by swapping its rows and columns. This
means that the element at the position
(row, column) in M is moved to the po-
sition (column, row) in MT. If M is an
n×m matrix, then MT will be an m× n
matrix.

ord(M) ord(M) = n where n is the smallest nat-
ural number greater than 0 and Mn = I.
More information is in Section 2.1.3.

23

Chapter 3

Friet Definition and Concepts

Friet is a duplex-based authenticated encryption scheme built with fault-detection mech-
anisms. Friet encryption scheme is based on a primitive called Friet-P. It takes a 512-bit
long input and yields a 512-bit long output. Its embedding, Friet-PC, takes a 384-bit
input and yields a 384-bit output.

(a) (b)

Figure 3.1: (a) Round of Friet-PC (b) Round of Friet-P

Friet operates on states which are divided into 128-bit long chunks called limbs.
Friet-PC is comprised of 3 limbs and Friet-P is comprised of 4 limbs. The extra limb
and design complexity of Friet-P is because of what is called a parity limb, which is used
to satisfy so-called parity equations. The first three limbs are called native limbs.

The values rci, rci c, and rci d are not additional limbs. They are round constants.
For each round, an XOR operation is carried out with the corresponding round constant.

A limb adaptation is an operation that modifies a native limb, by bitwise adding to
it a function ϕ of the state. It also adds the function ϕ to each parity limb that depends

24

on that same native limb.

A limb transposition operation is a reordering of limbs, with a possible correcting adap-
tation to leave the parity equations invariant. A native limb transposition refers to two
native limbs being swapped. A non-native limb transposition refers to a native limb
swapping places with a parity limb. Furthermore, the operations are divided into differ-
ent step functions, which are small operations that make up Friet-PC. They are denoted
by Greek letters. The explanation of each step function are as follows:

• τ1 and τ2 are non-native limb transpositions,

• δ is a round constant addition that is a limb adaptation,

• two mixing steps µ1 and µ2 that are limb adaptations,

• a non-linear step ξ, also a limb adaptation

Friet-PC:
c ← c⊕ rci δi

(a, b, c) ← (a⊕ b⊕ c, c, a) τ1
b ← b⊕ (c ≪ 1) µ1

c ← c⊕ (b ≪ 80) µ2

(a, b, c) ← (a, a⊕ b⊕ c, c) τ2
a ← a⊕ ((b ≪ 36) ∧ (c ≪ 67)) ξ

(3.1)

The focus of this paper is on the Friet-PC round function. We index the limbs of
Friet-PC as limbs 1, 2, and 3. In Figure 3.1 (a), these would correspond to segments of
a, b and c. [14]

25

Chapter 4

The Weaknesses of Friet-PC

In [17], it is shown that the weakness of the encryption scheme arises from insufficient
security against differential and linear cryptanalysis. Crucially, these attacks are highly
effective in the primitive of the construction. This weakness propagates through every
round of permutation, making the scheme itself insecure against these statistical attacks.

It is showcased in [17], that for certain r-round differentials and r-round linear ap-
proximations, the DP and the LP are both equal to 1. The conditions for this to hold
for differences and linear masks are defined in Conditions (4.1) and (4.2).

Differential Condition 1 [17]: The DP of a non-zero differential trail (α, β, γ) →
(α′, β′, γ′)→ (α′′, β′′, γ′′) for the 2-round Friet-PC is 1 if and only if

α = α′ = α′′ = 1128

β = β′ = β′′ = 0128

γ = γ′ = γ′′ = 0128
(4.1)

Linear Condition 1 [17]: For the input linear mask Γin = (0128,0128,1128) and output
linear mask

Γout = (0128,0128,1128), (4.2)

LP(Γin,Γout) for n-round Friet-PC is 1, where n ≥ 1.

This means the Friet-PC in Even-Mansour construction is distinguishable from a ran-
dom permutation with an advantage of ≈ 1. In the following paragraph, we showed this
by defining two distinguishers between the Random Permutation RP and the primitive
Friet-PC under a two-key Even–Mansour scheme; one for the differential case, and one
for the linear. We constructed a differential distinguisher D1 as follows:

1. Choose a plaintext P0 = p0∥p1∥p2 and generate plaintext P1 = p0∥p1∥p2.

26

2. Apply the provided permutation on plaintexts P0 and P1 and get the associated
ciphertext pair C0 = c0∥c1∥c2 and C1 = c∗0∥c∗1∥c∗2.

3. If (c∗0, c
∗
1, c

∗
2) = (c0, c1, c2), return 1; else, return 0.

We also constructed a linear distinguisher D2 as follows:

1. Choose n plaintexts in the form of P = p0∥p1∥p2.

2. Apply the provided permutation on plaintexts P and get the associated ciphertexts
in the form of C = c0∥c1∥c2.

3. If wt(c2) = wt(p2) (mod 2) for all plaintext-ciphertext pairs, store 1; else, store 0.

4. Check whether all return values are 1, if so, the distinguisher returns 1, else, the
distinguisher returns 0.

The distinguisher returns 1 when it suspects that it is applying permutation on plain-
texts using Friet-PC. It returns 0 when it suspects that it is applying permutation on
plaintexts using the random permutation (RP).

To calculate the advantage the distinguisher has, we used the advantage formula from
Section 2.2.5.

We first calculated the advantage of the differential distinguisher, and then the linear
distinguisher.

The probability of D1 returning 1, given it is using Friet-PC is 1. The probability
of D1 returning 1, given it is using RP is 2−384. This is because the probability of
(c∗1, c

∗
2, c

∗
3) = (c1, c2, c3) is affected by all three 128-bit limbs since each tag must match

a specific 128-bit value for the condition to hold. I.e., Pr(c∗1 = c1) ·Pr(c∗2 = c2) ·Pr(c∗3 =
c3) = 2−128 · 2−128 · 2−128 = 2−384. The advantage is thus AdvD1 = 1− 2−384 ≈ 1.

The probability of D2 returning 1, given it is using Friet-PC is 1. The probability
of D2 returning 1, given it is using RP and n plaintexts were chosen, is 2−n. Using the
above formula, we get AdvD2 = 1− 2−n. For bigger values of n, the advantage is equal
to ≈ 1. After repeated applications of Friet-PC for several rounds, the DP of the differ-
ential trail and the LP of the linear trail are 1 because the input difference and output
masks propagate through Friet-PC without changing. With this weakness in Friet-PC,
it is not feasible to construct an encryption scheme that has at least 128 bits of security.
This can be shown by using the security strength formula from Section 2.2.7 where M
is the number of online queries and N is the number of offline queries.

Security against differential distinguisher:

log2

(
M +N

AdvD1

)
≈ log2

(
2 + 0

1

)
= 1

27

Therefore, we have 1 bit of security against differential distinguishing attacks.

Security against linear distinguisher:

log2

(
M +N

AdvD2

)
≈ log2

(
M + 0

1− 2−M

)
M=1000

= log2

(
1000

1− 2−1000

)
≈ 9.97

Theoretically, Friet-PC constructed with Even-Mansour should have log2(2
384
2) = log2(2

192) =
192 bits of security according to [4]. Since both distinguishers have security bounds lower
than 192, the permutation is not secure against linear and differential distinguishing at-
tacks.

Less critically, but still importantly, in [17], the conditions for when the DP and the
LP are equal to 1 for a single round are highlighted.

Differential Condition 2 [17]: The differential probability of trail (α, β, γ) →
(α′, β′, γ′) for the i-th round function is 1 if and only if

α′ = α⊕ β ⊕ γ

α⊕ (α ≪ 1)⊕ β = 0128

α⊕ (α ≪ 81)⊕ (γ ≪ 80) = 0128

β′ = 0128

γ′ = 0128

(4.3)

Simply put, there exists a differential with DP 1 where the second and third limbs of
the output difference are the all-zero bitstrings.

Linear Condition 2 [17]: Let Γin = (α, β, γ) and Γout = (α′, β′, γ′) be the input
and output linear masks of the i-th round function. The absolute value of the correlation
Corr(Γin,Γout) is 1 if and only if

α′ = 0128

α⊕ (β′ ≫ 1)⊕ γ′ ⊕ ((β′ ⊕ γ′) ≫ 81) = 0128

β ⊕ β′ = 0128

γ ⊕ ((β′ ⊕ γ′) ≫ 80) = 0128

(4.4)

In other words, there exists a pair of input-output masks such that their LP is equal to
1, where the limb 1 output mask is the all-zero bitstring.

28

Chapter 5

Strategy of Fixing Friet-PC

We tried to come up with alternative designs by first focusing on the differential propaga-
tion weakness. Afterward, we checked whether the same proposal also resolved the linear
propagation weakness. If it did not, then we repeated the process. We came up with
a few initial proposals that we thought would mitigate this issue. We went into more
detail in Section 6. These proposals were engineered with computational resourcefulness
and preserving the fault detection characteristics of the original primitive in mind.

In our initial attempts to fix Friet-PC (3.1), we tried to keep its initial design ratio-
nale. In other words, we wanted to keep the effects and order of limb transpositions and
limb adaptation step functions. So for example, the new equation we define in a limb
transposition step function should also be another limb transposition step function.

In addition to keeping the order of the limb operations, we wanted to keep the bitwise
AND operation as our only non-linear operation. Finally, we aimed to limit the usage
of additional XOR and rotation operations as much as possible, ideally reducing the
number of bitwise operations or keeping the same as the original design. This way, the
software implementation of our fix could be at least as computationally effective as the
original design.

