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Abstract

Pattern is a logic puzzle that has been proven to be NP-complete. In this
thesis, we aim to encode the Pattern puzzle as a Boolean Satisfiability (SAT)
problem. We show two ways of encoding the Pattern puzzle as an SAT
problem and we use these encodings to develop two ways to generate Pattern
puzzles. We will test the performance of both encodings and also of the
generation methods. We find that the second encoding and the second
generation method are the most efficient.
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Chapter 1

Introduction

Logic puzzles have been popular pastimes for centuries, challenging players
to exercise their problem-solving skills and logical reasoning. Pattern, also
known as Nonogram or Japanese Puzzles, is a popular logic puzzle where
players are tasked with filling in cells in a grid based on numerical clues
provided for each row and column. The challenge lies in deducing which
cells should be filled and which should be left blank, ultimately revealing a
hidden picture.

Various logical puzzles, such as Sudoku and Pattern, are proven to be
NP-complete. This means that there is no known efficient algorithm to solve
these puzzles, and the time it takes to solve them grows exponentially with
the size of the puzzle. However, solutions to these puzzles can be verified
in polynomial time. To be NP-complete, a problem p must also be NP-
hard, meaning that each problem in NP can be reduced to problem p in
polynomial time.

In this thesis, we will use this notion of NP-completeness to reduce
the Pattern puzzle to a SAT problem. SAT is famously known to be NP-
complete, as it is the first problem that was proven to be NP-complete[7].
There are automatic solvers for SAT problems, which we will use to find
solutions to Pattern puzzles.

We will first discuss some preliminary knowledge about Pattern and SAT
problems. Then we will discuss a naive way to encode a Pattern puzzle as an
SAT problem. Next, we will discuss an improved way of encoding a Pattern
puzzle as an SAT problem. We will then look at two different ways how
to generate Pattern puzzles. After that, we will discuss the experiments
we have done on the various encodings and the generation algorithms. We
will then discuss related works, summarize the research, and discuss future
work.
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Chapter 2

Preliminary knowledge

2.1 The Pattern puzzle

Pattern is a single-player logical puzzle where the player needs to find a
hidden image with given clues. The game is played on a grid of squares,
where each square is either black or white, combined with a set of clues.
The player needs to fill in the grid with black and white squares, such that
the clues are satisfied. The goal is to find the hidden image. Solving a
Pattern puzzle is an NP-complete problem[11].

The player starts with an empty grid and is given a set of clues. Each
clue corresponds to a row or column of the grid and contains one or more
numbers. The individual numbers indicate a group of consecutive black
squares in that row or column. In between each group of black squares,
there must be at least one white square. All other squares in the row or
column must be white.

The goal of the game is to satisfy all clues in the grid, such that the
hidden image is revealed. A player can make a move by coloring a square in
black or white. In Figure 2.1 you can see an example of a Pattern puzzle,
with the starting grid on the left and the solution on the right.

2.2 Conjunctive Normal Form

Logical formulas are expressions that are composed of variables and opera-
tors that represent a logical relationship between the variables. Conjunctive
Normal Form (CNF) is a way of representing logical formulas. A CNF for-
mula consists of a conjunction of clauses, where each clause is a disjunction
of literals. A literal is either a variable or the negation of a variable. Exam-
ple 2.2.1 is an example of a CNF formula. What is important for a formula
to be in CNF, is that all clauses contain disjunctions and that each dis-
junction contains one or more literals. We can convert any logical formula
to a CNF formula that is equisatisfiable. This conversion can be done in
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Figure 2.1: An empty Pattern puzzle and its solution

linear time using a Tseytin transformation(Section 2.4), which makes CNF
formulas very useful for solving SAT problems.

Example 2.2.1. F = (¬A ∨ ¬B) ∧ (B ∨ C) ∧D

2.3 Boolean satisfiability problems and SAT solvers

A boolean satisfiability problem (hereafter called SAT) is a problem that
determines whether given a logical formula, there exists a truth assignment
that satisfies the formula. In a truth assignment of a CNF, each variable
is assigned a specific value, and the entire formula is then evaluated to
determine whether it is true or false. An example of a truth assignment is
given in Example 2.3.1. SAT is proven to be NP-complete[12]. NP-complete
is a complexity class that consists of problems that are at least as hard as
any problem that is in NP.

Example 2.3.1. We take the formula (¬A ∨ ¬B) ∧ (B ∨ C) ∧D. A truth
assignment where A = False, B = False, C = True and D = True
satisfies the formula. A truth assignment where A = False, B = False,
C = True, and D = False does not satisfy the formula. However, the
formula is satisfiable, because there exists a truth assignment that satisfies
the formula.

