
The state of OSS-Fuzz

Assessing statefulness in OSS-Fuzz: performance and results

Lars Esselink

Supervisors:
Erik Poll
Bram Westerbaan

Second readers:
Cristian Daniele

Seyed Behnam Andarzian

Faculty of Science
Computing Science
Radboud University

June 26, 2024

Abstract

OSS-Fuzz is a project by Google that fuzzes open-source software on their
data centers, to improve the reliability of open-source software. The under-
lying fuzzers of OSS-Fuzz are libFuzzer, AFL++, and Honggfuzz. We expected
OSS-Fuzz to be ineffective because these fuzzers are not designed to deal with
stateful software. Using ‘stateless’ fuzzers on stateful software might be faster in
executions but it might also be worse at finding bugs because stateless fuzzers
that use fuzzing targets effectively circumvent the state transitions and thus
might not reach bugs that are unreachable. That is why we want to explore
OSS-Fuzz to see if it gives results in stateful software effectively or is wasting
resources by fuzzing stateful software, with a stateless fuzzer. We try to answer
this question by comparing bugs between a stateful fuzzer and OSS-Fuzz, using
open-source software that has known vulnerabilities.

We picked two open-source projects, ProFTPD, and open62541, which have
versions with known vulnerabilities, and we fuzzed them with AFLNet, a stateful
fuzzer, and OSS-Fuzz to see if OSS-Fuzz is wasting resources. Experimenting
with ProFTPD showed us that AFLNet did find more bugs, but that was not
because OSS-Fuzz was not good enough, but because the fuzzing targets created
by the developers of ProFTPD were not good enough. AFLNet did not find any
bugs in open62541 that we could reproduce. OSS-Fuzz, however, did find bugs.
We do now know if this bug could be found by AFLNet because the malicious
input would have been caught elsewhere in the program, which prevents the
input from reaching the part that would have crashed (which might not happen
when fuzzing using OSS-Fuzz).

We cannot conclude that OSS-Fuzz is wasting resources, but can conclude
more research is needed. To get a more exact answer, we would require more
time and more case studies to see if the results we found are flukes or a repeating
pattern. It is not fair to compare AFLNet and OSS-Fuzz because OSS-Fuzz is
heavily dependent on good fuzzing targets. When looking at ProFTPD we
found that the lack of good fuzzing targets lowered the amount of bugs found
while open62541 had good fuzzing targets and outperformed AFLNet.

OSS-Fuzz might find fewer bugs than AFLNet, but it does substantially
more executions than AFLNet (30,000 vs 5) because AFLNet fuzzes the socket
entry point which in turn uses the whole code while OSS-Fuzz only fuzzes parts
of the code. This might make OSS-Fuzz better at finding bugs, but whenever
a bug is not reachable by OSS-Fuzz (because the fuzzing targets do not cover
enough code) they can be faster but they will never find the bug.

1

Contents

1 Introduction 4

2 Fuzzing 5
2.1 Stateless software & fuzzers . 5

2.1.1 AFL++ . 5
2.1.2 Honggfuzz and libFuzzer 5
2.1.3 Reproducibility . 5

2.2 Stateful fuzzers . 6
2.2.1 AFLNet . 6
2.2.2 Socket vs Target . 7

2.3 OSS-Fuzz . 7
2.4 ASan and UBsan . 7

3 Related Work 9
3.1 Bugs found by OSS-Fuzz . 9

4 Method 10
4.1 Project selection . 10
4.2 Seed creation . 10
4.3 Fuzzing instructions . 12

4.3.1 AFLNet instructions . 12
4.3.2 OSS-Fuzz instructions . 13

4.4 Comparing results found by fuzzing 13

5 Fuzzing ProFTPD 15
5.1 Fuzzing ProFTPD with AFLNet 15
5.2 Fuzzing ProFTPD with OSS-Fuzz 17

5.2.1 LibFuzzer . 17
5.2.2 AFL++ . 18
5.2.3 Honggfuzz . 18

5.3 Comparing AFLNet and OSS-Fuzz over ProFTPD 19

6 Fuzzing open62541 20
6.1 Fuzzing open62541 with AFLNet 20
6.2 Fuzzing open62541 with OSS-Fuzz 22

6.2.1 LibFuzzer . 22
6.2.2 AFL++ . 24
6.2.3 Honggfuzz . 25

6.3 Comparing AFLNet and OSS-Fuzz over open62541 26

7 Future work 27
7.1 More stateful fuzzers . 27
7.2 More case studies . 27
7.3 Better fuzzing targets . 27

2

8 Conclusion 28

Glossary 30

A Results 32
A.1 ProFTPD in AFLNet . 32
A.2 ProFTPD in AFL++ . 32
A.3 ProFTPD in Honggfuzz . 33
A.4 Open62541 in AFLNet . 33
A.5 Open62541 in AFL++ . 34

B Installation 36
B.1 ProFTPD . 36
B.2 OSS-Fuzz . 36

B.2.1 Instructions for the OSS-Fuzz helper script 36
B.3 AFL++ in OSS-Fuzz helper script 37
B.4 Hongfuzz in OSS-Fuzz helper script 37

C Bugs 38
C.1 ProFTPD . 38
C.2 Open62541 . 38

D Source code 41
D.1 fuzz mdns message.cc . 41
D.2 fuzz binary decode.cc . 42

3

1 Introduction

When we refer to stateless software, we mean software that does not maintain
or track any state information. Let us take for example an implementation
of FFmpeg which is stateless software that converts audio/video files to other
types. It does not keep track of any states. But we also have stateful software,
which is the opposite of stateless software. Stateful software does keep track
of states, for example, an implementation of FTP (file transfer protocol). FTP
has to be in specific states to do different commands. To download or upload
files, you will need to be authenticated and thus be in the authenticated state.

Fuzzing is a popular technique used for testing software[14]. The advantage
of fuzzing is that is almost fully automated. For normal test cases, you will
need to write tests for each new code you write, while fuzzing only requires a
one-time code creation (for example a fuzzing target) and thus saves time when
trying to test your software. Another advantage is that it might catch edge
cases that normal test cases would not catch. The downside of fuzzing is that
you will need more computing power than normal test cases.

As long as you have computing power, you can test your software for every
edge case and increase the reliability of your software. This is where Google
OSS-Fuzz[8] comes in. Google created the OSS-Fuzz project to help improve
open-source software. It takes open-source projects and fuzzes them using their
data centers. Interestingly, OSS-Fuzz does not use any stateful fuzzer but fuzzes
stateful software, and thus might not be as good at finding bugs as AFLNet at
fuzzing stateful software.

In this thesis, we want to answer the following research question: is OSS-Fuzz
wasting resources by fuzzing stateful software projects with stateless fuzzers?
We investigate the matter by looking at a specific version of two stateful software
projects with a known bug and fuzzing it with OSS-Fuzz’s stateless and stateful
fuzzers. If a stateful fuzzer can but OSS-Fuzz cannot find these bugs, it indicates
that OSS-Fuzz is wasting resources. This is why we want to test it in an OSS-
Fuzz environment to get the closest possible simulation of how OSS-Fuzz is
doing it.

In Chapter 2, we discuss what fuzzing exactly is and the terms we are not
on one line with. In Chapter 3, we look at related research. In Chapter 4, we
discuss the method we use to get the results. Chapters 5 and 6 explain the
results of fuzzing. In Chapter 7 we write down what we stumbled upon but was
not in the scope of our research and can be researched in the future. In Chapter
8 we discuss the findings of the whole research, what we found, and explain the
conclusions. In the last Chapter 8 we have a glossary for terms we use in this
research.

4

2 Fuzzing

In this chapter, we discuss what fuzzing exactly is and the terms we are not on
one line with. We also discuss the different fuzzing aspects we are not familiar
with. Some abbreviations are not explained here but are written out in Chapter
8.

Fuzzing is a method to find vulnerabilities in software. This is done by
sending many, (semi) automatically generated inputs to the software and seeing
if it crashes or hangs. The mutation of messages is often guided based on
multiple factors, like code coverage or the number of crashes. Fuzzers can be
categorized into stateful and stateless groups, based on if they are aware of the
states inside the software.

2.1 Stateless software & fuzzers

Software that does not have any internal states is called stateless, an example
of stateless software is a browser that implements HTTP. The HTTP protocol
does not keep track of any states and is therefore stateless. The fuzzers created
for stateless software do not consider the states the software is in when making
decisions.

2.1.1 AFL++

AFL++[5], the daughter of AFL, is a coverage-guided fuzzer. The coverage
guide works by looking at the coverage of the current mutation in the input
and decides based on the coverage what mutation should be done next. The
fuzzer also listens to the feedback, which is the part where it makes mutations
based on the information it gets from the instrumentation (like crashes/hangs).
The coverage guide and the feedback guide both get their information from
the instrumentation, but the feedback guide looks at the program metrics (like
memory usage), crashes, and hangs. You normally use standard command line
input (stdin for short) to fuzz using AFL++, but in this research, we use a
special C library to get it working on the fuzzing targets of libFuzzer.