29

Chapter 6

Unsuccessful Attempts at Fixing
the Primitive

At the start of the research, we came up with three candidates. Ultimately, these
candidates turned out to be insecure when we tested them for differential and linear
cryptanalysis with the methodology outlined in Section 6.4. We discuss the reasons why
they failed in more detail in Section 6.5. In the following sections, we talked about the
specifications of each attempt and what our reasoning was when coming up with these
specifications.

6.1 Attempt 1

Initially, we came up with the candidate shown in Figure 6.1. We first focused on
the reasons for the structural issues that were causing the problem in Condition (4.1).
We concluded that the reason why the limb 1 difference did not change when it was
1128 was due to a lack of limb transposition/adaptation on limb 1 that could alter the
difference. The fact that the first limb difference α retained the value 1128 contributed
to the reason why limb 2 and 3 differences did not change when 0128. This was because
α = α ≪ 81 = 0128 and α = α ≪ 1 = 0128. So in µ2, limb 3 became 0128 and in τ2,
limb 2 became 0128. Hence, all three limb differences stayed the same.

We then figured that switching the differences of limb 1 and 2 during the second
non-native limb transposition τ2 would ensure that the first limb is modified, while also
modifying the difference of limb 2 to a non-zero difference.

The proposed round function is as follows:

c ← c⊕ rci δi
(a, b, c) ← (a⊕ b⊕ c, c, a) τ1

b ← b⊕ (c ≪ 1) µ1

c ← c⊕ (b ≪ 80) µ2

(a, b, c) ← (a⊕ b⊕ c, a, c) τ2
a ← a⊕ ((b ≪ 36) ∧ (c ≪ 67)) ξ

(6.1)

30

Figure 6.1: First attempt

This design not only conserves the limb operation structure and order of the original
Friet-PC, but it is also the result of minimal change in the original design. Another
advantage is that the change can be implemented easily in the hardware by switching
wire connections. This attempt failed due to weaknesses against linear cryptanalysis.

6.2 Attempt 2

Similar to the first candidate, we aimed to have some kind of operation that modifies
limb 1. In this case, we figured that there was an abundance of operations applied on
the third limb. So we moved the first rotate-XOR operation in µ1 to limb 1, as depicted
in Figure 6.2. Doing so ensured that the difference of limb 2 became non-zero while
modifying the difference of limb 1.

31

Figure 6.2: Second attempt

The proposed round function is as follows:

c ← c⊕ rci δi
(a, b, c) ← (a⊕ b⊕ c, c, a) τ1

a ← a⊕ (b ≪≪≪ 1) µ1

c ← c⊕ (b ≪ 80) µ2

(a, b, c) ← (a, a⊕ b⊕ c, c) τ2
a ← a⊕ ((b ≪ 36) ∧ (c ≪ 67)) ξ

(6.2)

This proposal preserves the amount of resources like the first attempt, but unlike the
first attempt, this modification is made to a limb adaptation process. Unfortunately,
this proposal is also weak against linear cryptanalysis.

6.3 Attempt 3

This proposal is a natural expansion of the first two attempts that were insecure against
linear cryptanalysis. We assumed the combined effects of the changes from the previous
attempts, as shown in Figure 6.3, would circumvent the linear cryptanalysis weakness
that the previous two attempts faced.

32

Figure 6.3: Third attempt

The proposed round function is as follows:

c ← c⊕ rci δi
(a, b, c) ← (a⊕ b⊕ c, c, a) τ1

a ← a⊕ (b ≪≪≪ 1) µ1

c ← c⊕ (b ≪ 80) µ2

(a, b, c) ← (a⊕ b⊕ c, a, c) τ2
a ← a⊕ ((b ≪ 36) ∧ (c ≪ 67)) ξ

(6.3)

6.4 Testing the Quality of the Candidates

We mentioned the relations that cause the high DP and LP values the current design has
in Conditions (4.1), (4.2), (4.3) and (4.4). So for each attempt to fix the permutation, we
tested various input differences and output masks. Our goal was to identify differences
or masks that could form trails with a DP or LP of 1 over multiple rounds.

We wrote two simple algorithmsDifference-Evaluation andMask-Evaluation
shown in Algorithm 1 and Algorithm 3 to check the security of each proposal. The first
algorithm we wrote was Algorithm 1. It uses Algorithm 2 to look for input differences
∆in = α∥0128∥0128 such that DP(∆in,∆out) = 1 for an i-round differential where ∆out

33

is the output difference and i > 1. As we know from Condition (4.3), DP is 1 for a
single round differential if limb 2 and limb 3 of the output difference is 0128, I.e., the
input difference to the bitwise AND operation is 0256. So the algorithm looks for an
input difference where the effects of the linear operations on it result in a difference with
limb 2 and limb 3 equal to 0128 respectively. We denote the linear section of the round
function as FL = τ2 ◦ µ2 ◦ µ1 ◦ τ1. We ignore δi since it does not affect the values of
the input differences/masks. Algorithm 1 tries all the bitstrings α of length 2n where
1 ≤ n ≤ 5 for the limb 1 difference. We can analyze equations with bitstrings that have
a length of less than 128 bits because we can interpret short bitstrings as a pattern that
makes out a complete 128-bit long bitstring for the limb. This and other algorithms we
mention later on take advantage of the properties of repeating bit patterns mentioned in
Section 2.1.4. For example, examining the input 10∥0∥0 is the same thing as examining
the bitstring (10)64∥0128∥0128, since the first variant is the reduced version of the latter.

Algorithm 1 Difference-Evaluation

1: function difference evaluation(FL)
2: for size alpha from 2 to 32, doubling each iteration do
3: for each bitstring α of size size alpha do
4: DT(α, FL)
5: end for
6: end for
7: end function

Algorithm 2 (DT) tests the input difference (α,0n,0n) with FL where n = len(α). If
Algorithm 2 evaluates the limb 2 and limb 3 output differences as equal to 0n, then DP
is 1 for at least one round differential. Thus, this input can be dangerous for > 1 round
differential. If the input and output limb 1 differences are the same, then this implies
the same problem as Condition (4.1), DP is 1 for an i-round differential where i ≥ 1.
Thus, this input is very dangerous.

An important thing to note is, even though we mentioned the output difference is
the one that should have its last two limbs the all-zero bitstring, the algorithm DT tries
different values (α,0128,0128) for the input difference instead. The reason for doing this
is because we want to catch differentials with DP equal to 1 that may propagate n rounds
like the one we saw in Condition (4.1). A case like this could happen if and only if the
last two limbs of both the input and the output difference are the all-zero bitstrings.
Moreover, since we follow the propagation of differential from the input difference to the
output difference, it is more convenient for us to try values for limb 1 input difference.

Algorithm 3 tests against linear cryptanalysis. It uses Algorithm 4 to check for output
masks Γout = 0128∥β′∥γ′ such that LP(Γin,Γout) = 1 for i-round linear approximation
where Γin is the input mask and i > 1. LP is equal to 1 for masks propagating through
linear operations. The only non-linear operation is bitwise AND. According to the
correlation conditions for bitwise AND operation mentioned in [17], if the output mask

34

Algorithm 2 DT

1: function DT(init alpha, FL)
2: n← len(α)
3: (α, β, γ)← (init alpha,0n,0n)
4: (α′, β′, γ′)← FL(α, β, γ)
5: if α′ ̸= 0n AND β′ = 0n AND γ′ = 0n then
6: if α′ = α then
7: print(α ,“is very dangerous!”)
8: else
9: print(α ,“can be dangerous.”)

10: end if
11: end if
12: end function

is all-zero, then the LP with the input mask for the bitwise AND operation is equal to 1
iff the input mask is also all-zero. The algorithm finds output masks Γout = 0128∥β′∥γ′,
that result in the input mask Γin = 0128∥β∥γ. Algorithm 3 tries all the bitstrings of
length 2m where 1 ≤ m ≤ 3 for the masks of limbs 2 and 3.

Algorithm 3 Mask-Evaluation

1: function mask evaluation(dangerous input, dangerous output, FL)
2: for size beta from 1 to 8, doubling each iteration do
3: for size gamma from 1 to 8, doubling each iteration do
4: for each bitstring β of size size beta do
5: for each bitstring γ of size size gamma do
6: (dangerous input, dangerous output)

← LT(β, γ, dangerous input, dangerous output, FL)
7: end for
8: end for
9: end for

10: end for
11: end function

The reason why we tried bitstrings only for limb 1 in the differential case and we tried
bitstrings for limbs 2 and 3 in the linear case is that for a dangerous output difference,
the differences between limbs 2 and 3 are all-zero, this means the only varying part is
the limb 1. Thus, we only tried differences for a single limb. For a dangerous output
mask, limb 1 is all-zero, this means that the other two limbs are the varying parts of the
bitstring. Thus, we tried masks for two limbs instead of one. The upper bound for what
the longest bitstring pattern should be for both algorithms was chosen to test small-bit
patterns instead of big ones.

35

Algorithm 4 (LT) tests the output mask (0n, β, γ) with FL where n = max(len(γ), len(β)).
If LT evaluates the limb 1 input mask as 0n, then LP is 1 for at least one round linear
approximation, therefore the output mask is added to the set of dangerous outputs and
the input mask is added to the set of dangerous inputs of the algorithm. If the input
and output limb 2 and limb 3 masks are the same, then this implies the same problem
as Condition (4.2), LP is 1 for an i-round linear approximation where i ≥ 1. Thus, this
output mask is very dangerous.

However, not all i-round linear trails have to be made up of the same mask for the
LP of the trail to be 1. The LP of a trail would be 1 if each of the masks in a trail has
an all-zero mask in limb 1. We wanted to consider the simplest case in which this would
happen. This is why, given the dangerous output mask Γout and the input mask Γin

which was calculated as the effect of application of FL, the algorithm checks whether
Γout has already been an input mask for Γin.