An SAT solver is a tool that can determine whether a logical formula is
satisfiable or not. It takes a CNF formula as input, and its output consists
of whether there is a truth assignment that satisfies the formula. If such an
assignment exists, it also outputs the found assignment. Whenever multiple
assignments satisfy the formula, it outputs only one of them. This comes
from the fact that an SAT solver is tasked with determining whether a
formula is satisfiable, not with finding all assignments that satisfy a formula.
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We will use SAT4J v2.3.6 as our SAT solver, which was first released
in 2004. This SAT solver is an implementation of MiniSat[9]. This specific
implementation accepts formulas in the DIMACS format1. Example 2.3.2
shows an example of a formula in DIMACS format. The first line con-
tains the header p cnf <variables> <clauses>, where <variables> is
the number of variables in the formula and <clauses> is the number of
clauses in the formula. The following lines contain the clauses of the for-
mula followed by a 0 signalling the end of the clause.

Example 2.3.2. Suppose we have the formula of Example 2.2.1, we can
rewrite this to the following DIMACS format.

p cnf 4 3

-1 -2 0

2 3 0

4 0

2.4 Tseytin transformation

For an SAT solver to be able to solve a formula, it needs to be in CNF.
However, it might occur that when creating a formula, you cannot go around
the fact that it is not in CNF. For example, your formula might be in DNF,
which is the disjunctive normal form2. Example 2.4.1 shows an example
of a DNF formula. Converting a DNF formula to a CNF formula is very
expensive computationally and leads to an exponential increase in the size
of the formula. That is where we use the Tseytin transformation[15].

Example 2.4.1. F = (A ∧B) ∨ (C ∧D)

The Tseytin transformation is a technique that can be used to convert
any boolean formula to a CNF formula, in linear time relative to the input.
Given a formula A, the Tseytin transformation converts A to a CNF for-
mula B such that A and B are equisatisfiable. The key idea is that each
subformula, except for literals, is given a name, which is then used as a fresh
variable. Using those new variables and some rewrite rules, you can rewrite
the subformulas to CNF. The resulting formula is a conjunction of these
rewritten subformulas. The Tseytin transformation T (A) of A is defined as
the CNF of xn ↔ ¬a for every non-literal subformula of the shape ¬a, and
as the CNF of xn ↔ (A1 ⋄ A2) for every subformula of the shape A1 ⋄ A2,
for ⋄ ∈ {∨,∧,→,↔}. xn is a fresh variable that is used to represent the
subformula.

1https://logic.pdmi.ras.ru/~basolver/dimacs.html
2Similar to CNF, but a disjunction of conjunctions instead of the other way around
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Formula cnf() CNF formula

¬y cnf(x↔ ¬y) (x ∨ y) ∧ (¬x ∨ ¬y)
y ∧ z cnf(x↔ (y ∧ z)) (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y) ∧ (¬x ∨ z)
y ∨ z cnf(x↔ (y ∨ z)) (¬x ∨ y ∨ z) ∧ (x ∨ ¬y) ∧ (x ∨ ¬z)
y → z cnf(x↔ (y → z)) (¬x ∨ ¬y ∨ z) ∧ (x ∨ y) ∧ (x ∨ ¬z)
y ↔ z cnf(x↔ (y ↔ z)) (¬x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ ¬z) ∧ (x ∨ y ∨ z)

Table 2.1: Tseytin transformation rules

Example 2.4.2. We take the formula F = (A ∧ ¬B) ∨ C. The first step is
to find all the subformulas. We find ¬B, A ∧ ¬B, and (A ∧ ¬B) ∨ C. We
will represent them by variables x1, x2, and x3 respectively. We then apply
the transformation rules to each subformula.

x1 ↔ ¬B cnf(x1 ↔ ¬B) = (x1 ∨B) ∧ (¬x1 ∨ ¬B)

x2 ↔ (A ∧ ¬B) cnf(x2 ↔ A ∧ x1) = (x2 ∨ ¬A ∨ ¬x1) ∧ (¬x2 ∨A) ∧ (¬x2 ∨ x1)

x3 ↔ ((A ∧ ¬B) ∨ C) cnf(x3 ↔ x2 ∨ C) = (¬x3 ∨ x2 ∨ C) ∧ (x3 ∨ ¬x2) ∧ (x3 ∨ ¬C)

The final CNF formula consists of the conjunction of these CNF formulas.

T (F ) =x3 ∧
(¬x3 ∨ x2 ∨ C) ∧ (x3 ∨ ¬x2) ∧ (x3 ∨ ¬C) ∧
(x2 ∨ ¬A ∨ ¬x1) ∧ (¬x2 ∨A) ∧ (¬x2 ∨ x1) ∧
(x1 ∨B) ∧ (¬x1 ∨ ¬B)
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Chapter 3

A naive algorithm for
Pattern puzzles

To solve a puzzle using an SAT solver, you would first need to convert the
puzzle to a CNF formula. Doing so requires various steps and strategies to
be taken. In this chapter, we will describe an initial naive solution to the
problem of converting a Pattern puzzle to a CNF formula. This solution
is not the final solution, but it is a good starting point to get a better
understanding of the problem. From there we will find an improved solution
that is more efficient in solving the problem.