2.1.2 Honggfuzz and libFuzzer

Honggfuzz and libFuzzer[13] are coverage-guided fuzzers. They use so-called
fuzzing targets, specific functions especially made for fuzzers inside the SUT, to
execute specific functions in code (as if those functions are called by the pro-
gram itself). They then check the code coverage and generate more mutations,
maximizing code coverage. The difference between Hongfuzz and libFuzzer is
minimal and both use the same principle but in different coding.

2.1.3 Reproducibility

Fuzzing has a problem when it comes to reproducibility (also known as flaki-
ness), especially fuzzing targets. Let us take a look at the simple state model

5

in Figure 1. Since fuzzing targets focus on specific parts of the code, the errors
found work only in a specific state of the program. For example, when there is
a bug found in fuzzing target 1, which operates in state 4, we can only repro-
duce that error when using that fuzzing target. When we want to reproduce
the error on the original program, we need to construct a message that takes
us from state 1 to state 4, using actions a, b, and c. This construction would
be feasibly impossible to do and thus the error found with the fuzzing target
would be impossible to reproduce outside the fuzzing target.

1start

2

3

4

a

b

c

Figure 1: Simple state model

2.2 Stateful fuzzers

Software is generally stateful, meaning that during the execution of software, it
can be in different states. Take the server side of FTP (file transfer protocol) for
example, it has an idle state in which it can receive connections, but it also has
a connected state where a client is connected and can send commands to the
server. Stateless fuzzers do have some guiding mechanisms, like code coverage or
instrumentation feedback, but none take states into account. With the example
of FTP, a stateless fuzzer would fuzz FTP, but would not find the other state
(It would be able to find other states when run for infinity). This is why we
have stateful fuzzing. Stateful fuzzers also have state feedback that is taken into
account when mutating input.

2.2.1 AFLNet

AFLNet[11] is a stateful fuzzer used to fuzz network protocols. It uses state
feedback and measures code coverage. The state feedback works by receiving
messages from the SUT and learning how the state model of the SUT is built.
This feedback is then used to create a mutation of the input to trigger state
transitions or stay in a specific state. This state feedback is also used to increase
code coverage. It is used to fuzz stateful software (explained in Section 2.2) but

6

can also be used to fuzz stateless software (explained in Section 2.1) but it would
run slower than stateless fuzzers.

2.2.2 Socket vs Target

One of the differences between AFLNet and OSS-Fuzz is the difference between
socket vs target fuzzing (visually explained in Figure 2). Socket fuzzing, the
method of AFLNet, fuzzes the program interacting with it via a socket. The
program is fuzzed using normal operations and tries to find it as if were a normal
user. Fuzzing target, the method of libFuzzer, AFL++ (in OSS-Fuzz), and
Honggfuzz, use fuzzing targets that focus on pieces of code within the program.
It does not fuzz the program as a whole but works more like unit testing, where
different sections of code are tested. Both have pros and cons (as discussed in
2.1.3).

ProFTPD libFuzzer
AFL++

Honggfuzz

AFLNet

Socket vs Target

Figure 2: The difference between socket and target fuzzing

2.3 OSS-Fuzz

OSS-Fuzz[8] is a project by Google to fuzz open-source software using their data
centers. The fuzzers included are libFuzzer[13], AFL++[5] and Honggfuzz[7].
None of these fuzzers specifically support stateful software. Google does not
state why it chose to not include stateful fuzzers, but one assumption would
be that using stateless fuzzers is less work for the OSS-Fuzz team. Stateless
fuzzers only require fuzzing targets, while stateful fuzzers require a method of
extracting the state, to use state feedback.

2.4 ASan and UBsan

ASan[9] (Address sanitizer) and UBsan[6] (Undefined Behavior sanitizer) are
compiler flags to add checks in the compiled code for memory violations and un-
defined actions. ASan checks for common memory errors such as using memory

7

after freeing it, memory leaks, etc. For example, whenever we use the function
memcpy in the C language, we copy a block of memory to another block of
memory. But this operation does not check bounds, and thus whenever we go
over bounds it is not detected. When run without ASan memory faults might
go unnoticed since it might overflow in memory that is not used, but with ASan
this is immediately noticed and the ASan crashes the program. UBsan checks
at run time for undefined behavior, for example whenever we use a non-static
variable in the C language before it is declared, will give undefined behavior
because of the nature of the C language. Just like memory violation, this might
go unnoticed as the effect is not catastrophic, but with UBsan this will be im-
mediately noticed and UBsan will crash the program. ASan and UBsan, in our
case, will help with finding bugs more easily since every memory violation and
undefined behavior will immediately show up and count as a crash and thus be
detected by the fuzzer.

8

3 Related Work

In Section 3.1, we present the results of Yu Ding and Le Goues[3], which classifies
the most bugs found in OSS-Fuzz.

3.1 Bugs found by OSS-Fuzz

OSS-Fuzz had its first launch in 2016. As of August 2023, it has fuzzed 1000
projects, found 36000 bugs, and identified over 10000 vulnerabilities [8]. Ding
et al.[3] explored all the bugs and performed an empirical study. They analyzed
over 4 years of data and 23,907 bugs. These bugs were categorized under 16
categories found in Figure 3. They were also categorized into fixed and unfixed
and flakiness (reproducibility, whether a bug is reproducible or not). The biggest
category is timeout. But they did not categorize based on stateless or stateful.
This is what we planned on doing, albeit not that many projects, to see the
difference between stateless and stateful fuzzers.

Figure 3: bugs found in OSS-Fuzz categorized in 15 categories[3]

9

4 Method

This chapter discusses an overview of the different steps to take to find out if
OSS-Fuzz is wasting its resources with 2 case studies.

4.1 Project selection

First, we need to select a project to test our hypothesis on. We look at the list
of already fuzzed projects1 and manually filter it on if the project uses sockets.
This list now contains projects that have sockets but are not necessarily stateful,
for example, the project ffmpeg which does not have any states, and the socket
use is optional. So now we manually apply a second filter, which filters on
protocols that were specifically made for networking (as they are almost always
stateful) and we get the following list as shown in Table 1. From this list,
we can pick a suitable candidate. We chose ProFTPD and open62541 because
both protocols (OPCUA and FTPD) already had an implementation in AFLNet
which was easier for us to use and thus we did not have to create it ourselves.

bitcoin-core libvnc
bluez mosquitto
dropbear msquic
fast-dds open5gs
freeradius open62541 (opcUA)
freerdp opendnp3
gnutls openssl
hiredis openweave
irssi pidgin
libgit2 pupnp
libmodbus qpid-proton
librdkafka resiprocate
libssh wolfssl
libssh2 wpantund
libtorrent proftpd

Table 1: The list of projects after we applied 2 filters.

4.2 Seed creation

We are going to need seeds for fuzzers to work. This is not required but it might
be better to give a starting point instead of randomly starting. These seeds are
input strings that are used by the fuzzers and fed into the SUT. These seeds are
also mutated to test different inputs. OSS-Fuzz does not require us to provide
the seeds, because they are either provided by the project owner or not needed.
For AFLNet however, we need to make the seed ourselves (as OSS-Fuzz uses
seeds in another format). This is done using the normal operation of a SUT and
tcpdump. Tcpdump records all traffic within the specified parameters, which
lets us use that same traffic as input seed for AFLNet. For example, let us take

1https://github.com/google/oss-fuzz/tree/master/projects

10

open62541. First, we need to use the SUT to create traffic, such that tcpdump
can capture it. In this example, we use:

tcpdump -w traffic.pcap -i lo port 4840

This starts tcpdump and tells it to write to the file called “traffic.pcap” and
listen specifically to the loopback network interface on port 4840 (the port used
by open62541 tools). After which you perform the normal operation of the SUT
and close tcpdump. Now we have a file called “traffic.pcap” which holds the
traffic of the program. We can read this with Wireshark, which we can find in
Figure 4.

Figure 4: The content of traffic.pcap using Wireshark

In Figure 4 you see network packets. From this, we can view the TCP
stream (traffic of a session) and view the traffic between the client and server
of open62541. We only care about the traffic between the client and server (as
seen in Figure 5), since that is what AFLNet is going to use for fuzzing (and not
the server-to-client traffic). From this, we can save it as raw bytes (otherwise it
will be sent as ASCII, which the server cannot interpret) and use it as a seed.

11

Figure 5: The specific TCP stream of a session between client and server

4.3 Fuzzing instructions

After we have the input seeds for AFLNet (and the supplied seeds for OSS-Fuzz),
we can proceed to fuzz. AFLNet and OSS-Fuzz work a little bit differently. We
use AFLNet in our environment, we do not run it in a pre-supplied way, while
we run OSS-Fuzz using their helper script. This script does the setup for the
SUT and the fuzzers for us using only commands. We chose to do this because
we want to use OSS-Fuzz as close to their environment as possible. Doing it
this way makes it easier for us to make conclusions as to why they chose some
options (as discussed in Chapter 1) and makes it also easier to see if OSS-Fuzz
is wasting resources.