That is to say, given the masks Γ1 = 0128∥β∥γ and Γ2 = 0128∥β′∥γ′, if LP(Γ1,Γ2) = 1
and LP(Γ2,Γ1) = 1 for a single round linear approximation, then LP(Γ1,Γ2) = 1 and
LP(Γ2,Γ1) = 1 for an odd number of rounds linear approximation.

36

Algorithm 4 LT

1: function LT(init beta, init gamma, dangerous input, dangerous output, FL)
2: n← max(len(β′), len(γ′))
3: (α′, β′, γ′)← (0n, init beta, init gamma)
4: if β′ = 0 AND γ′ = 0 then
5: return (dangerous input, dangerous output)
6: end if
7: Declare (α, β, γ)
8: if len(β′) ≥ len(γ′) then
9: length factor← n

len(γ′)

10: (α′, β′, γ′)← (α′, β′, (γ′)length factor)
11: (α, β, γ)← FL(α

′, β′, γ′)
12: else
13: length factor← n

len(β′)

14: (α′, β′, γ′)← (α′, (β′)length factor, γ′)
15: (α, β, γ)← FL(α

′, β′, γ′)
16: end if
17: if α = 0n AND (β ̸= 0n OR γ ̸= 0n) then
18: dangerous output.insert((α′, β′, γ′))
19: dangerous input.insert((α, β, γ))
20: containment condition ← dangerous output.contains((α, β, γ)) AND

dangerous input.contains((α′, β′, γ′))
21: if γ = γ′ AND β = β′ then
22: print((β′, γ′),“pair is very dangerous!”)
23: else if containment condition then
24: print(“The pairs ”, (β′, γ′), “and ”, (β, γ)“are referencing each other!”)
25: else
26: print((β′, γ′),“can be dangerous”)
27: end if
28: end if
29: return (dangerous input, dangerous output)
30: end function

37

The variables in the pseudocodes are explained as follows:

- FL : The linear part of the round function we are testing against differential and
linear cryptanalysis.

- dangerous output: The set of output masks Γ′ = (0128, β′, γ′) ∈ F3n
2 , where the

effect of the round function on Γ′ results in an input mask Γ = (0128, β, γ).

- dangerous input: The set of input masks Γ = (0128, β, γ) ∈ F384
2 , where the effect

of the round function on some output mask Γ′ = (0n, β′, γ′) results in Γ.

dangerous output.insert (or dangerous input.insert) inserts a mask with each
limb’s bit pattern representing the mask for that limb expanded to 128 bits. For
example,

dangerous output.insert((10,0,1)) = dangerous output.insert(((10)64,0128,1128))

dangerous output.contains(Γ) (or dangerous input.contains(Γ)) checks whether
a mask Γ (each limb mask expanded to 128 bits) is in the set.

Normally, for Algorithm 2 a good conscious check would be to do a similar thing we
do in Algorithm 4, i.e., keep track of differences that have been found dangerous in the
input and the output, then check whether the input difference we are trying is found in
the set of dangerous outputs and vice versa. This would make it possible for us to con-
struct a dependency graph and see whether we will always have the (non-zero,0128,0128)
structure. It turned out we did not need to consider this for the few proposals we came
up with since none of the fixes had a pair of input-output differences with a similar
structure.

Notice that in the pseudocode for Algorithm 4 on lines 11 and 15, the round function
is applied after the lengths of repeating patterns are equalized. This ensures that the
XOR operations are done on bit strings with the same pattern frequency.

Example:

(01)64 ⊕ 1128 = (01)64 ⊕ (12)64 = (01)64 ⊕ (11)64 = (10)64

In the end, these algorithms revealed the shortcomings of each attempt we made.

6.5 The Design Flaw of the Initial Attempts

By the end of our analysis, we found out that all attempts displayed improvement against
differential cryptanalysis. The reason for this is that the alterations not only modify limb
1 for an input in the form (α,0128,0128), they also modify the values of the other limbs
to a non-zero value, thus preventing the risk of DP value 1.

However, it turned out that neither one of the three candidates is safe against linear
cryptanalysis. Below, we highlight the inputs that this weakness arises.

38

Given the output mask (0128, β′, γ′), the input mask is represented for each candidate
as follows:

The input mask equation for the first candidate.

α = β′ ⊕ γ′ ⊕ (γ′ ≫ 81)

β = β′

γ = β′ ⊕ (γ′ ≫ 80)

(6.4)

The input mask equation for the second candidate.

α = γ′ ⊕ (β′ ≫ 1)

β = β′

γ = β′ ⊕ (β′ ≫ 80)⊕ (γ′ ≫ 80)

(6.5)

The input mask equation for the third candidate.

α = β′ ⊕ γ′ ⊕ (β′ ≫ 1)

β = β′

γ = β′ ⊕ (γ′ ≫ 80)

(6.6)

For the first candidate, the output mask Γout = 0128∥0128∥1128, results in the input
mask Γin = 0128∥0128∥1128. Since the input-output mask pair is equal to each other,
this output mask persists throughout the entire series of round function applications.
Thus, LP(Γin,Γout) = 1.

For the second candidate, the output mask Γout = 0128∥1128∥1128, results in the input
mask Γin = 0128∥1128∥1128. Similarly to the first candidate, this implies LP(Γin,Γout) =
1.

The third candidate did not have an output mask with a repeating bit pattern of
length less than 16 that persists. However, for the output mask 0128∥(01)64∥1128 we
end up with the input mask 0128∥(01)64∥(10)64. If we then have this mask as the
output mask for the next round, we end up with the input mask 0128∥(01)64∥1128.
After two rounds, we ended up with the same mask as we started. Since the limb 1
mask in both masks is all zero, the Toffoli Stream operation does not exhibit a non-
linear effect on the masks. I.e., the propagation of the output mask is non-probabilistic.
Thus, the LP for the input-output mask pair (0128∥(01)64∥1128,0128∥(01)64∥1128) for
an even number of rounds is 1. Equivalently, the LP for the input-output mask pair
(0128∥(01)64∥(10)64,0128∥(01)64∥1128) for an odd number of rounds is 1.

The main and common flaw in these candidates is that the limb 2 mask propagates
as it is. This means that if we fix a value for β′, it becomes easy to find a value for γ′

such that α = 0128. This paves the way for effective linear cryptanalysis.

39

In the next section, we begin our analysis of whether a suitable adjustment exists
to the linear operations such that it is reasonably secure against differential and linear
cryptanalysis.

40

Chapter 7

Investigation of Suitable Linear
Transformations

We have proposed three potential fixes and we have found out that all three of them
failed critically due to the existence of iterative linear approximation with LP equal to
1. In this section, we investigated the existence of a proper fix to the primitive with the
following conditions:

1. Combinations {(x,0128,0128) ∈ F384
2 \{(0128,0128,0128)}} do not appear frequently

in a differential trail.

2. Combinations {(0128, x, y) ∈ F384
2 \ {(0128,0128,0128)}} do not appear frequently

in a linear trail.

3. The only non-linear operation is a single application of a Toffoli Stream operation.

We defined what we mean by “frequently” formally in the next section. A single
round can be divided into two sections. The first section is the linear section which is a
series of linear operations on three limbs and the round constant addition. The second
is a non-linear section, which is a bitwise AND operation on limbs 2 and 3, and an XOR
operation with the result of the bitwise AND operation on limb 1.
Any linear operation on a vector space V can be represented as a square matrix of size
equal to the dimension of V .

This interpretation of the permutation like in Figure 7.1, together with the require-
ment of a single AND operation, reduced the problem of fixing Friet-PC into a problem
of finding a good matrix that represents the linear operation.

41

Figure 7.1: Sections of a permutation

7.1 What Makes a Matrix Suitable

Although we could represent linear operations as matrices, we wanted to consider a
sub-space of matrices, as not all matrices fit the criteria we look for. Given that each
limb has 128 bits, we would ideally look for a 384 × 384 matrix that fits these criteria.
However, in a naive search, there are 2384·384 different unique matrices we would need
to consider. Since we want to construct a permutation, the matrix has to be invertible.
A matrix is invertible if its columns are linearly independent. The matrices that fit this
criterion are the matrices that form the group GL(n, 2) where n is the dimension of the
square matrix.

Although it is trivial to find a linear transformation that is invertible as the only
criterion, we enforced additional restrictions on the matrices to make them suitable as
a linear round. The first restriction we considered is to ensure that: (α′,0128,0128) ̸= M ·
(α,0128,0128) for an input difference (α,0128,0128) and an output difference (α′,0128,0128)
where α ̸= 0128 and α′ ̸= 0128. In the absence of this restriction, the AND operation
returns the same output difference. The second restriction was to ensure the LP is not
1. Suppose applying the transpose matrix MT ord(M) times on a non-all-zero output
mask (0128, β, γ) results in linear trail T . We want to ensure that:

∃(α, β, γ) ∈ T, [α ̸= 0128]

This restriction is to ensure that in the permutation constructed from this matrix, LP is
not equal to 1 for each iterative linear approximation in the linear trail. As we mentioned

42

in Section 6.4, the LP for a linear approximation for the bitwise AND operation is equal
to 1 when the output mask is all-zero. This corresponds to the mask of the first limb. If
there is then a trail where each of the limb 1 masks is all-zero, then the LP of the entire
trail is 1, so we wished to avoid this problem and chose the matrices with this in mind.