3.1 Initialisation

To start the conversion to a CNF formula, we first need to initialize the
basics of a puzzle. We need to know the size of the board in terms of rows
and columns, and all of the constraints on each of the rows and columns.

3.2 Solving the puzzle

After the initialization of the puzzle, we can start solving it. We will solve
the puzzle by using an SAT solver, but we can not just give the puzzle to
an SAT solver as is. We need to find a way to convert the puzzle to a CNF
formula, such that the SAT solver can process it.

All logic puzzles consist of a set of constraints and rules that need to
be satisfied. Given these constraints, you can rewrite these to a boolean
formula such that an SAT solver can solve it. Eventually, the puzzle comes
down to evaluating each cell whether it should be black or white, considering
the relevant constraints for that cell and the cells orthogonally adjacent to
it. Each possible solution to each row or column can be converted to a logic
formula by using a disjunction of all the possible configurations that a row
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or column can have. Creating a conjunction of all these disjunctions gives
us a logical formula that represents the puzzle.

After we have converted the puzzle to a CNF formula, we can give it to
an SAT solver. The SAT solver will then try to find a truth assignment for
the formula, which solves the puzzle. To be able to give the formula to an
SAT solver, we need to assign each cell a unique variable. Each cell gets a
name boardrow,column that represents their position on the board in a single
integer.

Figure 3.1: A board with a size of 5 by 5 with the names of the fields.

3.2.1 Generating possibilities

To generate the logic formulas for each row and column, we look at them
individually. For each row or column, we look at its clue list and from there
generate all different possibilities for that row or column. Let’s look at the
procedure for generating possibilities for a single row with size 15 and with
a clue list of 6,3,2. We know from the clue list that there needs to be a total
of 6+3+2=11 black cells in the row. That leaves us with 15-11=4 white
cells. Our strategy to generate all the possibilities is to first represent each
block of black cells as a single cell. We also know that each block of black
cells needs to be separated by at least one white cell. Therefore we add a
white cell after each block in the clue list, except for the last block since this
can be at the end of the row or column. From there we are left with the
remaining white cells that need to be placed in the row or column. These
white cells need to be placed in between the blocks of black cells and we
can assign an index to those places. To then obtain all possible placements
of these white cells, we generate all increasing orderings of the indices with
a maximum length of the number of white cells to place. For example, for
a row with size 15 and with a constraint of 6,3,2, we first add a white cell
after each block of black cells except for the last block. From there we are
left with 2 white cells that can be placed in 4 places in the row. We generate
all increasing orderings of the indices 1 through 4 with a length of 2 which
we then use to place the white cells in the row. The possibilities for this
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row together with the orderings are shown in Example 3.2.1. We do this
generation for each row and column and store these possibilities in a list.

Example 3.2.1. All possible increasing orderings of digits 1 through 4 with
a length of 2 followed by the placing of the remaining white cells amongst
the blocks.

{1,1} [0,0,1,1,1] {2,3} [1,0,1,0,1]

{1,2} [0,1,0,1,1] {2,4} [1,0,1,1,0]

{1,3} [0,1,1,0,1] {3,3} [1,1,0,0,1]

{1,4} [0,1,1,1,0] {3,4} [1,1,0,1,0]

{2,2} [1,0,0,1,1] {4,4} [1,1,1,0,0]

3.2.2 Generating a CNF formula

Now that we have all the possibilities for each row and column, we need
to generate a CNF formula that represents the puzzle. The logic formula
for a row or column is a disjunction of all the possibilities for that row or
column. This is in the form of a DNF. Each one of those possibilities is
then a conjunction of all the cells in that row or column. The conjunction
of each logic formula for each row and column is the logic formula for a
puzzle. However, this logic formula is not in CNF form, since you have a
conjunction of DNFs. Therefore we need to convert this logic formula to
CNF. We do this by using the Tseytin transformation. As mentioned in
Section 2.4, the CNF formula that is a result of the Tseytin transformation,
is equally satisfiable as the original formula.

The Tseytin transformation makes use of new free variables for each
subformula. We want to use variables that make sense in the context of the
puzzle. After applying the transformation, we will convert the formula to
the DIMACS format which uses integer variables. We want the variables
we use in the DIMACS format to represent the cells in the puzzle, and any
extra variables we need to be assigned after that. We know that we have
at most r · c cells in the puzzle, where r is the number of rows and c is the
number of columns. Therefore we can use the integers from 1 to r · c for
the cells in the puzzle and all integers from r · c + 1 and up for the extra
variables.