We also need a SUT to test the difference. We pick a stateful SUT from the
list of already fuzzed projects by OSS-Fuzz. Once we find a project, we search
if the project has a version that has a known bug that can be found by fuzzers.
If we find a project that is fuzzed by OSS-Fuzz and has a version with a known
bug, we can start fuzzing that project version with AFLNet and OSS-Fuzz.

4.3.1 AFLNet instructions

First, we start with AFLNet. For AFLNet we run it using:

afl-fuzz -i /path/to/seed/ -o /path/to/output -N

{tcp/udp}://{IP}/{PORT} -P {PROTOCOL} -q 3 -s 3 -E -K -R

-m none {path/to/executable}

You will need the supply the command with the following: the path to the
seed, the path to where you want to save the output, does the SUT uses TCP
or UDP, The IP and PORT of the SUT, the protocol of the SUT, and the path
to the executable. The other parameters can be changed but do not make a big
difference. Once it is fuzzing the program, we choose a time frame in which we
fuzz the SUTs. We chose 24 hours as this is a reasonable amount of time to
find a crash/hang, after which we manually stopped AFLNet. The results are
stored in the output directory we defined.

12

4.3.2 OSS-Fuzz instructions

For OSS-Fuzz, we need to use the helper script. This script helps us build the
SUT, build the fuzzers and run the fuzzers. First, building the SUT:

python3 /path/to/helper.py build image {PROJECT}

The building of the SUT is reasonably straightforward, you just need to
supply the project and it will build the SUT. After building the SUT, we need
to build the fuzzer:

python3 /path/to/helper.py build fuzzers --engine

{libfuzzer,afl,honggfuzz} {PROJECT}

To build the fuzzers you need to supply the fuzzer you want to run and the
project you want to fuzz. Once finished, we execute the last step, running the
fuzzer:

python3 /path/to/helper.py run fuzzer --corpus-dir

/path/to/output/ --engine {libfuzzer,afl,honggfuzz}
{PROJECT} {FUZZER TARGET}

To run the fuzzer you need to supply the script with an output directory, the
fuzzer you want to fuzz with, the project, and one of the pre-supplied fuzzing
targets. After executing this it will start fuzzing. AFL++ and Honggfuzz will
run until stopped, while libFuzzer will stop once it finds a hang/crash. So we
run AFL++ and Honggfuzz also 24 hours, just like AFLNet. We can then find
the results in the output directory we defined.

4.4 Comparing results found by fuzzing

When comparing results we do not have a global method, since we do not
yet know what we get for results. For a single bug found by a single fuzzer,
we cannot compare it to anything so we do not have a specific method we use.
When multiple fuzzers find a bug, we can use debug to find where the crash/hang
came from.

Using a debugger like GDB, we can inspect the execution step by step to find
out where the program crashes. GDB works by setting so-called breakpoints in
the execution of the program. These breakpoints cause the execution of the code
to pause at the breakpoint. For example, if you set a breakpoint at a function,
the debugger loads the functions onto the stack but does not yet execute it and
pauses the execution until further notice. Let us take for example the source
code for the MDNS fuzzing target (found in Figure 19 on page 41).

13

1. First we analyze the source code and set breakpoints at important func-
tions, in this case at message parse, mdnsd new and mdnsd in.

2. After the breakpoints are set, we run the program with an input. The
debugger stops at the first breakpoint (or crashes if there is a crash before
the breakpoint). We then choose to “continue” which continues to the next
crash/breakpoint, “step” which takes one step in execution, or “finish”
which finishes the function it is currently at.

3. Repeat steps one and two until you find a crash. After which you can dive
deeper into a function, set breakpoints at more functions, and analyze the
results until you find the exact line of code that crashes the program

14

5 Fuzzing ProFTPD

For our experiment, we use a version of each SUT with a vulnerability that
can be found using fuzzing. We compare AFLNet and OSS-Fuzz (with the
underlying fuzzers) results.

For the first case, we use ProFTPD. ProFTPD is an open-source FTP im-
plementation. FTP is used to transfer files from the client to the server and vice
versa. ProFTPD is a highly configurable and secure implementation of FTP.
One of the versions of ProFTPD[2] has an out-of-bounds vulnerability which can
be found using AFLNet (commit 5e57d41)2, using ASan and UBSan. So we are
going to test if for this version OSS-Fuzz can find the same crashes and hangs as
AFLNet. In Section 5.1 we discuss the experiments we ran on ProFTPD using
AFLNet and analyze those results. In Section 5.2 we talk about the experiments
on ProFTPD using OSS-Fuzz and analyze the results. In Section 5.3 we take
the results from Section 5.1 and 5.2, and we compare them to see if there is a
difference in bugs found and execution speed.

5.1 Fuzzing ProFTPD with AFLNet

Run 1 We first compile ProFTPD without ASan and UBSan. We then tried
to fuzz commit 5e57d41, but we did not get any results. As you can see in Table
7 on page 32, there are no crashes or hangs found, and it is very slow. The low
amount of executions is because AFLNet fuzzes the program as a whole using
the socket. When the whole program needs to execute to fuzz a small input it
results in few executions done per minute. This is different from running fuzzing
targets, which only run the targeted code and not the whole program. The lack
of crashes or hangs might be because the original issue was found with ASan
and UBSan enabled.

Run 2 We then run AFLNet with ASan and UBSan but AFLNet complained
about memory usage when using ASan in combination with a 64-bit OS. It turns
out that you need special arguments to run AFLNet with ASan, otherwise on
a 64-bit OS you might use too much memory, namely the m flag. We managed
to compile it with the instructions found in Figure B.1, which immediately
gives us more results. After running AFLNet for 47 hours, we got 17 hangs
where the last hang was found 24 hours before ending the fuzzer, meaning that
it did not find anything new during the last 24 hours of fuzzing. Once we
find a specific crash or hang, we can replay (using afl-replay) the exact test
sequence used before it crashed or hung. We used afl-replay for our results
and it immediately recognized the ‘flaw’ that caused these hangs. Namely, the
ProFTPD configuration allowed for 3 login attempts and after that, it stopped
the program. Which AFLNet classified as hang since the ProFTPD stopped.
Thus all these hangs were false positives.

2https://github.com/ProFTPD/ProFTPD/issues/1683

15

Run 3 After changing the ProFTPD configuration to have unlimited login
attempts, we ran it again, but this time for 24 hours since the last run did not
have any new paths in the last 24 hours. The results (found in Table 2) showed
29 hangs. Unfortunately, the out-of-bound crash was not found.

ProFTPD
Last new path 3 min
Last unique hang 2 hrs, 21 min
unique hangs 29
Last unique crash None
unique crashes 0
Total execs 389k
Total paths 2808

Table 2: The third run of ProFTPD using AFLNet, using ASan and UBSan,
with the correct configuration, extracted from table 8 on page 32.

Table 2 contains all the information of AFLNet. We can see how long it
ran and how long it took until it found a new path/crash/hang. There are also
statistics about the fuzzing process, for example, how many cycles it has done,
the total paths found and the amount of (unique) crashes and hangs.

Analyzing run 3 We use the tool that AFLNet has provided (called aflnet-
replay) to replay the packet that causes the crash/hang. We start the example
server, in this case, we start ProFTPD. Then we use aflnet-replay on all 29 of
the unique replay packets. From the 29 hangs, 28 gave a segmentation fault on
the aflnet-replay side and the last one did not give us an error. We focus on the
27th packet that caused a segmentation fault when using aflnet-replay. We do
not get any information from the client or the server side. Using tcpdump, we
can see if there is traffic at all. Traffic is sent, but only one way before crashing.
The server side sends the welcome message to the client but nothing is sent by
the client. It must be a problem with the first line of the input since nothing is
sent. The first few lines are displayed in Figure 6.� �
00000000 0e 00 00 00 55 53 45 52 20 70 72 6f 66 74 70 64 |....USER proftpd|

00000010 0d 0a 0e 00 00 00 50 41 53 53 20 70 72 6f 66 74 |......PASS proft|

00000020 70 64 0d 0a 06 00 00 00 51 55 49 54 0d 0a 0e 00 |pd......QUIT....|

00000030 00 00 52 4e 46 52 20 74 65 73 74 2e 74 78 0d 0a |..RNFR test.tx..|

00000040 0e 00 00 00 50 41 53 53 20 70 72 6f 66 74 70 64 |....PASS proftpd|

00000050 0d 0a 0e 00 00 00 53 4d 4e 54 0d 70 72 6f 66 74 |......SMNT.proft|

00000060 70 64 0d 0a 0e 00 00 00 50 41 53 53 20 70 72 6f |pd......PASS pro|

00000070 66 74 70 64 0d 0a 08 00 00 00 54 59 50 45 20 41 |ftpd......TYPE A|� �
Figure 6: The hex dump of the first few lines of the input that hang ProFTPD

The hex dump in Figure 6 does not say much and does not seem to be the
problem of ProFTPD but is more likely Ubuntu or aflnet-replay. We do not

16

know why these segmentation faults are happening and to find out why, we
would need to debug the aflnet-replay tool which is out of the scope of this
research. We mark it as non-reproducible.