With these restrictions, it was still unfeasible to compute and check 384 × 384 ma-
trices. However, we reduced our search space with the intuition that, any matrix which
did not work for shorter repeating patterns of bits, would not work for longer repeating
patterns. Similar to binary operations on bitstrings made of repeating bit patterns, a
matrix applied on a vector with repeating patterns is equivalent to applying a matrix
with reduced dimensions to that pattern. We defined the reduction operation of a matrix
to a lower dimension as follows:

Suppose we have a circulant matrix of size 2n× 2n
We take the first column/row and divide it into two 1× n vectors.

We add the two vectors together and from the resulting vector v⃗, we create an n× n
circulant matrix.

Example: Suppose we have the following matrix:

M =


1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1


Take the following vector:

v⃗ =


1
0
1
0


We have w⃗:

w⃗ = M · v⃗ =


1
1
1
1


The circulant matrix M is formed from the vector (1, 0, 0, 1). If we follow the reduction
process we outlined, the reduced matrix will be made up of vector (1, 0)⊕ (0, 1) = (1, 1).
Thus, our new matrix is:

M ′ =

[
1 1
1 1

]
If we then reduce v⃗ into its repeating pattern, we get:

v⃗′ =

[
1
0

]

43

Now

w⃗′ = M ′ · v⃗′ =
[
1
1

]
As can be seen, this is indeed the reduced version of the vector w⃗ = (1, 1, 1, 1).

If we started our search with a single-bit pattern repeating 128 times per limb, we
would only need to consider valid 3 × 3 matrices. These matrices form GL(3, 2). We
determined the number of invertible matrices as the formula mentioned in Section 2.1.3
for general linear groups over finite fields. So there are

2∏
k=0

(23 − 2k) = 7 · 6 · 4 = 168

3 × 3 invertible matrices. We refer to the set of n × n matrices which are safe against
distinguishing attacks with advantage ≈ 1 when followed by an application of Toffoli
Stream operation asMn.

We further reduced the search space by enforcing the restriction meant for differences.
For 3 × 3 matrices, this was trivial to achieve. We just had to ensure that difference
(1, 0, 0) when multiplied with matrix M should not result in (1, 0, 0). Notice that this
only happens when the matrix is in the form of:

M =

1 · ·0 · ·
0 · ·


where the dots are 1 or 0. This matrix always gives the output difference (1, 0, 0),
given (1, 0, 0) as the input difference. This meant we had one less column we had to
consider for the first column. This reduced the amount of matrices we needed to search
to (23− 1− 1)(23− 2)(23− 22) = 144. Among these 144 matrices, we needed to find the
ones that ensured the restriction on linear masks.
The algorithm that checks this restriction for 6 × 6 is shown in Algorithm 5 (Trail-
Check). This algorithm counts the number of linear trails where every mask in the trail
is in the form of (non-zero, ,) when a matrix M is applied repeatedly on some output
mask.

44

Algorithm 5 Trail-Check

1: function trail check(M)
2: count← 0
3: found← false
4: // If we are testing a matrix with size n, then
5: // the size of v⃗ is 2n

3 (I.e., the size of two limbs)
6: for each bitstring v⃗ except (0, 0, . . . , 0, 0) do
7: r⃗ ←MT · (0

n
3 ∥v⃗)

8: // If we immediately found that MT · r⃗ = (non-zero, ,) then
9: // we do not need to check whether (MT)i · r⃗ = (non-zero, ,)

10: // for i > 1.
11: if first limb of r⃗ ̸= 0

n
3 then

12: continue
13: end if
14: for ord(MT)− 2 times do
15: r⃗ ←MT · r⃗
16: if the first limb mask of r⃗ ̸= 0

n
3 then

17: found← true
18: break from for loop.
19: end if
20: end for
21: if NOT found then
22: count← count+ 1
23: end if
24: found← false
25: end for
26: return count
27: end function

Algorithm 5 is then used as an assessment function for a matrix that is tried in
Algorithm 6. Algorithm 6 (Try-MatricesM3) counts and saves the suitable matrices
of size 3 based on the criteria we defined. It turns out that out of 144 candidates
derived with the restriction on difference and invertibility criteria, 96 of them are suitable
matrices.

45

Algorithm 6 Try-MatricesM3

1: // The set of suitable 3× 3 matricesM3 is initially empty.
2: function try matricesM3(M3)
3: safe count← 0
4: for each matrix M ∈ GL(3, 2) do
5: if det(M) mod 2 > 0 then
6: lin amount← Trail Check(M)
7: if lin amount = 0 then
8: safe count← safe count+ 1
9: Add(M3,M)

10: end if
11: end if
12: end for
13: return (safe count,M3)
14: end function

For calculating suitable matrices on matrices of size> 3, Algorithm 7 (Try-Matrices)
is used. This function calculates the number of suitable matrices extended from suitable
matrices of lower dimensions.

Algorithm 7 Try-Matrices

1: function try matrices(Mn,M2n)
2: safe count← 0
3: for each matrix M inMn do
4: // Different combinations of possible matrix expansions.
5: combinations← expansions(M)
6: for each matrix C in combinations do
7: if det(C) mod 2 > 0 then
8: lin amount← Trail-Check(C)
9: if lin amount = 0 then

10: safe count← safe count+ 1
11: Add(M2n, C)
12: end if
13: end if
14: end for
15: end for
16: return (safe count,M2n)
17: end function

We extended our search to 2-bit repeating patterns deriving from the candidatesM3.
The expansions operation from a matrix inM3 to a 6×6 matrix is done as follows:

all bits which were 1 become either

[
1 0
0 1

]
or

[
0 1
1 0

]
. All bits which were 0 become

46

either

[
0 0
0 0

]
or

[
1 1
1 1

]
.

Example:

M =

1 1 0
0 1 0
0 0 1


A valid expansion would be: 

[
1 0
0 1

] [
1 0
0 1

] [
0 0
0 0

]
[
1 1
1 1

] [
0 1
1 0

] [
0 0
0 0

]
[
0 0
0 0

] [
1 1
1 1

] [
1 0
0 1

]


We found out that all 6×6 matrices deriving from matrices inM3 are suitable matrices.
Since there are two possible square matrices each bit can be expanded to, there are 29

different matrix combinations per a matrix from M3. Since |M3| = 96, this means
|M6| = 29 · 96 = 49152.

Example:

A suitable matrix M where M ∈M6:

M =



0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0



MT =



0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


All of its possible linear trails:

[0 0 , 1 0 , 0 0] −> [0 0 , 0 0 , 1 0] −> [1 0 , 0 0 , 0 0] ⟲
[0 0 , 0 1 , 0 0] −> [0 0 , 0 0 , 0 1] −> [0 1 , 0 0 , 0 0] ⟲
[0 0 , 1 1 , 0 0] −> [0 0 , 0 0 , 1 1] −> [1 1 , 0 0 , 0 0] ⟲
[0 0 , 1 0 , 1 0] −> [1 0 , 0 0 , 1 0] −> [1 0 , 1 0 , 0 0] ⟲
[0 0 , 0 1 , 1 0] −> [1 0 , 0 0 , 0 1] −> [0 1 , 1 0 , 0 0] ⟲
[0 0 , 1 1 , 1 0] −> [1 0 , 0 0 , 1 1] −> [1 1 , 1 0 , 0 0] ⟲

47

[0 0 , 1 0 , 0 1] −> [0 1 , 0 0 , 1 0] −> [1 0 , 0 1 , 0 0] ⟲
[0 0 , 0 1 , 0 1] −> [0 1 , 0 0 , 0 1] −> [0 1 , 0 1 , 0 0] ⟲
[0 0 , 1 1 , 0 1] −> [0 1 , 0 0 , 1 1] −> [1 1 , 0 1 , 0 0] ⟲
[0 0 , 1 0 , 1 1] −> [1 1 , 0 0 , 1 0] −> [1 0 , 1 1 , 0 0] ⟲
[0 0 , 0 1 , 1 1] −> [1 1 , 0 0 , 0 1] −> [0 1 , 1 1 , 0 0] ⟲
[0 0 , 1 1 , 1 1] −> [1 1 , 0 0 , 1 1] −> [1 1 , 1 1 , 0 0] ⟲
[0 1 , 1 1 , 1 1] −> [1 1 , 0 1 , 1 1] −> [1 1 , 1 1 , 0 1] ⟲
[1 0 , 0 1 , 1 1] −> [1 1 , 1 0 , 0 1] −> [0 1 , 1 1 , 1 0] ⟲
[1 0 , 1 0 , 0 1] −> [0 1 , 1 0 , 1 0] −> [1 0 , 0 1 , 1 0] ⟲
[1 0 , 1 0 , 1 0] ⟲
[1 1 , 1 1 , 1 1] ⟲
[1 0 , 1 1 , 0 1] −> [0 1 , 1 0 , 1 1] −> [1 1 , 0 1 , 1 0] ⟲
[0 1 , 0 1 , 0 1] ⟲
[1 0 , 1 1 , 1 0] −> [1 0 , 1 0 , 1 1] −> [1 1 , 1 0 , 1 0] ⟲
[0 1 , 0 1 , 1 0] −> [1 0 , 0 1 , 0 1] −> [0 1 , 1 0 , 0 1] ⟲
[1 1 , 0 1 , 0 1] −> [0 1 , 1 1 , 0 1] −> [0 1 , 0 1 , 1 1] ⟲
[1 0 , 1 1 , 1 1] −> [1 1 , 1 0 , 1 1] −> [1 1 , 1 1 , 1 0] ⟲

The notation [α, β, γ] is the masks for limbs 1, 2 and 3. As can be seen, there is not
a trail where each mask has an all-zero mask in the first limb. (⟲ means looping back
around to the initial state of the trail.)