Now that we know which variables we can use, we can start applying the
Tseytin transformation. Note that the outer conjunction does not need to be
transformed, since it is already in CNF form. Therefore we only transform
the inner disjunctions. We iterate over all of these and apply the Tseytin
transformation to each of them as explained in Section 2.4. The result of
this transformation is a CNF formula that is equivalent to the original logic
formula.
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3.2.3 Obtaining a solution

Now that we have a CNF formula we can almost give it to an SAT solver.
First, we want to convert our formula into the DIMACS format. As said in
section Section 3.2.2, we want to use the integers from 1 to r · c for the cells
in the puzzle and all integers from r ·c+1 and up for the extra variables. The
extra variables already have the correct names, but we still need to convert
the cell names to integers. We do this with the formula (row−1)·c+column,
where row is the row of the cell, column is the column of the cell, and c is the
number of columns in the puzzle. We then put the formula in the DIMACS
format and give it to the SAT solver. If the SAT solver returns a solution, we
can convert the solution back to the puzzle format. We do this by iterating
over all the cells in the puzzle and checking the cell’s corresponding assigned
variable in the solution. If the variable is set to true, we set the cell to black,
otherwise, we set it to white. If the SAT solver returns that the formula is
unsatisfiable, we know that the puzzle is unsolvable.

Figure 3.2: A board with a size of 5 by 5 with the names of the fields
converted to the DIMACS format and an illustration of the assignment of
the variables.

11



Chapter 4

An improved algorithm for
Pattern puzzles

We have already found a naive solution to the problem of solving a Pattern
puzzle using an SAT solver. We can improve this solution to get a more
efficient and faster algorithm. The problem with the naive algorithm is that
it generates a very large CNF formula for larger puzzles. This slows down
the algorithm by a significant amount. In this chapter, we will describe how
the improved algorithm works and how it is implemented. We take the same
approach of converting the puzzle to a CNF formula, however, we will make
more use of the constraints and rules of the puzzle to get a more efficient
formula.

4.1 Representation of a puzzle

To be able to convert the puzzle to a CNF formula we need to represent
the puzzle in a way that we can easily convert it. We will use the same
representation for fields as in the naive algorithm, however, we will add some
extra information to make it easier to convert the puzzle. We will represent
the puzzle as two lists of lines where each line is a list of fields. The first
list of lines represents the rows of the puzzle and the second list of lines
represents the columns of the puzzle. Each line has a number which we will
use to refer to the line. The lines that represent the rows will be numbered
from 1 to the number of rows in the puzzle. The lines that represent the
columns will be numbered from the number of rows in the puzzle plus one
to the number of rows plus the number of columns in the puzzle. If we
have a puzzle of size 10x10, the rows will be numbered from 1 to 10 and the
columns will be numbered from 11 to 20.

Besides the lines, we also need to represent the blocks. A block is a
sequence of fields in a line that is connected to a clue of that line. We will
represent the blocks as integers starting at 1 and ranging up to the number
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of blocks in the constraint. If we have a line with clue list 6 3 2, the blocks
will be numbered from 1 to 3.

4.2 Variables

Before we can start to convert the puzzle to a CNF formula, we need to
define the variables that we will use. We will use three types of variables
which are encoded in different ways.

1. The first type of variables are the variables that represent whether a
specific field is the start of a certain block. We denote these variables
as is start of block(l, b, f) where l is the line, b is the block and f is
the field.

2. The second type of variables are the variables that represent whether
a specific field is part of a certain block. We denote these variables as
is part of block(l, b, f) where l is the line, b is the block and f is the
field.

3. The third type of variables are the variables that represent whether a
specific field is black. We denote these variables as field is black(f)
where f is the number of the field.

4.3 Functions

To be able to create a better encoding of the puzzle we need to formally
define some aspects of the puzzle that we will be working with. We need to
define several functions to help us with creating a readable encoding. We
define the following functions:

• R: This function returns the list of rows in the puzzle.

• C: This function returns the list of columns in the puzzle.

• L(l): This function returns the length of line l.

• size(b, l): This function returns the size of block b in line l.

• B(l): This function returns the list of blocks in line l.

• F (l): This function returns the list of fields in line l.
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4.4 Rules of the puzzle

Now that we have defined the predicates we can start to express the rules of
the puzzle. All of the rules that we create are derived from the rules of the
puzzle. We will start with the rules that are the most basic and then move
on to the more complex rules.

1. If a field is the start of a block, it is also part of that block.

|R∪C|∧
l=1

|B(l)|∧
b=1

|F (l)|∧
f=1

is start of block(l, b, F (l)[f ])→ is part of block(l, b, F (l)[f ])

This implication is rather trivial, but it is important to include it in our
encoding.