Github input We also tested ProFTPD using the input of the original GitHub
issue3, which caused a heap buffer overflow (found in Appendix C.1). The prob-
lem was caused by sending 3722 ‘\’ and ProFTPD having no sanitation rule
to sanitize that many wrong characters and thus overflowing in memory. Our
AFLNet run, however, did not give us the same result, probably because fuzzing
is nondeterministic meaning that it will not come up with the same mutations
in the seed every time.

5.2 Fuzzing ProFTPD with OSS-Fuzz

We run the same experiments with OSS-Fuzz. We take the vulnerable version
and run it with OSS-Fuzz. OSS-Fuzz does not use the whole program as SUT
but uses fuzzing targets instead. Which focuses on a specific part of the program
(explained in Section 2.2.2).

5.2.1 LibFuzzer

We fuzzed ProFTPd with libFuzzer (description found in Section 2.1.2) using
the fuzzing targets in OSS-Fuzz. This is a relatively straightforward process.
OSS-Fuzz contains a script to start the project to start fuzzing, which needs
information about the fuzzer engine and fuzzing target. To submit a project
to OSS-Fuzz its necessary to provide fuzzing targets for libFuzzer to use. We
use these fuzzing targets to test how well libFuzzer can find bugs. We used the
instructions in Appendix B.2.1 to run libFuzzer with ASan. Unfortunately, the
OSS-Fuzz helper script does not allow multiple sanitizers at the same time, as we
did with AFLNet. Because of this, we ran libFuzzer with address sensitization
for 48 hours. Unfortunately, we did not find crashes or hangs. A closer look at
the fuzzing target reveals that the target is not covering enough code. As you
can see in Table 3, the coverage of the fuzzing target is high, while the coverage
of the SUT is low. This means that the fuzzing target only focuses a small part
of the code, even though the fuzzing target is fully (functionally) executed. The
low code coverage on the SUT is a bad sign. The bug in AFLNet is impossible
to find by libFuzzer because of the low code coverage and the fact that the bug
we found was not inside the code reached by this fuzzing target. We can create
a fuzzing target ourselves, but that defeats the purpose of testing the current
OSS-Fuzz environment since we want to know if (without our help) libFuzzer
can find the same bugs as AFLNet.

3https://github.com/ProFTPD/ProFTPD/issues/1683

17

PATH LINE COVERAGE FUNCTION COVERAGE REGION COVERAGE
proftpd/ 1.26% (740/58550) 2.88% (55/1908) 1.30% (567/43665)
fuzzer.c 88.89% (16/18) 100.00% (1/1) 83.33% (5/6)
TOTALS 1.29% (756/58568) 2.93% (56/1909) 1.31% (572/43671)

Table 3: The code coverage, provided by the OSS-Fuzz helper script, on the
ProFTPD fuzzing target

5.2.2 AFL++

AFL++ is simpler than libFuzzer. It does not require any fuzzing targets, just
an input seed to start fuzzing. It also accepts a dictionary file that specifies
the correct input AFL++ can use. The installation of ProFTPD is the same
as AFLNet found in Appendix B.1. The only difference is that it uses other
instrumentation tools to compile the binaries and after installation, it is run
with another input.

Run 1 The first run gave us no results. As you can see in Table 9 (on page 32),
it says “odd, check syntax” after the last new path find. It means that AFL++
cannot find any path, this is a clear sign the fuzzer is not working correctly. It
turns out to be because AFL++ does not support sockets in its normal mode,
but AFL++ works with STDIN or AFL fuzzing targets. What we tried to do,
however, was to run AFL++ directly on the executable. AFL++ did not do
any fuzzing because the executable only used the socket entry point. OSS-Fuzz
has a slightly different approach. OSS-Fuzz does not use STDIN mode or AFL
fuzzing targets. What OSS-Fuzz does, is use the targets from libFuzzer and
create some glue between the clang instrumentation and AFL++, using a C
library, to get it to work with the non-AFL instrumentation4.

Run 2 We can fuzz ProFTPD with AFL++ using the OSS-Fuzz helper script
(instructions found in Appendix B.3). This time AFL++ worked as intended,
but did not give us any errors or hangs (as found in Appendix A.1). It did find
enough paths but it did not find any bugs. This is as expected since libFuzzer
did not find anything, mainly because of the complexity of the fuzzing target
(as explained in Section 5.2.1).

5.2.3 Honggfuzz

Just like AFL++ and libFuzzer, we compile Honggfuzz using the instructions
for OSS-Fuzz (found in Appendix B.4) and let it run for 24 hours. Honggfuzz
also did not give us any crashes or hangs (results found in Appendix A.3) for
the same reason the other fuzzers did not find anything, namely a fuzzing target
with low code coverage.

4https://github.com/google/oss-fuzz/issues/2094

18

5.3 Comparing AFLNet and OSS-Fuzz over ProFTPD

When we look at ProFTPD, we can see a clear difference between AFLNet
and OSS-Fuzz. Although we do not have a clear answer yet to the question
“Is OSS-Fuzz wasting resources”, we can already see improvements when using
AFLNet.

• AFLNet found a buffer overflow bug while OSS-Fuzz did not find any
crashes or hangs.

• While fuzzing ProFTPD using AFLNet (using self-made seeds), we did
not find any reproducible crashes or hangs. However, when we used the
specific seed reported in a GitHub issue using AFLNet, we got ProFTPD
to crash giving us a heap buffer overflow as a result.

• The fuzzing targets in ProFTPD do not provide good code coverage.
There is only one fuzzing target which does not cover enough code to
even find the heap buffer overflow found by AFLNet. This means that if
OSS-Fuzz ran it, they would not find the same crash AFLNet found.

19

6 Fuzzing open62541

Open62541[12] is an open-source implementation of the protocol OPC Unified
Architecture (OPC UA for short), which is used for data exchange between
sensors and applications. Open62541 is a good candidate because its stateful
and fuzzed by OSS-Fuzz. Fijneman[4] tested the execution speed difference
between boofuzz5 and AFLNet on open62541. Although our research’s main
topic (comparing fuzzers) is the same, we will only use AFLNet. Fijneman’s
results are summarized in Figure 7. As we can see there are 68 crashes and 14
hangs. We can use these results for a baseline of what we are supposed to find
with AFLNet on open62541. For open62541 we will use commit 46d0395, just
like Fijneman.

Crashes Hangs

Implementation Lang. T
o
ta
l

R
ep

ro
d
u
ci
b
le

T
o
ta
l

R
ep

ro
d
u
ci
b
le

Exec/s Runtime

legacy OPC UA ANSI-C Stack C 8 8 0 0 ±20 · 8 48 hours
open62541 C 68 0 14 0 ±8 · 8 24 hours
FreeOpcUa C++ 43 43 9 0 ±8 · 8 24 hours

Figure 7: The result of fuzzing OPC UA implementations in AFLNet by
Fijneman[4]

In Section 6.1, we discuss the results of fuzzing open62541 in AFLNet. In
Section 6.2 we discuss the the results of fuzzing open62541 with OSS-Fuzz. In
the last Section, 6.3, we compare the results of AFLNet and OSS-Fuzz and see
if it made any difference.

6.1 Fuzzing open62541 with AFLNet

We use the test application created by the developers of open62541, server ctt.c,
and client.c . We modify the SUT as described in [4], such that server ctt and
client can be used without authentication and be used by AFLNet. In detail,
we:

1. removed maxSecureChannels, maxSession and shutdownDelay from
server ctt.c . This causes the server ctt to be faster inside AFLNet.

2. changed the variable enableAnon to true in server ctt.c so that we can
use it without authentication.

3. changed UA Client connectUsername to UA Client connect inside
client.c. This causes the client to connect to server ctt anonymously.

5https://github.com/jtpereyda/boofuzz

20

After this, we created a seed file for AFLNet to start fuzzing with. This can be
done by using the instructions found in Section 4.2. After which, we can start
fuzzing using the following line:

afl-fuzz -i seed/ -o 1run -N tcp://127.0.0.1/4840 -P OPCUA

-q 3 -s 3 -E -K -R -m none ./server ctt

Run 1 Running it with the instructions above, we did not get any problems
(results found in Table 12 on page 33). There are 15 unique hangs with a good
amount of executions.