As our search space increased by quite a lot, the next dimension expansion was un-
feasible to search through so we stopped at dimensions 6 × 6 for this task. However,
with more efficient algorithms and better hardware, we think this search can be ex-
panded, so we would like to mention how we expanded matrices from 6× 6 and beyond.

Rule:

Suppose we have a 3n× 3n matrix that is made of 9 circulant block matrices. (If 3× 3
matrix, then it is just 9 values instead of blocks.)

For each block, we determine pairs of bitstrings of length n that result in the bitstring
that forms the circulant block matrix when we apply the XOR operation on the two.
The concatenation of those pairs to get a bitstring of size 2n is the row expansion

operation.
After we have such a bitstring, we construct a circulant matrix out of it.

The resulting 2n× 2n square matrix then can be used to replace the old n× n
circulant block matrix.

After doing this for each block, we end up with a new matrix of size 6n× 6n.

Example:

M =

1 1 0
0 1 0
0 0 1


This matrix is 3 × 3, so we look at 1-bit values. For each value x, we check for which
pairs of 1-bit values, when an XOR operation is applied, we end up with x. For the cells
that are 1 in M , we look for pairs of 1-bit values that result in 1 when added together.
These pairs are (1, 0) and (0, 1). We now concatenate the values for each of these pairs

48

and we end up with the 2-bit vectors (1, 0) and (0, 1). Circulant matrices that can be

constructed with these vectors are

[
1 0
0 1

]
and

[
0 1
1 0

]
. Thus each 1-bit cell with value 1

can be replaced by either of the two matrices.
For cells that have the value 0 in M , we have the pairs (0, 0) and (1, 1). So we

have the vectors (1, 1) and (0, 0) and from these vectors, we can construct two circulant

matrices:

[
1 1
1 1

]
and

[
0 0
0 0

]
. Thus each 1-bit cell with value 0 can be replaced by either

of the two matrices.
This is the derivation of the expansion rule fromM3 to 6× 6 matrices we defined in

Page 46.
As dimensions get bigger, the number of different expansion candidates increases

exponentially; for this research, we decided to stop expanding the matrices at 12 × 12.
After stopping at 6×6 matrices, we focused on measuring the quality of good matrices we
found thus far. Doing so allowed us to gain insight into the security of the matrices when
paired with the bitwise AND operation. The measurements were done for 24 rounds of
permutation, as this was the default recommended number of permutations specified in
[14].

49

Chapter 8

Measuring the Security of the
Permutation with a Chosen
Matrix

When using any matrix M from Mn to construct a permutation like shown in Figure
7.1, the resulting permutation is guaranteed to not be distinguishable with an advantage
close to 1 in the case of repeated applications. However, this does not imply that distin-
guishing attacks are unfeasible. It could be the case that, although the advantage is not
approximately 1, it could still be high. This is why next we measured the likelihood of
distinguishing a permutation made up of one of the matrices from Mn over 24 rounds
for each matrix and chose the most promising ones.

The DP of any differential trail and the LP of any linear trail must be low. The reason
for this is, assuming distinguishing attacks through differential and linear cryptanalysis,
the advantage of distinguishing is lower when the DP of a differential trail is lower. The
same can be said about the LP of a linear trail. To have clearer measurements, we used
weights instead of probabilities, as they provided clearer measurements when probabili-
ties were very small. A weight is calculated as − log2(p) where p is the probability.

What we aimed to measure was the weight of the trail with the lowest weight for
24 rounds, given a matrix and a bitwise AND operation as shown in Figure 7.1. It
can be inferred from Sections 2.3.1 and 2.3.2 that, constructing a trail from any linear
operation is deterministic. However, we also have a non-linear operation, that gives rise
to probabilistic outcomes. The effects of the bitwise AND operation are different for
differences and linear masks.

Figure 8.1 shows that the input difference (α, β) can propagate to a total of 2wt(α∨β)

possible differences. The probability of the output difference being a specific one out of
them is 2−wt(α∨β). Thus, the weight is wt(α ∨ β) [14].

50

Figure 8.1: bitwise AND on differences

Figure 8.2: bitwise AND on linear masks

Figure 8.2 shows that given an output mask γ the number of possible combinations
the pair of input masks (α, β) can take is 4wt(γ) (We are working with LP values, we get
this result from 2wt(γ) ·2wt(γ) = 22wt(γ) = 4wt(γ)). The probability of the input mask pair
being a specific pair out of the possible pairs is 4−wt(γ). Thus, the weight is 2wt(γ) [14]

We can represent the relation between states as transitions from one to another with
a certain probability. The mathematical model we used to represent this relation was
a directed graph. The vertices are differences/linear masks, the edges connecting two
states represent transitions and the weight of these edges correspond to the probability
of the transition. Graphs with finitely many vertices where the weights of outgoing edges
denote probabilities are a representation of a random process called a Markov Chain [13,
13]. These weights add up to 1. In a Markov Chain, the probability of transitioning to
the next state depends only on the current state . A path of length n is a sequence of n
states that are traversed in the graph.

The transition conditions are different for differential and linear propagation. For
differential propagation, given the linear round M and an initial state s⃗, the possible
states that can be transitioned from s⃗ are computed with the function f = (∧)diff ◦ h.

51

Where h(v⃗) = M · v⃗ and (∧)diff is defined as follows:

(∧)diff : F3ℓ
2 → P(F3ℓ

2) where ℓ is a power of 2

(∧)diff(α, β, γ) = {(α′, β, γ) | For every bi at position i, if bi = 0 then α′
i = αi

otherwise α′
i ∈ {0, 1}}

where: β ∨ γ = b0b1 . . . bℓ−1,
xi := bit value of limb x at position i (also zero-indexed)
ℓ is the length of the bit pattern of each limb.

The function f results in 2wt(β′∨γ′) different states from an intermediate state s′ =
(α′, β′, γ′) where s′ is the result of the matrix multiplication.

Example: Suppose we have an initial state s = (1, 0, 0) and a matrix

M =

1 0 1
0 1 1
1 1 1


and we want to compute the graph (for one transition) for differential propagation.
Then, the graph looks as in Figure 8.3.

Figure 8.3: Transition graph for differential propagation

First, we multiply s with the matrix M and get

s′ = M · s =

1 0 1
0 1 1
1 1 1

 ·
10
0

 =

10
1


Then, we apply the bitwise AND operation on the intermediate state. I.e., bitwise AND
operation on limbs 2 and 3. The result becomes the difference x where x ∈ {0, 1}.
Then, the XOR operation between limb 1 difference and x is applied, which results in
limb 1 = x⊕ limb 1.

52

In the generalized case, for patterns of bits which has a length greater than 1, the
first limb would take 4wt(α′) values, thus, we would need to consider 4wt(α′) states to
transition. The last two limbs are left unchanged as depicted in Figure 7.1. Since
wt(0 ∨ 1) = 1, the weight of each edge is 2−1 = 0.5. If we write down all the different
combinations of (x, 0, 1), we get {(0, 0, 1), (1, 0, 1)}. Hence, the graph in Figure 8.3.

The full graph is given in Figure 8.4

Figure 8.4: Full transition graph for differential propagation

In Figure 8.4, the vertices are natural numbers. Each natural number represents the
state of its binary representation. For example, 1 = 001, 4 = 100 and 5 = 101. As can
be seen, two edges are going outwards from 4 to 1 and 5 with a probability of 0.5, just
like we saw earlier.

For linear propagation, given the linear round M and an initial state s⃗, f ′ = g◦(∧)lin
is used to compute the states that can be transitioned to from s⃗. Where g(X) =
{t(x⃗) | x⃗ ∈ X}, t(v⃗) = MT · v⃗ and (∧)lin is defined as follows:

(∧)lin : F3ℓ
2 → P(F3ℓ

2)

(∧)lin(α, β, γ) = {(α, β′, γ′) | if αi = 0 then β′
i = βi and γ′i = γi

otherwise β′
i, γ

′
i ∈ {0, 1}}

In this case, the bitwise AND operation is applied first. I.e., the (transposed) matrix
multiplication is applied to a set of outputs instead of a single state. In this case, the
result of the (∧)lin on vector v⃗ = (α, β, γ) results in 4wt(α) different vectors representing
a linear mask.

53

Example: Take the same matrix M from the previous example, then:

MT =

1 0 1
0 1 1
1 1 1


(∧)lin is applied first.
(∧)lin(1, 0, 0) = {(1, 0, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1)}. If we then multiply the results

with MT, we get:
{(1, 0, 1), (1, 1, 0), (0, 1, 0), (0, 0, 1)}

Each transition has a probability of 4−wt(1) = 4−1 = 0.25 occurring. Thus, one round of
transition from state (1, 0, 0), i.e., from state 4 is graphed as in Figure 8.5.

(1,0,0)

(1,0,1) (1,1,0)

0.25

(0,1,0) (0,0,1)

0.25 0.25
0.25

Figure 8.5: Transition graph for linear propagation

Similarly, the full linear transition graph is given in Figure 8.6:
If we apply this technique to generate transitions for every state, we would generate

the Markov Chain for the entire state space. The probability of transitioning to a state s′

in the nth transition given that we start from state s is denoted as Pr(X24 = s′ |X0 = s).
As we have discussed, if there is a path for which the probability is high both for the
differential and linear case, then this would imply a high advantage against distinguishing
attacks. So the quality of a linear round is based on how high the highest probability
path is. A naive approach to this problem would be, assuming 24 rounds of permutations
are done, we would be looking for max

s,s′
Pr(X24 = s′ |X0 = s), the highest probability

starting from some state s and ending up at s′ in the 24th transition. One way to
calculate this probability is to find the cell with the biggest value in C24 where C is
the transition matrix. This method works fine in (approximately) O(n3) since matrix
multiplication is upper-bounded around this value, however, this approach does not
exactly answer our problem. Evaluating the value of Pr(X24 = s′ |X0 = s) calculates
the probability of starting at state s and ending at state s′. However, this value is not
equivalent to the probability of a singular path. Instead, this value is equivalent to the
sum of probabilities of paths starting from state s and ending at s′. We can derive this

54

Figure 8.6: Full transition graph for linear propagation

as shown in Equation (8.1) from the definition of conditional probability and the law of
total probability [19, 30–31].