2. If a field is part of a block, it is black.

|R∪C|∧
l=1

|B(l)|∧
b=1

|F (l)|∧
f=1

is part of block(l, b, F (l)[f ])→ field is black(F (l)[f ])

When combining these two rules you can see the importance of the first one.
We know that if a field is part of a block, or if it is the start of a block, it is
black. But we also know that if a field is the start of a block, it is also part
of that block. Using the above two rules we can deduce all three of these
statements.

3. Each block starts at a field such that the block fits in the row.

|R∪C|∧
l=1

|B(l)|∧
b=1

|F (l)|−size(b)+1∨
f=1

is start of block(l, b, F (l)[f ])

|R∪C|∧
l=1

|B(l)|∧
b=1

|F (l)|∧
f=L(l)−size(b)+2

¬is start of block(l, b, F (l)[f ])

The first part of this rule denotes the fields where a block can start such
that it fits in the line. The second part of the rule denotes the fields where
a block cannot start such that it fits in the line. For example, if we have a
block of size 3 and we are looking at a line of size 5, the first part of the rule
tells us that the block can start at fields 1, 2, and 3. The second part tells
us that the block cannot start at fields 4 and 5.
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4. If a block starts at a field, the next fields are also part of that block.

|R∪C|∧
l=1

|B(l)|∧
b=1

|F (l)|∧
f=1

f+size(b)∧
f ′=f+1

is start of block(l, b, F (l)[f ])→

is part of block(l, b, F (l)[f ′])

This rule states that when we have a block of size b and we know that it
starts at field f , we can deduce that the next b − 1 fields are also part of
that block.

5. If a block starts at a field, it does not start at another field.

|R∪C|∧
l=1

|B(l)|∧
b=1

|F (l)|∧
f=1

|F (l)|∧
f ′=1

is start of block(l, b, F (l)[f ])→

¬is start of block(l, b, F (l)[f ′]) for f ̸= f ′

6. If a block starts at a field, if it exists, the field before it is white.

|R∪C|∧
l=1

|B(l)|∧
b=1

|F (l)|∧
f=2

is start of block(l, b, F (l)[f ])→

¬field is black(F (l)[f − 1])

7. The first field after a block is white if it exists.

|R∪C|∧
l=1

|B(l)|∧
b=1

|F (l)|−size(b)∧
f=1

is start of block(l, b, F (l)[f ])→

¬field is black(F (l)[f + size(b)])

Rules 6 and 7 state that the fields surrounding a block, if they exist, should
be white. This is one of the basic rules of the puzzle.

8. If a block starts at field f , the fields before that are not part of that
block.

|R∪C|∧
l=1

|B(l)|∧
b=1

|F (l)|∧
f=1

f−1∧
f ′=1

is start of block(l, b, F (l)[f ])→

¬is part of block(l, b, F (l)[f ′])
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9. If a block ends at field f + size(b), the fields after that are not part of
that block

|R∪C|∧
l=1

|B(l)|∧
b=1

|F (l)|∧
f=1

|F (l)|∧
f ′=f+size(b)

is start of block(l, b, F (l)[f ])→

¬is part of block(l, b, F (l)[f ′])

We know that if a block starts at a field f , only the following size(b) − 1
fields are part of that block. From there we can deduce that the fields before
f and after f + size(b)− 1 are not part of that block.

10. If a field is black, it is part of some block in its row and column.

|R|∧
r=1

|C|∧
c=|R|+1

field is black(F (c)[r])→
|B(r)|∨
b=1

is part of block(r, b, F (c)[r])

|R|∧
r=1

|C|∧
c=|R|+1

field is black(F (c)[r])→
|B(c)|∨
b=1

is part of block(c, b, F (c)[r])

We already stated that if a field is part of a block, it is black. However, we
also know that if a field is black, it is part of a block. This rule states that
if a field is black, it is part of a block in its row and column.

You also see that we get the number of the field using F (c)[r] instead of
F (l)[f ] which we have been using so far. This is because we currently do
not have dedicated l and f values. However, we can use our r and c values
to get the number of the field, using the way the numbering of the rows and
columns is set up. The numbering of the rows starts at 1 and goes up to
|R|, this corresponds with the list of indices of the columns. We can use this
to get the number of the rth field in line c, F (c)[r].