Analyzing run 1 However, after doing a test run, we stumbled upon a fault in
our modifications of the SUT. AFLNet only reached 1 state, which can be found
in the ipsm.dot file inside the output folder. In this file, AFLNet keeps track of
the states it has reached. After talking to Fijneman[4] about the modifications
of the SUT, he made a new improved version (since it was already known to
Fijneman[4]) which handled the state transition correctly on the new version,
but AFLNet could only reach 2 states (found in Figure 8), which is still incorrect
since FTP has 4 states. The problem turns out to be the seed namely, this input
only reaches 2 states and it would be more difficult for AFLNet to find other
state transitions. As we needed to create a seed for AFLNet using tcpdump,
we saved it in the wrong format (ASCII instead of raw). Saving in the right
format, got us the correct state model (found in Figure 8).

0

-2

0

1 -2

3

424

Figure 8: The incorrect state model (left) and the correct state model (right)
of open62541 found by AFLNet

Run 2 AFLNet found 43 unique hangs with 143 total paths (found in Table
13, in page 34). This is still not the same as the crashes found by Fijneman[4].
But may give us some information about faulty coding.

21

Analyzing run 2 As already mentioned, AFLNet found 43 hangs. We used
aflnet-replay (as we did in Section 5.1). If we test all the hang packets, they all
give a segmentation fault on the aflnet-replay side except the last hang. The
last 2 give an error on the server side, BadInterError and BadSecureChannelTo-
kenUnknown. They are not bugs, since the bad inputs are caught by the coding
and are rejected.

Run 3 We found another fault in our seed creation. When we create a seed
for AFLNet to use (described in Section 4.2), we use tcpdump and Wireshark to
create a seed from the TCP stream. We made the mistake of only looking at one
TCP stream (as explained in Section 4.2) instead of all 4 TCP streams. Thus,
this time we create 4 seeds from all the TCP streams and run AFLNet again.
As we can see in Table 14 on page 34, There are no crashes or hangs found,
enough paths found, and a good amount of total executions. Run 3 resulted in
fewer hangs than run 2. This could be because fuzzing is a non-deterministic
way of testing, meaning that it is not guaranteed to find the same bugs as the
previous run with the same input.

6.2 Fuzzing open62541 with OSS-Fuzz

6.2.1 LibFuzzer

Just like ProFTPD, we fuzz open62541 using libFuzzer with the provided fuzzing
targets. The open62541 developers provided multiple fuzzing targets, as shown
in Table 4. We use these targets to test whether the libFuzzer can find the same
crashes as AFLNet.

base 64 decode
base 64 encode
binary decode
binary message
JSON decode

JSON decode encode
MDNS message

MDNS xht
src ua util

TCP message

Table 4: The list of fuzzing targets created by open62541 team

Run 1 First we build the open62541 image, build the libFuzzer image and
fuzzing targets for open62541, and then run it using the OSS-Fuzz helper script
(instructions found in Appendix B.2.1) on each of the fuzzing target in the Table
4. The results can be found in Table 5.

22

Fuzzing open62541 results
crash hang execs / s time ran reproducible

Base64 decode 4096 24h
Base64 encode 4096 24h
Binary decode x 0 ≤ 30s yes
Binary message x 0 ≤ 10s no
JSON decode x 4096 ≤ 5m no
JSON decode encode x 4096 ≤ 5m no
MDNS message x 0 ≤ 10s yes
MDNS xht 44k 24h
src UA utitl 4096 24h
TCP message 4 24h

Table 5: The results of the different libFuzzer fuzzing targets

Analyzing libFuzzer results If we look at Table 5, we can see that 3 crashes
were found by libFuzzer. Most of them were found right after startup, which
explains why the run time was less than a few seconds. Let us first look at
the crash (found in Figure 14, on page 39) of MDNS message. A heap buffer
overflow caused the error. Rerunning the same tests, results in the same error
but with different addresses. This rules out a coincidence. There also were 2
targets that did not respond (hang). The JSON decode and the JSON decode
encode target both had a time out of more than 25 seconds, probably because
the fuzzing target no longer responded to new inputs.

Binary decode First we take a look at the crash of the binary decode
target (found in Figure 18 on page 40), which gives us an error because of an
unknown address. When we want to debug and try to find out where it crashes,
we use GDB (more information about the debugging process is found in Section
4.4). So we run GDB on binary decode with the seed that crashes the program.
We set some breakpoints to see where it crashes. This gives us, that it crashes
on the last assert (also seen in the crash itself). The assert in question:

UA assert(ret == UA STATUSCODE GOOD);

Unfortunately, the debugger did not provide us with any information about
local variables. This was because the dwarfdata (which is debugger data), is cor-
rupted. Namely, if we start the debugger, we get “Cannot handle DW FORM unknown”.
This fails because the variable ‘ret’ is not the same as 0x00000000.

Binary message The binary message crash (found in Figure 17 on page
40) was caused by a heap buffer overflow. It went 4 bytes over bounds. However,
when we try to reproduce the crash using the seed directly on the seed without a

23

fuzzer, we cannot reproduce the crash because it does not crash. Which means
this crash is not reproducible.

JSON decode The JSON decode hang (found in Figure 15 on page 39),
was caused by an unknown bug. When we run it in GDB, and set some
breakpoints around functions inside the fuzzing target, we find that it hangs
around the execution of the “UA decodeJson” function. Whenever we try to
dive deeper, we cannot get an answer, because it hangs immediately after going
to the function somewhere else in the code. Analyzing this further, we found
that after setting the memory limit for the program to unlimited, it succeeded.
Thus, the timeout is the problem of not having enough memory given to the
fuzzing target. Although the hang is reproducible, it turns out it is not a hang
because it did not get enough memory.

JSON decode encode The JSON decode encode hang (found in Figure
16 on page 40), was caused by the same bug as the JSON decode fuzzing target.
The JSON fuzzing target did not have enough memory, which was fixed by
giving the fuzzing target more memory.

MDNS message The MDNS message crash (found in Figure 14 on page
39), was also caused by heap buffer overflow. It went immediately out of bounds
with less than a byte. When we run GDB with the fuzzing target, we set a
breakpoint at specific open62541 functions. And when we run the GDB with
the seed that crashes the target, it crashes on the execution of the function
“message parse”. When we dive deeper into the message parse function we see
that it crashes on the execution of:

i f (! r r p a r s e (m, m−>an , m−>ancount , &buf , m−> bufEnd))
re turn f a l s e ;

This function parses the RRS part of the MDNS message. When we dive
even deeper, we find that it does a memcpy, which writes something in memory
but does not check bounds and thus overflows in the allocated memory. There
is a comment in the code that states “check if the message has the correct size,
i.e. the count matches the number of bytes” (found in 22 on page 44), which
the code below should check the size and stop our crash from happening, but
does not.

6.2.2 AFL++

As discussed in Section 5.2.2, OSS-Fuzz uses the fuzzing targets from libFuzzer
to fuzz using AFL++, using a C library created by the OSS-Fuzz team. So we
run AFL++ on the existing fuzzing targets with the helper script (described in
Appendix B.3).

24

Run 1 As shown in Table 6,AFL++ found crashes in the same piece of code
but fewer crashes/hangs than libFuzzer. Although AFL++ found a hang in
Base64 and MDNS xht, taking a quick peek at the results, it seems that the PC
where these fuzzers were run on, had a hang itself since the Base64 encode and
the MDNS xht hang happened at the same time. The Binary decode and the
MDNS message crashes were no coincidence, they were also found by libFuzzer.

Fuzzing open62541 results
crash hang execs / s time ran

Base64 decode 56k 24h
Base64 encode 1 30k 24h
Binary decode 97 10k 24h
Binary message 5 24h
JSON decode 30k 24h
JSON decode encode 30k 24h
MDNS message 15 30k 24h
MDNS xht 1 30k 24h
src UA utitl 30k 24h
TCP message 5 24h

Table 6: The results of the different libFuzzer fuzzing targets using AFL++

Binary decode As shown in Table 6, there are 61 crashes. However, when
we tried to analyze the crashes, we found out that the OSS-Fuzz helper script
did not save the seeds that caused the crashes. So we had to rerun AFL++ on
the MDNS fuzzing target, but on the second run, it found 97 crashes which is
more crashes. When we try to recreate the crashes we get the same error we
found using libFuzzer in Section 6.2.1, binary decode.

MDNS message As we can see in Table 6, there are 15 crashes. After
running the target seeds with the input seeds that caused these crashes, we can
see they all cause a buffer overflow (as we have seen in Section 6.2.1, MDNS
message). When we use the debugger to find what causes the crash and try
the same method we used in Section 6.2.1 (with the same breakpoints), we can
see that it crashes in the same location as found with libFuzzer on the MDNS
message fuzzing target.

6.2.3 Honggfuzz

Upon trying to fuzz the fuzzing targets with Honggfuzz, we found out that
the developers of open62541 do not specify that they want to be fuzzed with
Honggfuzz, as every project that is fuzzed by OSS-Fuzz needs to provide specific
information, for example, what fuzzer to use. Knowing that they did not specify
Honggfuzz to be used, we will not try to get Honggfuzz working on their fuzzing
targets (as we also found out that Honggfuzz does not work on open62541).