Pr(X24 = s′ |X0 = s) =

1

Pr(X0 = s)

∑
s1,...,s23

Pr(X24 = s′, X0 = s,X1 = s1, . . . , X23 = s23)
(8.1)

Hence, we needed to change our approach to focus on individual paths and finding
the path with the highest probability instead of just determining the highest probability
of ending up in some state s′ in n steps starting from another state s.

We want to identify the path of length 24 that has the highest probability (lowest
weight). The probability of the path is calculated as:∏

(s,s′)∈T

w(s, s′)

where T is the sequence of transitions taken and w(s, s′) is the weight of an edge/-
transition. While looking for inspiration on how we could write such an algorithm,
we found that there is a graph algorithm that solves a similar problem. We took in-
spiration from https://www.geeksforgeeks.org/longest-path-in-a-directed-acyclic-graph-
dynamic-programming/, which is an algorithm that finds the longest path in a directed

55

https://www.geeksforgeeks.org/longest-path-in-a-directed-acyclic-graph-dynamic-programming/
https://www.geeksforgeeks.org/longest-path-in-a-directed-acyclic-graph-dynamic-programming/

acyclic graph. This can easily be modified to find the path with the highest weight.
However, this algorithm does not work when the graph contains loops, whereas in our
case, a transition can happen to a previously visited state. We modified this algorithm
to limit the length of the path so that we have a new stopping condition and we do not
check whether a state has been visited before. This small but important change allowed
us to visit the same vertices multiple times since we now have an upper bound on how
many times we take a step in the graph. Similar to the algorithm, our solution will
also be based on dynamic programming. After doing additional research, we found out
that this modified algorithm is somewhat of a variant of an already existing algorithm
called the Viterbi Algorithm [16]. We made a variant of the algorithm that deals with
Markov chains instead of hidden Markov models. I.e., a variant without any observa-
tions where the state of the graph and its probability distribution for every transition
between each state is known.
The algorithm we implemented uses the following recursive relation to compute the
highest probability path probability:

dp[s, 0] = 1

dp[s, limit] = max
child∈ s.children

{w(s, child) · dp[child, limit− 1]}

In our case, the limit value was set to 24. So our algorithm finds the value where:
dp[si, 24] = max

s′,s23,...,s1
Pr(X24 = s′, X23 = s23, . . . , X1 = s1 |X0 = si). This dynamic

programming solution allows us to backtrack and save the path we take:

path[s, 0] = []

path[s, limit] = [s′] ++ path[s′, limit− 1]

where “++” is the concatination operation and s′ is equal to s1 in:

argmax
slimit−1,...,s1

Pr(Xlimit−1 = slimit−1, Xlimit−2 = slimit−2, . . . , X1 = s1 |X0 = s)

After we calculated the matrices M3, we ran the algorithm on these matrices. After
running this algorithm, we discovered that all of these matrices have the same weight
distributions. We stored these distributions in dictionaries. Dictionaries are a type of
collection that associates keys with values. The dictionary keys are the weights of the
path with the highest probability in n rounds and the values of the dictionary are the
number of states that have such a weight starting from that state. Dict(lowest weight
=> number of states)

diff weights: Dict(16.0 => 7)

lin weights: Dict(16.0 => 7)

For 24 rounds, all seven states (excluding the all-zero state) that we can form with
three bits have a weight of 16. Hence, we could not infer enough information from

56

3 × 3 matrices. Therefore, we ran the same algorithm for 6 × 6 matrices to look for
distinguishing factors. For every subset of M6 calculated from a M3 matrix, (i.e.,
29 configurations for each M3) we created a file to analyze their qualities with the
same algorithm. After running the algorithm on all unique matrices (by unique, we
mean excluding matrices which are equal to another matrix’s transpose), we saw that
there were different varieties of weight values and distributions. We saw that in some
matrices, the lowest linear weights had considerably bigger values (28.0) but conversely,
had smaller lowest differential weights (23.0). The same goes for the other way around.
We saw 26.0 for the differential case and 22.0 for the linear case. We deemed the more
balanced and high lowest weights to be good candidates for a good matrix. So we picked
the matrices with the lowest weights 26.0 and 26.0.

We then looked at the distribution of weights and further narrowed down the ma-
trices with the lowest weights appearing less. There were mainly two different weight
distributions.
First distribution:

diff weights: Dict(27.0 => 39, 26.0 => 4, 28.0 => 20)

lin weights: Dict(26.0 => 19, 30.0 => 16, 28.0 => 28)
(8.2)

Second distribution:

diff weights: Dict(29.0 => 8, 27.0 => 20, 26.0 => 2, 28.0 => 33)

lin weights: Dict(26.0 => 25, 28.0 => 38)
(8.3)

Observing the differences between Distributions 8.2 and 8.3, we can see that in the
first distribution, the lowest linear weight appears for 19 states, whereas for the second
distribution, there are 25. Conversely, in the first distribution, the lowest differential
weight appears in four states, whereas in the second distribution, there are two.

However, notice that the first distribution has 26.0 appearing in six states less in
linear weights, and the second distribution has 26.0 appearing in two states less in dif-
ferential weights. Moreover, in the second distribution, the highest differential weight
(29.0) is higher than that of the first distribution but the highest differential weight
value in the two distributions only differs by one, and eight of the states have this
highest weight value. However, the first distribution has the highest linear weight value
(30.0), and the highest linear weights between the two distributions differ by two instead
of one. Since the weights are on a logarithmic scale to probabilities, a weight difference
of n is 2−n factor of difference in probability. Thus, even small differences in weights
represent significant differences in probability. Additionally, 16 states have the highest
linear weight in the first distribution compared to 8 states having the highest differen-
tial weight value in the second distribution. Because of these reasons, we prioritized
matrices with the first distribution when doing further computations, since except for
small disadvantages in differential weights compared to the second distribution, the first
distribution is more favorable due to bigger advantages in linear weights.

Finally, we also filtered the matrices that had less than 14 1s in them to be more
cost-effective, as a high number of 1s could make the software implementation costly.

57

With this, we ended up with 8 matrices of cost 10 and 30 matrices of cost 12 for the
next analysis.

On a side note, we would like to highlight an interesting property we noticed. We
visualized the transition graph for one of the matrices. The matrix is:

M =



0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0


The transition graph for differential propagation is depicted in Figure 8.7.

Figure 8.7: Transition graph with multiple connected components

Since the graph is a bit clustered, it is hard to see individual transitions, however, the
interesting thing to notice is that this graph has multiple connected components. Other

58

graphs we looked at only have one connected component. The existence of multiple
connected components implies that, for certain starting differences, it is impossible to
transition to some differences. We believe the reason for this is that the columns in odd
positions only affect the bit positions at odd positions and the columns in even positions
affect the bit positions at even positions. This means that only a subset of modifications
to a state is possible before we eventually loop back to one of the previous modifications.
The matrix itself is also the identity matrix but shifted 2 bits to the right.

59

Chapter 9

Algebraic Degree Analysis

The final analysis we did on the matrices was analyzing the algebraic degree of the
permutation comprised of the matrix and the Toffoli Stream operation. The permutation
must have a high algebraic degree for the reasoning outlined in [14]. Given a variable
x = a∥b∥c where a, b and c are variables in Fℓ

2, we can think of a permutation F as a
vector boolean function from F3ℓ

2 to F3ℓ
2 where ℓ is the length of the repeating bit pattern

in each limb and M is the matrix we are analyzing.
As outlined in Figure 7.1, we define the permutation FM as FM = Toffoli ◦fM , where

fM (a, b, c) = M · (a, b, c) and Toffoli(a, b, c) = (a+ bc, b, c) (Toffoli Stream operation).
After we narrowed down the matrices to 38 matrices that follow one of two distri-

butions and have and divided them based on Distributions 8.2 and 8.3, we started our
analysis on matrices from the first distribution for the reasons we described. For the
analysis, we wanted to measure the degree of up to 6 rounds for each of the matrices we
picked. However, instead of measuring the degree for 128-bit long repeating bit patterns
for 6 rounds, we decided to measure the degree of the permutation starting from 1-bit
long bit patterns up to the longest bit pattern we could test in a reasonable amount of
time for 6 rounds; the longest bit patterns we tested were 4-bit long. We decided to
reduce the length of bit patterns of the limbs to decrease computational and memory
requirements, similar to what we did in previous analyses. While this reduction impacts
the accuracy of the degree analysis by imposing an upper bound of 3ℓ on the maximum
achievable degree, we are still able to observe how the degree increases for each round up
to 6 rounds. This approach enables us to estimate whether the permutation constructed
with M will have a high algebraic degree over 6 rounds with a longer bit pattern based
on the fact that it shows a promising growth in the degree with a short pattern length.
The pseudocode for the algorithm is given in Algorithm 8.