11. If a block starts at a field, the block after that cannot start before or
at that field.

|R∪C|∧
l=1

|B(l)|∧
b=1

|F (l)|∧
f=1

f∧
f ′=1

is start of block(l, b, F (l)[f ])→

¬is start of block(l, b+ 1, F (l)[f ′])

The way the blocks are ordered in the constraint is also in what order they
should be placed in the puzzle. This rule enforces that if a block starts at
a field, the block after that cannot start before or at that field. Since this
rule is applied to all blocks, it also enforces that the blocks are placed in the
correct order.
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4.5 Generating a CNF formula

To be able to solve the puzzle, we need to generate a CNF formula that
we can give to an SAT solver. We will use the rules that we have defined
in the previous section to generate the CNF formula. However, we cannot
just make one large conjunction of all the rules since most rules contain
implications and those cannot be in a CNF formula.

A B A→B ¬A∨B
T T T T
T F F F
F T T T
F F T T

Table 4.1: Truth table for an implication and an equivalent disjunction

Table 4.1 shows an equivalent formula for an implication. We see that
it is a disjunction that is convenient to use in a CNF formula, and there is
no need to introduce new variables. Using this solves our problem of having
implications in our CNF formula.

As we can see in our rules, there are mostly conjunctions of implications.
If we convert those implications to disjunctions, we obtain conjunctions of
disjunctions which is already a CNF. In rule 3 we do not have any implica-
tions, but that rule is already written as a CNF formula. The only thing
that we need to do to convert these rules into a proper CNF formula, is to
make one large conjunction of all rules.

As opposed to our naive encoding in Section 3.2.2, we do not have to
use the Tseytin Transformation to convert our rules to CNF.

4.6 Conversion to DIMACS

In this algorithm, we will convert our CNF formula with our encoded vari-
ables into a DIMACS format. We know that the DIMACS format uses a list
of consecutive variables, which is not the case for our encoding. Therefore
we need to convert our variables to a list of consecutive variables, which is
done in various places of the algorithm for efficiency. We maintain a list of
used variables. When we want to use a variable, we check if it is already in
the list. If it is not, we append it to the list.

Before we can create the list, we need to name our variables. For the first
two types of variables, is start of block(l, b, f) and is part of block(l, b, f),
we will simply use the same name as its type and replace l, b, and f with
their corresponding values. For variables of type field is black(f) we will
use only the field number as its name.
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DIMACS files only accept consecutive digits higher than 0 as variable
names. Whenever we want to use a variable in the DIMACS file, we take
the index of that variable in the list of used variables and add 1 to it to get
the name of the variable used in the DIMACS file.

Algorithm 1 shows how we convert the CNF formula to a DIMACS file.

Algorithm 1 Convert CNF formula to DIMACS

Require: CnfFormula, variableList,DimacsF ile
for CnfClause in CnfFormula do

DimacsClause← []
for lit in CnfClause do

if lit not in variableList then
variableList.append(lit)

end if
DimacsClause.append(variableList.index(lit) + 1)

end for
DimacsF ile.append(DimacsClause)

end for

We can now give this DIMACS file to the SAT solver which will tell us
whether there exists a solution for the generated CNF formula and thus the
puzzle.
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Chapter 5

Generation of Pattern
puzzles

In this chapter, we will discuss the generation of Pattern puzzles. We will
discuss two strategies for generating Pattern puzzles. The first strategy is a
simple approach, which is efficient but generates arbitrary puzzles that you
would not encounter as quickly when solving pre-made puzzles. The second
strategy is an improved approach, which is slightly more complex but results
in puzzles that are more comparable to pre-made puzzles.

5.1 Generation strategies

5.1.1 First strategy: full random generation

The first strategy for generating Pattern puzzles is to generate a random
puzzle. This is done by creating a grid of a given size and then filling in
each field in the grid randomly. When you have a solved puzzle, you can
determine the approximate percentage of black fields in the puzzle. We
convert the percentages to values between 0 and 1, rounding to one decimal
place, and use this as a threshold. We call this threshold the density of
the puzzle. To generate a random puzzle, we fill in each field in the grid
with a black field with a probability equal to a given density. This is done
by generating a random number between 0 and 1 for each field, and if the
number is less than the density, we fill in the field as black, otherwise, we
fill in the field as white.

When we have obtained a filled grid, we need to determine the clues
that are needed to solve this puzzle. We iteratively go through each row
and column of the grid, and for each row and column, we determine the
lengths of the sequences of black fields. These values are stored in lists
which form the clues for the puzzle.

This approach is very simple and efficient, but it has some drawbacks.
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The main drawback is that the puzzles generated by this approach are not
very representative of the puzzles that are found in the wild. Puzzles can
not be very cohesive. With this, we mean that the black fields are not very
connected. Another drawback is that when using lower densities, puzzles
have a high chance of being ambiguous, meaning that there are multiple
solutions to the puzzle, which can leave a human solver confused about
how to solve the puzzle. On the other side, when using higher densities,
puzzles have a high chance of being trivial, meaning that the solution can
be determined without any effort. One of the advantages of this approach
is that each puzzle is guaranteed to have a solution, as the actual puzzle is
generated from a filled-in grid.