25

6.3 Comparing AFLNet and OSS-Fuzz over open62541

Observing the bugs found in open62541 (just like in Chapter 5) we noticed a clear
difference in the bugs found. This time it is in favor of OSS-Fuzz. The results of
open62541 make answering the question “Is OSS-Fuzz wasting resources” more
difficult, since this experiment gave opposite results than in Chapter 5.

• OSS-Fuzz found a buffer overflow bug while AFLNet did not find any
crashes or hangs.

• Unlike ProFTPD, the fuzzing targets were good enough to find a bug in
programming. AFLNet however, did not find anything using the socket.
This could probably be because the bad input would be filtered out when
reaching the part that crashes on OSS-Fuzz.

• The underlying fuzzers of OSS-Fuzz did not have many differences since
AFL++ and libFuzzer found the same bug in the same place.

As we discussed in Section 2.1.3, it is not easy to reproduce fuzzing target crashes
on the original program (generally speaking) because it is nearly impossible to
reproduce a trace with the part that caused the fuzzing target to crash (as
discussed in Section 2.1.3). That is also why it is not easy to compare these
results as we cannot test the bad inputs of OSS-Fuzz on the program as a whole
but we can test the bad inputs of AFLNet. This was no problem when using
ProFTPD as SUT because the fuzzing target in ProFTPD did not find any
crashes or hangs. This would have been a problem if the fuzzing target did find
crashes or hangs.

26

7 Future work

7.1 More stateful fuzzers

In the future, it might be an idea to test different stateful fuzzers, like SGFuzzer[1],
to see if there is a better fuzzer than AFLNet, that would work better for OSS-
Fuzz in both bug finding and getting it to work with OSS-Fuzz. This is because
AFLNet requires the developer to create a packet parser in code into AFLNet
and there might be an even better stateful fuzzer at finding bugs.

7.2 More case studies

It is also an idea to test using more case studies because 2 case studies might
not be enough to exactly tell the difference between AFLNet and OSS-Fuzz. It
would also be good to test protocols with encryption. We did not test protocols
with encryption because the nature of encryption makes it more difficult to fuzz
those protocols than protocols without.

7.3 Better fuzzing targets

In this project by Google, called OSS-Fuzz-gen[10], Google uses LLMs (Large
Language Models), like OpenAI ChatGPT or Google Gemini, to create fuzzing
targets to increase the code coverage of the fuzzing for stateless and stateful
projects. If you have better code coverage, you have more chance of finding
faults in the code. OSS-Fuzz depends heavily on good fuzzing targets for all
their fuzzers (libFuzzer, AFL++, Honggfuzz), this is why it would be an idea to
try to use the LLM OSS-Fuzz-gen, to improve code coverage and thus increase
OSS-Fuzz bug finding vs AFLNet.

27

8 Conclusion

Speed OSS-Fuzz does substantially more executions than AFLNet (30,000 vs
5) because AFLNet fuzzes the socket entry point which in turn uses a large
part of the code while OSS-Fuzz only fuzzes smaller parts of the code at once.
This might make OSS-Fuzz better at finding bugs, but whenever a bug is not
reachable by OSS-Fuzz (because of state transitions) they can be faster but they
will never find the bug.

ProFTPD AFLNet improved the bug finding on ProFTPD compared to OSS-
Fuzz. Although OSS-Fuzz is not wasting a lot of resources since ProFTPD has
only one fuzzing target, OSS-Fuzz might not even run the fuzzing target for long
as it might notice that some statistics (like code coverage and crashes) are not
changing, and thus terminating early. Points to note on ProFTPD (for more
analysis of ProFTPD, see Section 5.3),

• ProFTPD has a lot to improve on when talking about the fuzzing targets.
Since the fuzzing targets only reached 2.8% ∼ coverage (see analysis in
Section 5.3), ProFTPD can add more targets like open62541 and improve
the ones they have.

• AFLNet could improve OSS-Fuzz when fuzzing ProFTPD. Even though
we saw that the bug finding is dependent on the creation of good fuzzing
targets, when using AFLNet it would decrease the burden of the creation
of good fuzzing targets to have results (as we see in Section 5.3). Imple-
menting AFLNet does, however, require developers who request fuzzing by
AFLNet, to provide an entry point (unified socket) and an implementation
of the protocol into AFLNet.

Open62541 The results for open62541, however, show us something different.
While we expected the same results for open62541 as ProFTPD, the results for
open62541 are the opposite. Points to note on open62541 (for more analysis of
open62541, see Section 6.3),

• Open62541 does not have a lot to improve on when talking about the
fuzzing target, because while AFLNet did not find any reproducible bugs,
OSS-Fuzz did find bugs.

• AFLNet would not improve OSS-Fuzz when fuzzing open62541, as open62541
had good enough fuzzing targets to find bugs.

• OSS-Fuzz did find crashes, more specifically AFL++ and libFuzzer did.
Both fuzzers found the same bugs, which caused a buffer overflow. This
bug was created by a memcpy function that did not check any bounds.

• OSS-Fuzz also found more unreachable bugs, than reachable bugs. Namely,
when executing the normal path of the program, the bugs found by OSS-
Fuzz might be not possible since the input might have already been filtered
and checked.

28

AFLNet vs OSS-Fuzz We do not have a clear answer to the question “Is
OSS-Fuzz wasting resources?”. ProFTPD shows us that OSS-Fuzz is wasting
resources since it is not fuzzing with many results. Open62541 however, shows
us a different picture. AFL++ and libFuzzer found bugs in open62541 while
AFLNet did not. AFLNet would be better at finding bugs against bad fuzzing
targets. There would be no improvement when there are good fuzzing targets.
Answering this question would require more time, more specifically a bigger
sample rate.

Another way of looking at it would be that OSS-Fuzz is not wasting time
but the developers are, since OSS-Fuzz depends heavily on good fuzzing targets.
Creating good fuzzing targets would be wasting time instead of using AFLNet
which only requires a one-time creation of a code parser inside AFLNet and
takes less time.

OSS-Fuzz One of the assumptions we made is that the developers know the
effect of the quality of their fuzzing targets on the quality of the results of OSS-
Fuzz. This assumption might be wrong since ProFTPD has bad fuzzing targets
and we do not know the exact reason why. The reason for bad fuzzing targets
could also have been that the developers submitted their project for the money
since OSS-Fuzz gives out money for submitting your project.

Recommendations Although there is no clear answer to the question “Is
OSS-Fuzz wasting resources?”, we do have a recommendation for developers
who submit their projects. As OSS-Fuzz is heavily dependent on good fuzzing
targets, making good fuzzing targets would increase the bug finding with OSS-
Fuzz. This would also be a recommendation to OSS-Fuzz as they might want
to recommend creating fuzzing targets with high code coverage to ensure good
fuzzing targets.

29

Glossary

ASan Address Sanitizer

UBSan Undefined Behaviour Sanitizer

OPCUA OPC Unified Architecture

FTP File Transfer Protocol

SUT System Under Test

TCP Transmission Control Protocol

UDP User Datagram Protocol

30

References

[1] Jinsheng Ba, Marcel Böhme, Zahra Mirzamomen, and Abhik Roychoud-
hury. Stateful greybox fuzzing. In 31st USENIX Security Symposium
(USENIX Security 22), pages 3255–3272, Boston, MA, August 2022.
USENIX Association.

[2] Castaglia. Proftpd. https://github.com/proftpd/proftpd, 2014.

[3] Zhen Yu Ding and Claire Le Goues. An empirical study of OSS-Fuzz bugs.
In 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), pages 131–142, 2021.

[4] Mark Fijneman. Fuzzing open source OPC UA implementations. bachelor
thesis, Radboud universiteit, Nijmegen, Gelderland, August 2023.

[5] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. AFL++
: Combining incremental steps of fuzzing research. In 14th USENIX Work-
shop on Offensive Technologies (WOOT 20). USENIX Association, August
2020.

[6] Google. UndefinedBehaviorSanitizer. https://clang.llvm.org/docs/

UndefinedBehaviorSanitizer.html.

[7] Google. Honggfuzz. https://github.com/google/honggfuzz, 2015.

[8] Google. OSS-Fuzz. https://github.com/google/oss-fuzz, 2016.

[9] Google. AddressSanitizer. https://github.com/google/sanitizers/

wiki/AddressSanitizer, 2019.

[10] Dongge Liu, Jonathan Metzman, and Oliver Chang. AI-powered fuzzing:
Breaking the bug hunting barrier. https://security.googleblog.com/

2023/08/ai-powered-fuzzing-breaking-bug-hunting.html, Aug 2023.

[11] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. Aflnet: A
greybox fuzzer for network protocols. In 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST), pages
460–465, 2020.