Here, dim(M) returns the dimensions of the square matrix M and deg(v⃗) returns
the degree of the vector v⃗. In the software implementation, we recorded the degree of
each limb separately, however, just focusing on the degree of the first limb is enough to
determine the degree of the permutation. I.e., to determine the degree of the boolean
vector function v⃗ = (a, b, c), where
v⃗ ∈ {f | f : F3ℓ

2 → F3ℓ
2 } and a, b, c ∈ {f | f : F3ℓ

2 → Fℓ
2} and ℓ is the length of the

60

Algorithm 8 Algebraic-Degree

1: function algebraic degree(degrees,M)
2: size← dim(M)
3: // initializing a size× 1 vector made up of boolean variables.
4: v⃗ ← (x1, x2, . . . , xsize)
5: for 6 times do
6: v⃗ ← FM (v⃗)
7: Add(degrees,deg(v⃗))
8: end for
9: return degrees

10: end function

repeating bit pattern for each limb, the following formula can be used:

deg(v⃗) = deg(a)

Another thing we did was to introduce an early stopping condition. As we discussed,
although we can not determine the algebraic degree of the function for 384 bits directly,
we could estimate whether it would be large; we stopped considering the matrix if, by
the second application of the permutation, the degree is not 4. This is because, in an
ideal scenario, the degree is expected to double per permutation. If the degree growth
initially follows more of a linear growth than an exponential growth, then we can assume
by the sixth round, it will have a small degree.

Example: Take matrix M where

M =



0 1 0 0 0 0
1 0 0 0 0 0
0 1 1 0 0 1
1 0 0 1 1 0
1 0 0 1 0 0
0 1 1 0 0 0


The first two rounds of permutation FM are as follows

Initial vector:

[x1,x2,x3,x4,x5,x6]

Round 1:

Vector: [x1*x2 + x1*x3 + x1*x6 + x2*x4 + x2 + x3*x4 + x4*x6, x1*x2

+ x1*x3 + x1 + x2*x4 + x2*x5 + x3*x4 + x3*x5, x2 + x3 + x6,

x1 + x4 + x5, x1 + x4, x2 + x3]

Limb 1: [2, 2]

Limb 2: [1, 1]

Limb 3: [1, 1]

61

Round 2:

Vector: [x1*x2*x3 + x1*x2*x4 + x1*x2*x5*x6 + x1*x2*x5 + x1*x3*x4

+ x1*x3*x5*x6 + x1*x3*x5 + x1*x4*x6 + x1*x4 + x1*x5 + x1*x6

+ x2*x3*x4 + x2*x3*x5 + x2*x4*x5*x6 + x2*x4*x5 + x2*x5 + x2*x6

+ x3*x4*x5*x6 + x3*x4*x5 + x3*x4 + x5*x6, x1*x2*x3 + x1*x2*x4

+ x1*x2*x5*x6 + x1*x2*x6 + x1*x3*x4 + x1*x3*x5*x6 + x1*x3*x6

+ x1*x4*x6 + x1*x5 + x1*x6 + x2*x3*x4 + x2*x3*x5 + x2*x3

+ x2*x4*x5*x6 + x2*x4*x6 + x2*x5 + x2*x6 + x3*x4*x5*x6

+ x3*x4*x6 + x3*x4 + x5*x6, x1*x2 + x1*x3 + x1 + x2*x4 + x2*x5

+ x3*x4 + x3*x5 + x6, x1*x2 + x1*x3 + x1*x6 + x2*x4 + x2

+ x3*x4 + x4*x6 + x5, x1*x2 + x1*x3 + x1*x6 + x1 + x2*x4 + x2

+ x3*x4 + x4*x6 + x4 + x5, x1*x2 + x1*x3 + x1 + x2*x4

+ x2*x5 + x2 + x3*x4 + x3*x5 + x3 + x6]

Limb 1: [4, 4]

Limb 2: [2, 2]

Limb 3: [2, 2]

In this example, the expression Limb i represents a list where each entry indicates the
degree of the Boolean function that describes each bit in the ith limb. Specifically, the
jth entry in Limb i denotes the degree of the Boolean function for the jth bit of the ith
limb. The degree of the permutation is the maximum of the degrees of the limbs. The
degree of the permutation FM in the 3rd, 4th, 5th, and 6th rounds are 4, 5, 5, and 5.

An interesting discovery we made for 6× 6 matrices was the following relation:

From second distribution =⇒ Low algebraic degree (9.1)

Every matrix we tried from the second distribution showed linear growth instead of
exponential growth. We are not sure as to why this may be the case since we did not
analyze the mathematical properties of these matrices. We suspect that it may have to
do with the number of 1s or less likely, the configuration of these matrices. The matrices
from the second distribution that were filtered out are as follows:

. 1
1
. . 1 . . 1
. . . 1 1 .
1 . . 1 . .
. 1 1 . . .




1
. 1
. . . 1 1 .
. . 1 . . 1
. 1 1 . . .
1 . . 1 . .


62



. 1
1
1 1
. 1 . . 1 .
. . . 1 1 .
. . 1 . . 1




1
. 1
. 1 . . 1 .
1 1
. . 1 . . 1
. . . 1 1 .




. 1
1
. . 1 . . 1
. . . 1 1 .
1 . . 1 . .
. 1 1 . . .




1
. 1
. . . 1 1 .
. . 1 . . 1
. 1 1 . . .
1 . . 1 . .




. 1
1
1 1
. 1 . . 1 .
. . . 1 1 .
. . 1 . . 1




1
. 1
. 1 . . 1 .
1 1
. . 1 . . 1
. . . 1 1 .


All matrices from both distributions by the 6th round, had a degree of 5. The dis-
tinguishing factor was the rate of growth. This allowed us to filter out the second
distribution and filter out a few matrices from the first distribution. After the filter, we
had 22 matrices left.

63

We then expanded the 6× 6 matrices that show promising degree growth to 12× 12
matrices for the algebraic degree analysis. To decide which matrices to prioritize when
expanding, we determined which matrices have the highest degree in the 6th round and
the majority of rounds as a tiebreaker. Multiple matrices can have the same degree by
the end of the 6th round, so to determine which high-degree matrices to use first, we
looked at the degrees of the 5th and potentially the 4th rounds and prioritized the ones
with the higher degrees.

Since there were many ways we could expand a matrix from 6 × 6 dimensions and
higher, we decided to use the Hamming weight as a heuristic. We mentioned in Rule
7.1 how we expand matrices with circulant block submatrices. In the step where we
choose a pair of vectors that add up to the vector pattern that forms the circulant block
matrix, instead of going through all possible pairs of vectors, we chose the vectors 0ℓ and
c where c is the vector pattern that forms the circulant block matrix and ℓ is the length
of the bit pattern of each limb. This is a valid pair since 0ℓ⊕ c = c, thus we can expand
the circulant submatrix with another one where the circulant matrix is generated by the
pattern c∥0ℓ.

The 12 × 12 matrices we analyzed from the 6 × 6 matrices with promising growth
all showed exponential growth. Eighteen of these matrices ended up with degree 10 and
four of these matrices ended up with degree 11.

Here are the matrices with degree 11 after 6 rounds:

M1 =



. 1

. . 1

. . . 1
1
. 1 . . 1 1 . .
. . 1 . . 1 1 .
. . . 1 . . 1 1
1 1 1 . . .
1 1
. 1 1
. . 1 1
. . . 1 1



64

M2 =



1
. 1
. . 1
. . . 1
1 1 . . 1 . . .
. 1 1 . . 1 . .
. . 1 1 . . 1 .
. . . 1 1 1
. 1 . . 1
. . 1 . . 1
. . . 1 . . 1
1 1



M3 =



. 1

. . 1

. . . 1
1
1 1 . .
. 1 1 .
. . 1 1
. . . 1 1 . . .
. 1 . . . 1 . . 1 . . .
. . 1 . . . 1 . . 1 . .
. . . 1 . . . 1 . . 1 .
1 . . . 1 1



M4 =



1
. 1
. . 1
. . . 1
. 1 1 . . .
. . 1 1 . .
. . . 1 1 .
1 1
1 . . . 1 1 . .
. 1 . . . 1 1 .
. . 1 . . . 1 1
. . . 1 . . . 1 1 . . .


Where “.” symbols in the matrices are 0. A matrix having a degree of 11 does not
necessarily mean it will have a higher degree when expanded to longer bit patterns than
matrices that have a degree of 10. It could be the case that some monomials canceled
each other out and for longer patterns, the matrix with degree 10 could have a higher
degree for longer bit patterns. However, picking the highest degree is a good (greedy)
heuristic when deciding which matrices to expand.

65

In the end, we stopped our analysis with four 12 × 12 matrices that resulted in an
algebraic degree of 11 and eighteen 12× 12 matrices with an algebraic degree of 10 that
need more analysis to choose which of them to expand further.

66

Chapter 10

Conclusions

In this paper, we outlined a methodology for finding a fix for Friet. We first reduced
the problem to fixing the primitive, as it was mentioned in [17]. We initially tried to fix
Friet-PC by doing small modifications to its linear layer. We tested for multiple-round
differentials and linear approximations where the DP of these differentials and the LP of
these linear approximations could equal to 1 within 24 rounds. We found that although
the proposals did not contain any multi-round differentials with DP equal to 1, there
were still multi-round linear approximations with LP equal to 1 within 24 rounds. We
then focused on constructing a linear layer from scratch. To do this, we interpreted the
linear section as a 384 × 384 square matrix. Due to the size of the input, we started
constructing matrices to analyze for repeating patterns of bits. Initially, we started with
one-bit long patterns for each limb. This meant analyzing 3× 3 invertible matrices. We
proposed that a matrix M would be up for consideration iff a permutation made from
M first ensured that the DP of all differential trails and the LP of all linear trails are
less than 1 for r rounds where r = ord(r). We conducted this for 3 × 3 matrices and
6 × 6 matrices that are derived from suitable 3 × 3 matrices. We then conducted trail
analyses on permutations made from these matrices to look for the lowest-weight trails
and compare these weights. After filtering the matrices with promising weights and
weight distributions, we then conducted algebraic degree analysis on the permutations
made from these matrices and expanded the dimensions up to 12× 12.