5.1.2 Second strategy: clue generation

The second strategy for generating Pattern puzzles is to generate a puzzle
by first generating the clues, and then filling in the grid based on these clues.
With this approach, we strive to achieve puzzles that are more representative
of the puzzles that are found in the wild. For each row, we will determine
the amount of clues, and then determine the size of each clue. Then we will
generate the clues for the columns accordingly.

Before we can generate the clues, we first want to get some more infor-
mation about the puzzles that are found in the wild. We have collected a
dataset of 5000 puzzles, and we have analyzed these puzzles to get some
statistics about the puzzles. For each size of the puzzle, we analyzed the av-
erage density, the frequency of the different lists of clues, and the frequency
of individual clues. Table 5.1 is a summary of the statistics that we have
found.

We will use these statistics to generate the clues for the puzzles. For any
puzzle with a size for which we have the statistics, we can generate the clues
per row of the puzzle. First, we need to process the data from Table 5.1 to
make it usable for generating the clues. We will store the data in a separate
dictionary for each size. The dictionary will contain two values, one for the
clue list length and one for the clue size, which in turn contains another
dictionary with the values from Table 5.1. However, we alter the data such
that key x + 1 has the value of key x plus the value of key x + 1. We will
use this later to randomly generate the clues for the puzzle. If we take the
data from Table 5.1 for size 5, we get the following dictionary:
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{

"clueLength": {

1: 7760,

2: 9855,

3: 10000,

},

"clueSize": {

1: 4544,

2: 8531,

3: 11429,

4: 12385

}

}

In clueLength, the keys represent the length of the list of clues, and the
values represent the number of times a list of clues of that length is found in
the dataset. In clueSize, the keys represent the size of the individual clues,
and the values represent the number of times an individual clue of that size
is found in the dataset.

Now that we have processed the data, we can generate the clues for the
puzzle. Algorithm 2 shows the algorithm to determine the clues for the
rows of a puzzle, clueDict is the dictionary that contains the statistics for
the puzzles found in the wild, and puzzleSize is the size of the puzzle we
want to generate. We will generate the clues for each row of the puzzle, and
then we will generate the clues for each column of the puzzle based on the
clues for the rows.

To generate the clues for a row, we start by determining the length of
the list of clues that we want to generate. We do this by generating a
random number between 1 and the highest value in the clueLength key of
the dictionary. We then take the clueLength key of the dictionary. From
that inner dictionary, we return the key for the smallest value that is greater
than or equal to the random number. That key is the length of the list of
clues for the row. We then generate the individual clues for the row. This
goes similarly to the generation of the length of the list of clues, but with
the additional constraint that the total size of the clues can not exceed the
size of the row. We repeat this process for each row of the puzzle.
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Algorithm 2 Determine the clue list for a row

Require: clueDict, puzzleSize
procedure generateClueLength

clueCount← clueDict[”clueLength”].maxV alue()
clueLengthIndex← getRandomNumber(1, clueCount)
for key in clueDict[”clueLength”] do

if clueLengthIndex ≤ clueDict[”clueLength”][key] then
return key

end if
end for

end procedure
procedure getClueSize(maxClueSize)

clue← 0
while clue is 0 do

clueCount← clueDict[”clueSize”].maxV alue()
clueSizeIndex← getRandomNumber(1, clueCount)
for key in clueDict[”clueSize”] do

if clueSizeIndex ≤ clueDict[”clueSize”][key]
and key ≤ maxClueSize then

clue← key
else

break
end if

end for
end while
return clue

end procedure
clueList← []
clueLength← generateClueLength
maxBlackF ields← puzzleSize− (clueLength− 1)
for i in range (0, clueLength) do

maxClueSize← maxBlackF ields− (clueLength− i− 1)
clue← getClueSize(maxClueSize)
maxBlackF ields← maxBlackF ields− clue
clueList.append(clue)

end for
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Size 5 10 15 20 25 30 35 40

Average density 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Clue list length 1 7760 7765 4198 1709 672 227 88 29