[12] Stefan Profanter, Ulius Pfrommer, and Noel Graf. open62541. https:

//github.com/open62541/open62541, 2013.

[13] LLVM project team. libFuzzer. https://llvm.org/docs/LibFuzzer.

html.

[14] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley Professional, Boston, MA, 2007.

31

https://github.com/proftpd/proftpd
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://github.com/google/honggfuzz
https://github.com/google/oss-fuzz
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://github.com/open62541/open62541
https://github.com/open62541/open62541
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html

A Results

A.1 ProFTPD in AFLNet

The results of fuzzing ProFTPD commit 5e57d41 with AFLNet without any
sanitation over multiple runs.

Run time 1 day, 20 hours, 2 minutes, 1 seconds
Last unique crash found None
Last unique hang found None

Total unique hangs None
Total unique crashes None

Total paths 800 × 6
Exec speed ∼ 3 / sec

Table 7: The summary of the first run of AFLNet on ProFTPD, summing the
statistics of 6 fuzzers

Run time 1 day, 6 hours, 42 minutes, 11 seconds
Last unique crash found None
Last unique hang found 2 hours, 21 minutes, 3 seconds

Total unique hangs 29
Total unique crashes None

Total paths 2808
Exec speed 1 / sec

Table 8: The summary of the third run of ProFTPD using AFLNet, using ASan
and UBSan, with the correct configuration

A.2 ProFTPD in AFL++

The results of fuzzing ProFTPD commit 5e57d41 with AFL++ with sanitation
over multiple runs.

Run time 0 days, 20 hours, 42 minutes, 7 seconds
Last new path found None

Last unique crash found None
Last unique hang found None

Total unique hangs 0
Total unique crashes None

Total execs 33.7 million
Exec speed 507 / sec

Table 9: The summary of the first run of AFL++ on ProFTPD

32

Run time 1 days, 0 hours, 22 minutes, 36 seconds
Last new path found 0 days, 3 hours, 54 minutes, 31 seconds

Last unique crash found None
Last unique hang found None

Total unique hangs 0
Total unique crashes None

Total execs 4.32 billion
Exec speed 48.4k / sec

Table 10: The summary of the second run of AFL++ on ProFTPD

A.3 ProFTPD in Honggfuzz

The results of fuzzing ProFTPD commit 5e57d41 with AFL++ with sanitation
over a single run.

Summary iterations 634679822
time 85000
speed 7466

crashes count 0
timeout count 0

new units added 661
slowest unit nm 714

guard nb 19394
branch coverage percent 1

peak rss mb 0

Table 11: The results of ProFTPD in Honggfuzz

A.4 Open62541 in AFLNet

The results of fuzzing open62541 commit 5e57d41 with AFLNet with sanitation
over multiple runs.

Run time 1 day, 0 hours, 21 minutes, 49 seconds
Last unique crash found None
Last unique hang found 0 days, 17 hours, 53 minutes, 36 seconds

Total unique hangs 15
Total unique crashes None

Total paths 32
Total execs 79.7k
Exec speed ∼ 5 / sec

Table 12: The summary of the first run of open62541 in AFLnet

33

Run time 1 day, 0 hours, 36 minutes, 55 seconds
Last unique crash found None
Last unique hang found 0 days, 17 hours, 53 minutes, 36 seconds

Total unique hangs 43
Total unique crashes None

Total paths 32
Total execs 89.5k
Exec speed ∼ 5 / sec

Table 13: The summary of the second run of open62541 in AFLNet, now with
fixed AFLNet implementation

Run time 1 day, 0 hours, 33 minutes, 45 seconds
Last unique crash found None
Last unique hang found None

Total unique hangs 0
Total unique crashes None

Total paths 219
Total execs 381k
Exec speed ∼ 5 / sec

Table 14: The summary of the third run of open62541 in AFLNet, now with 4
seeds

A.5 Open62541 in AFL++

The results of fuzzing open62541 commit 5e57d41 with AFL++ with sanitation
over a single run.

base64 encode base64 decode binary decode binary message JSON decode
Run time 24 hours 24 hours 24 hours 24 hours 24 hours
Last unique crash None None 23 minutes None None
Last unique hang 1 hour None None None None
Total unique hangs 1 0 0 0 0
Total unique crashes 0 0 61 0 0
Total execs 1.61G 5.57G 698M 797K 2.83G
Exec speed 17.9k/sec 56.8k/sec 13.0k/sec 14.0k/sec 37.8k/sec

Table 15: The first part of the summary of the afl AFL++ results on open62541

34

JSON encode MDNS message MDNS xht src ua util TCP message
Run time 24 hours 24 hours 24 hours 24 hours 24 hours
Last unique crash None 11 hours 2 hours None None
Last unique hang None None None None None
Total unique hangs 0 0 1 0 0
Total unique crashes 0 15 0 0 0
Total execs 2.72G 1.6G 234M 3.44G 349k
Exec speed 28.3k/sec 33.8k/sec 277/sec 45.2k/sec 8k/sec

Table 16: The second part of the summary of the afl AFL++ results on
open62541

35

B Installation

The way the different fuzzers and SUTs are compiled and run.

B.1 ProFTPD

$ CFLAGS=’−g − f s a n i t i z e=address , undef ined ’
LDFLAGS=’− f s a n i t i z e=address , undef ined ’
CXXFLAGS=’−g − f s a n i t i z e=address , undef ined ’ CC=
” a f l −clang−f a s t ” CXX=” a f l −clang−f a s t++” . /
c o n f i g u r e −−enable−deve l=nodaemon : nofork

$ make
$ make i n s t a l l
$ a f l −f uzz −d − i in−f t p / −o fourthrun / −x /home/

ubuntu/ a f l n e t / t u t o r i a l s / l i g h t f t p / f tp . d i c t −N
tcp : / / 1 2 7 . 0 . 0 . 1 / 2 0 2 1 −R −E −q 3 −s 3 −K −D
10000 −m none −P FTP proftpd −n −c /tmp/PFTEST
/PFTEST. conf

Figure 9: Instructions to compile and fuzz ProFTPD

B.2 OSS-Fuzz

The instructions to run libFuzzer and AFL++ with the help of the OSS-Fuzz
helper script.

B.2.1 Instructions for the OSS-Fuzz helper script

$ cd path/ to / oss−f uzz
$ python3 i n f r a / he lpe r . py bui ld image

$PROJECT NAME
$ python3 i n f r a / he lpe r . py b u i l d f u z z e r s −−eng ine

l i b f u z z e r $PROJECT NAME
$ python3 i n f r a / he lpe r . py r u n f u z z e r −−corpus−d i r

=<path−to−temp−corpus−dir> −−eng ine a f l
$PROJECT NAME <f u z z t a r g e t >

Figure 10: Instructions to fuzz projects with libFuzzer using OSS-Fuzz helper
scripts

36

B.3 AFL++ in OSS-Fuzz helper script

$ cd path/ to / oss−f uzz
$ python3 i n f r a / he lpe r . py bui ld image

$PROJECT NAME
$ python3 i n f r a / he lpe r . py b u i l d f u z z e r s −−eng ine

a f l $PROJECT NAME
$ python3 i n f r a / he lpe r . py r u n f u z z e r −corpus−d i r

=<path−to−temp−corpus−dir> −−eng ine a f l
$PROJECT NAME <f u z z t a r g e t >

Figure 11: Instructions to fuzz projects with AFL++ using OSS-Fuzz helper
scripts

B.4 Hongfuzz in OSS-Fuzz helper script

$ cd path/ to / oss−f uzz
$ python3 i n f r a / he lpe r . py bui ld image

$PROJECT NAME
$ python3 i n f r a / he lpe r . py b u i l d f u z z e r s −−eng ine

hongfuzz $PROJECT NAME
$ python3 i n f r a / he lpe r . py r u n f u z z e r −corpus−d i r

=<path−to−temp−corpus−dir> −−eng ine hongfuzz
$PROJECT NAME <f u z z t a r g e t >

Figure 12: Instructions to fuzz projects with Hongfuzz using OSS-Fuzz helper
scripts

37

C Bugs

The bugs we found during the fuzzing of software.

C.1 ProFTPD

The crash when trying to reproduce the crash from AFLNet on ProFTPD using
the seeds from the original GitHub issue.

Figure 13: Heap buffer overflow found by AFLNet

C.2 Open62541

These are the bugs found by fuzzing different targets of open62541 using lib-
Fuzzer. The fuzzing targets include MDNS message, JSON decode, JSON de-
code encode, binary message, binary decode.

38

Figure 14: Error found while fuzzing open62541 with libFuzzer and fuzzing
target, MDNS message

Figure 15: Error found while fuzzing open62541 with libFuzzer and fuzzing
target, JSON decode

39

Figure 16: Error found while fuzzing open62541 with libFuzzer and fuzzing
target, JSON decode encode

Figure 17: Error found while fuzzing open62541 with libFuzzer and fuzzing
target, binary message

Figure 18: Error found while fuzzing open62541 with libFuzzer and fuzzing
target, binary decode

40

D Source code

In this chapter, we show different source codes of the SUTs and the fuzzing
targets.