By the end of this research, although we could not find any fixes, we managed to
narrow down the search space by expanding from suitable matrices to other suitable
matrices and disregarding any other matrix that is not a suitable matrix when reduced
down to lower dimensions. We believe that considering the total number of different
invertible matrices even at 6 × 6 dimensions (≈ 2.015 · 1010), we narrowed down the
search space by quite a lot (29 · 96 = 49152). Continuing our search from the bottom
up as we have done thus far could prove to be truly efficient since we are expanding in
a tiny portion of the entire search space. With a more automated decision process, we
could analyze more matrices in a shorter amount of time.

Additionally, we found that for permutations constructed from some matrices, there
exists a set of differentials (∆,∆′) such that DP(∆,∆′) = 0 for i-rounds for all i > 0,

67

as shown briefly in Figure 8.7. We highlighted that there is a direct correlation between
the distribution of linear & differential weights and the algebraic degree growth rate as
mentioned in Implication 9.1. Finally, although this is not concrete as we could not go
through each distribution for each matrix, we wanted to mention this. We noticed a
relation between the differential & linear weight distributions over r rounds and their
lowest weight trail weight; suppose we are given a permutation with a unique (lowest-
weight differential trail weight, lowest-weight differential trail) = (x, y) pair after 24
rounds. Then its differential weight distribution and linear weight distribution pair can
only be from a fixed set of distributions regardless of which matrix we expanded from.
In other words, if we refer back to Distributions (8.2) and (8.3) we notice that any
permutation which exhibited the lowest linear weight and the lowest differential weight
of 26.0 fell into two categories and no other distributions. This was also the case for
matrices with 20 1s, so this phenomenon is not limited to matrices with costs 10 and 12.
However, this last finding was discovered recently and does not have as strong enough
of a ground to stand on as the other findings we discussed.

68

Chapter 11

Future Work

Although we did not determine a specific 384 × 384 matrix, we can acquire one by
expanding one of the suitable matrices that have good linear and differential weight
distributions (like the Distributions 8.2 and 8.3) and a good algebraic degree. However,
with the current methodology we outlined in this paper, conducting a trail analysis on
384-bit patterns is unfeasible.
Currently, the main problem we face with analyzing matrices as dimensions grow is
choosing which matrices to expand and which block matrices to expand. This is mainly
due to the size of the search space required. In this paper, we assessed the matrices
ourselves by looking through the results of the algorithms. We believe a good method of
implementing an algorithm that assesses these considerations and circumvents the issue
of huge search space is to implement a random sampling-based search algorithm. We
believe the method of Monte Carlo tree search would be useful [15]. We would need
to implement a heuristic function to assess the quality of a high-dimension matrix. We
pick one of the matrices M ∈ M12 where the permutation constructed from M has the
following properties:

1. Weight of the path with the lowest differential and linear weights are close to each
other and are high

2. Good differential/linear weight distributions

3. Good algebraic degree analysis results

we can then apply the Monte Carlo tree search to this matrix. The heuristic value should
be also based on the properties mentioned above but with the additional consideration
of cost. I.e., the number of 1s in the matrix. Since the heuristic value would be com-
putationally inefficient for higher degrees, we think an algorithm that approximates the
heuristic (such as a regression model based on the structure of the matrix) would work
best.

We also believe that, when doing algebraic degree analysis on a permutation con-
structed from a matrix, in addition to measuring the degree itself, counting the number of

69

monomials in the bit with the highest degree could provide useful insight when choosing
what matrix to consider for constructing a permutation.

A permutation made from these matrices needs to be assessed with the avalanche
effect analysis [18].

We think further analysis of matrices that cause the same behavior as in Figure 8.7
and analyzing the implication proposed in Implication (9.1) could be useful insights.

70

Acknowledgements

I would like to give my deepest thanks to Professor Joan Daemen and PhD-candidate Jan
Schoone for their unwavering support. Their continuous support and caring attitudes
have made the process of writing my thesis truly comforting. They helped me understand
concepts I had not heard before and they were patient enough to explain things multiple
times if I did not understand initially. They were always open to my questions and they
provided concise feedback throughout the writing process of my thesis. I appreciate their
understanding It has been a very pleasant year of research and documenting alongside
you. I am glad to have been supervised by you for the first long-form research document
of my life. See you in the following years.

71

Bibliography

[1] John A Beachy. Abstract algebra (3 e) john a beachy and william d blair waveland
press, inc.(2006) isbn 1-57766-443-4. pdf. page 120, 2006.

[2] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosystems. J.
Cryptol., 4(1):3–72, 1991.

[3] Claude Carlet, Yves Crama, and Peter L. Hammer. Vectorial boolean functions
for cryptography. In Yves Crama and Peter L. Hammer, editors, Boolean Models
and Methods in Mathematics, Computer Science, and Engineering, pages 398–470.
Cambridge University Press, 2010.

[4] Joan Daemen. Limitations of the even-mansour construction. In Hideki Imai,
Ronald L. Rivest, and Tsutomu Matsumoto, editors, Advances in Cryptology - ASI-
ACRYPT ’91, International Conference on the Theory and Applications of Cryptol-
ogy, Fujiyoshida, Japan, November 11-14, 1991, Proceedings, volume 739 of Lecture
Notes in Computer Science, pages 495–498. Springer, 1991.

[5] Joan Daemen. Two ways of building round functions for block ciphers. Šibenik
summer school lecture, 2016.

[6] Joan Daemen, Bart Mennink, and Jan Schoone. Introduction to Cryptography
Lecture Notes 2019-2023. January 2023.

[7] Howard Whitley Eves. Elementary matrix theory. Courier Corporation, 1980.

[8] Tomás Fabsic, Otokar Grosek, Karol Nemoga, and Pavol Zajac. On generating
invertible circulant binary matrices with a prescribed number of ones. Cryptogr.
Commun., 10(1):159–175, 2018.

[9] Dan Kalman and James E. White. Polynomial equations and circulant matrices.
Am. Math. Mon., 108(9):821–840, 2001.

[10] Serge Lang and Serge Lang. Groups. Algebra, pages 8, 546, 2002.

[11] Mitsuru Matsui and Atsuhiro Yamagishi. A new method for known plaintext at-
tack of FEAL cipher. In Rainer A. Rueppel, editor, Advances in Cryptology -
EUROCRYPT ’92, Workshop on the Theory and Application of of Cryptographic

72

Techniques, Balatonfüred, Hungary, May 24-28, 1992, Proceedings, volume 658 of
Lecture Notes in Computer Science, pages 81–91. Springer, 1992.

[12] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum infor-
mation. Cambridge university press, 2010.

[13] James R Norris. Markov chains. Number 2. Cambridge university press, 1998.

[14] Thierry Simon, Lejla Batina, Joan Daemen, Vincent Grosso, Pedro Maat Costa
Massolino, Kostas Papagiannopoulos, Francesco Regazzoni, and Niels Samwel.
Friet: An authenticated encryption scheme with built-in fault detection. Cryptology
ePrint Archive, Paper 2020/425, 2020. https://eprint.iacr.org/2020/425.

[15] Maciej Swiechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek Mandziuk.
Monte carlo tree search: a review of recent modifications and applications. Artif.
Intell. Rev., 56(3):2497–2562, 2023.

[16] Andrew J. Viterbi. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Trans. Inf. Theory, 13(2):260–269, 1967.

[17] Senpeng Wang, Dengguo Feng, Bin Hu, Jie Guan, and Tairong Shi. Practical
attacks on full-round FRIET. IACR Trans. Symmetric Cryptol., 2022(4):105–119,
2022.

[18] Arthur F Webster and Stafford E Tavares. On the design of s-boxes. In Conference
on the theory and application of cryptographic techniques, pages 523–534. Springer,
1985.

[19] Daniel Zwillinger and Stephen Kokoska. CRC standard probability and statistics
tables and formulae. Crc Press, 1999.

The graph visualization website we used: https://graphonline.ru/en/ Last accessed
2024-08-18

73

https://eprint.iacr.org/2020/425
https://graphonline.ru/en/

	Introduction
	Problem Statement
	Methodology

	Preliminaries
	Notation and Basic Definitions
	Finite Field Arithmetic
	Toffoli Gate
	Linear Algebra
	Bitstrings

	Cryptography Basics
	Encryption Scheme
	Permutations
	Round Function
	Distinguishers
	Advantage
	Security Claim
	Security Strength
	PRP Security Notion
	The Even–Mansour Construction

	Cryptanalysis Techniques
	Differential Cryptanalysis
	Linear Cryptanalysis
	Algebraic Degree

	Table of Definitions

	Friet Definition and Concepts
	The Weaknesses of Friet-PC
	Strategy of Fixing Friet-PC
	Unsuccessful Attempts at Fixing the Primitive
	Attempt 1
	Attempt 2
	Attempt 3
	Testing the Quality of the Candidates
	The Design Flaw of the Initial Attempts

	Investigation of Suitable Linear Transformations
	What Makes a Matrix Suitable

	Measuring the Security of the Permutation with a Chosen Matrix
	Algebraic Degree Analysis
	Conclusions
	Future Work