D.1 fuzz mdns message.cc

0 #inc lude <c s td in t>
1 #inc lude <c s td io>
2 #inc lude <l ibmdnsd/mdnsd . h>
3 #inc lude <c s t r i ng>
4 #inc lude <c s t d l i b>
5

6 /∗
7 ∗∗ Main entry po int . The f u z z e r invokes t h i s f unc t i on with each
8 ∗∗ fuzzed input .
9 ∗/

10 extern ”C” in t
11 LLVMFuzzerTestOneInput (const u i n t 8 t ∗data , s i z e t s i z e) {
12

13

14 s t r u c t message m;
15 memset(&m, 0 , s i z e o f (s t r u c t message)) ;
16

17 unsigned char ∗dataCopy = (unsigned char ∗) mal loc (s i z e) ;
18 i f (! dataCopy) {
19 r e turn 0 ;
20 }
21

22 memcpy(dataCopy , data , s i z e) ;
23

24 bool su c c e s s = message parse (&m, dataCopy , s i z e) ;
25

26 f r e e (dataCopy) ;
27

28 i f (! s u c c e s s)
29 r e turn 0 ;
30

31 mdns daemon t ∗d = mdnsd new(QCLASS IN , 1000) ;
32

33 s t r u c t sockaddr s to rage addr ;
34 mdnsd in (d , &m, (s t r u c t sockaddr ∗)&addr , 2000) ;
35

36 mdnsd free (d) ;
37

38 r e turn 0 ;
39 }

Figure 19: The source code of the MDNS message fuzzing target

41

D.2 fuzz binary decode.cc

0 #inc lude ”custom memory manager . h”
1 #inc lude <open62541/ p lug in / l o g s tdou t . h>
2 #inc lude <open62541/ s e r v e r c o n f i g d e f a u l t . h>
3 #inc lude <open62541/ types . h>
4

5 /∗
6 ∗∗ Main entry po int . The f u z z e r invokes t h i s f unc t i on with each
7 ∗∗ fuzzed input .
8 ∗/
9 extern ”C” in t LLVMFuzzerTestOneInput (const u i n t 8 t ∗data , s i z e t

s i z e) {
10 i f (s i z e <= 6)
11 r e turn 0 ;
12

13 // s e t the a v a i l a b l e memory
14 i f (! UA memoryManager setLimitFromLast4Bytes (data , s i z e))
15 r e turn 0 ;
16

17 data += 4 ;
18 s i z e −= 4 ;
19

20 // get some random type
21 u in t 16 t typeIndex = (u in t 16 t) (data [0] | data [1] << 8) ;
22 data += 2 ;
23 s i z e −= 2 ;
24

25 i f (typeIndex >= UA TYPES COUNT)
26 r e turn UA FALSE;
27

28 void ∗dst = UA new(&UA TYPES[typeIndex]) ;
29 i f (! dst)
30 r e turn 0 ;
31

32 const UA ByteString binary = {
33 s i z e , // l ength
34 (UA Byte ∗) (void ∗) data
35 } ;
36

37 UA StatusCode r e t = UA decodeBinary(&binary , dst , &UA TYPES[
typeIndex] , NULL) ;

38 i f (r e t != UA STATUSCODEGOOD) {
39 UA delete (dst , &UA TYPES[typeIndex]) ;
40 r e turn 0 ;
41 }

Figure 20: The first part of the source code of the binary decode fuzzing target

42

42 // copy the datatype to t e s t
43 void ∗dstCopy = UA new(&UA TYPES[typeIndex]) ;
44 i f (! dstCopy) {
45 UA delete (dst , &UA TYPES[typeIndex]) ;
46 r e turn 0 ;
47 }
48 r e t = UA copy (dst , dstCopy , &UA TYPES[typeIndex]) ;
49 i f (r e t != UA STATUSCODEGOOD) {
50 UA delete (dst , &UA TYPES[typeIndex]) ;
51 UA delete (dstCopy , &UA TYPES[typeIndex]) ;
52 r e turn 0 ;
53 }
54

55 // compare with copy
56 UA assert (UA order (dst , dstCopy , &UA TYPES[typeIndex]) ==

UA ORDER EQ) ;
57 UA delete (dstCopy , &UA TYPES[typeIndex]) ;
58

59 // now a l s o t e s t encoding
60 s i z e t encS i ze = UA calcSizeBinary (dst , &UA TYPES[typeIndex]) ;
61 UA ByteString encoded ;
62 r e t = UA ByteSt r ing a l l ocBuf f e r (&encoded , encS i ze) ;
63 i f (r e t != UA STATUSCODEGOOD) {
64 UA delete (dst , &UA TYPES[typeIndex]) ;
65 r e turn 0 ;
66 }
67

68 r e t = UA encodeBinary (dst , &UA TYPES[typeIndex] , &encoded) ;
69 UA assert (r e t == UA STATUSCODEGOOD) ;
70

71 UA ByteStr ing c lear (&encoded) ;
72 UA delete (dst , &UA TYPES[typeIndex]) ;
73 r e turn 0 ;
74 }

Figure 21: The second part of the source code of the binary decode fuzzing
target

43

504 // check i f the message has the c o r r e c t s i z e , i . e . the count
matches the number o f bytes

505

506 /∗ Process que s t i on s ∗/
507 my(m−>qd , (s i z e o f (s t r u c t ques t i on) ∗ m−>qdcount) , s t r u c t

ques t i on ∗) ;
508 f o r (i = 0 ; i < m−>qdcount ; i++) {
509 i f (! l a b e l (m, &buf , m−> bufEnd , &(m−>qd [i] . name)))

{
510 r e turn f a l s e ;
511 }
512 i f (buf + 4 > m−> bufEnd) {
513 r e turn f a l s e ;
514 }
515 m−>qd [i] . type = net2shor t (&buf) ;
516 m−>qd [i] . c l a z z = net2shor t (&buf) ;
517 }
518 i f (buf > m−> bufEnd) {
519 r e turn f a l s e ;
520 }
521

522 /∗ Process r r s ∗/
523 my(m−>an , (s i z e o f (s t r u c t r e s ou r c e) ∗ m−>ancount) , s t r u c t

r e s ou r c e ∗) ;
524 my(m−>ns , (s i z e o f (s t r u c t r e s ou r c e) ∗ m−>nscount) , s t r u c t

r e s ou r c e ∗) ;
525 my(m−>ar , (s i z e o f (s t r u c t r e s ou r c e) ∗ m−>arcount) , s t r u c t

r e s ou r c e ∗) ;
526 i f (! r r p a r s e (m, m−>an , m−>ancount , &buf , m−> bufEnd))
527 r e turn f a l s e ;
528 i f (! r r p a r s e (m, m−>ns , m−>nscount , &buf , m−> bufEnd))
529 r e turn f a l s e ;
530 i f (! r r p a r s e (m, m−>ar , m−>arcount , &buf , m−> bufEnd))
531 r e turn f a l s e ;
532 r e turn true ;
533 }

Figure 22: The part of the source code where the rrparse function is called with
the wrong size

44

	Introduction
	Fuzzing
	Stateless software & fuzzers
	AFL++
	Honggfuzz and libFuzzer
	Reproducibility

	Stateful fuzzers
	AFLNet
	Socket vs Target

	OSS-Fuzz
	ASan and UBsan

	Related Work
	Bugs found by OSS-Fuzz

	Method
	Project selection
	Seed creation
	Fuzzing instructions
	AFLNet instructions
	OSS-Fuzz instructions

	Comparing results found by fuzzing

	Fuzzing ProFTPD
	Fuzzing ProFTPD with AFLNet
	Fuzzing ProFTPD with OSS-Fuzz
	LibFuzzer
	AFL++
	Honggfuzz

	Comparing AFLNet and OSS-Fuzz over ProFTPD

	Fuzzing open62541
	Fuzzing open62541 with AFLNet
	Fuzzing open62541 with OSS-Fuzz
	LibFuzzer
	AFL++
	Honggfuzz

	Comparing AFLNet and OSS-Fuzz over open62541

	Future work
	More stateful fuzzers
	More case studies
	Better fuzzing targets

	Conclusion
	Glossary
	Results
	ProFTPD in AFLNet
	ProFTPD in AFL++
	ProFTPD in Honggfuzz
	Open62541 in AFLNet
	Open62541 in AFL++

	Installation
	ProFTPD
	OSS-Fuzz
	Instructions for the OSS-Fuzz helper script

	AFL++ in OSS-Fuzz helper script
	Hongfuzz in OSS-Fuzz helper script

	Bugs
	ProFTPD
	Open62541

	Source code
	fuzz_mdns_message.cc
	fuzz_binary_decode.cc