2 2095 9814 13619 10658 6208 3084 7593 566

3 145 2165 9419 16156 16242 12185 7593 3936

4 240 2368 8612 16303 19699 17788 13139

5 15 362 2415 7780 15478 21010 21825

6 32 385 2273 6870 14118 20836

7 2 60 427 1947 5824 12444

8 5 86 430 1720 5138

9 9 67 424 1621

10 12 58 377

11 1 5 76

12 12

13 1

Clue size 1 4544 10099 19917 33183 49842 69349 92654 119610

2 3987 7287 13047 20820 30483 41344 54056 68236

3 2898 7291 14407 24288 36576 51580 68307 88969

4 956 4128 8324 14114 21151 30021 40118 51901

5 2642 5539 9233 14146 20100 26527 34763

6 1687 3781 6642 10260 14408 19609 25405

7 994 2365 4361 6757 9850 13656 17747

8 548 1453 2844 4687 6840 9303 12241

9 252 1003 1870 3219 4739 6498 8414

10 573 1261 2038 3208 4630 5924

11 362 803 1435 2133 3173 4330

12 211 530 928 1527 2182 2852

13 135 327 642 1019 1483 2086

14 64 206 424 656 1014 1467

15 124 272 436 742 977

16 80 178 311 515 727

17 50 89 218 313 487

18 27 66 142 243 349

19 13 38 87 150 262

20 35 72 94 165

21 25 40 72 93

22 15 27 59 72

23 11 24 35 49

24 5 10 16 24

25 6 20 28

26 3 7 15

27 4 9 12

28 4 4 9

29 1 2 5

30 3 4

31 2 1

32 2 2

33 1 2

34 1 1

39 1

Table 5.1: Summary of the statistics of the puzzles found in the wild.
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Before we can generate the clues for the columns of the puzzle, we need to
determine where the blocks corresponding to the clues are placed. Figure 5.1
shows how we determine the place of the black fields corresponding to the
clues in a row. We first look at the available fields for the first clue. We
take the full length of the row, subtract the total size of the remaining clues,
and subtract one more for each remaining clue. In Figure 5.1 we subtract
2 for the total size of the remaining clues, and 2 more for the number of
remaining clues. We then randomly place the black fields in the row, fill the
preceding fields and the first following fields with white fields, and then move
on to the next clue. We then repeat the process of determining the available
fields, randomly placing the black fields and placing the white fields for the
remaining clues.

Figure 5.1: The process of determining the placement of each block in a
row.

Now that we have determined where the black fields are in each row of
the puzzle, we can determine the clues for the columns of the puzzle. We do
this in the same way as in Section 5.1.1. We iteratively go through each row
and column of the grid, and for each column, we determine the lengths of
the sequences of black fields. These values are stored in lists which form the
clues for the puzzle. Because we know where each clue sits in their row, we
also know which fields are black and which are white. With this information,
we can fill in the grid and determine the clues for each column.

This approach is slightly more complex than the first approach, but it
results in puzzles that are more representative of the puzzles that are found
in the wild. There is no clear argument that makes the solution of the
puzzles more cohesive since the placement of the black fields is still random,
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but the formation of the clues is more representative of the puzzles that are
found in the wild. The main advantage of this approach is that the puzzles
generally have a similar density to puzzles found in the wild. Because the
number of black fields is determined by the clues, and the generation of
clues in this approach is based on the statistics of the puzzles found in the
wild, the puzzles generated by this approach are more comparable to the
puzzles found in the wild. However, this approach also has the drawback
that the puzzles generated are not guaranteed to be unambiguous, meaning
that there is a chance that there are multiple solutions to a puzzle.

5.2 Uniqueness of puzzles

When generating puzzles, we want to make sure that the puzzles are unique,
meaning that there is only one solution to the puzzle. This makes the puzzle
solvable, as the solver can be sure that the solution is the correct one. When
generating puzzles using either of our strategies, we can not guarantee that
the puzzles are unique. Therefore we need to implement some measure that
determines whether a puzzle has a unique solution or not. For this, we
need to determine whether a puzzle has multiple solutions or not. We start
by taking any solution to the puzzle; we name this solution A. There are
multiple solutions to the puzzle if we can find a solution B to the puzzle
that satisfies all of the clues but is not equal to A. We define a solution to
a puzzle to be as described in Section 3.2.3

We can find another solution using an SAT solver. We already have a
solution A for a generated puzzle, and we can use this solution to try to
find a second solution B. We find solution B using an SAT solver and the
algorithm described in Chapter 4. Before we give the DIMACS file to the
SAT solver, we add a clause that states that the solution must be different
from A. In solution B, any fields can be different so we add one clause
that states that one of the fields must be different from the solution in A.
Example 5.2.1 shows a solved puzzle and what clause we add to the CNF of
a puzzle to find solution B.

Example 5.2.1. On the left is a solved puzzle, and on the right is a clause
that states that a second solution must be different from the known solution.

1∨ ¬2∨ ¬3∨ 4∨ 5∨
6∨ ¬7∨ 8∨ 9∨ 10∨
11∨ 12∨ ¬13∨ ¬14∨ 15∨
16∨ 17∨ ¬18∨ ¬19∨ ¬20∨
¬21∨ 22∨ ¬23∨ ¬24∨ ¬25
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Figure 5.2: Three puzzles with different placements of variable fields.

We then use an SAT solver to find a solution to the puzzle with the
added clause. If the SAT solver returns a solution, we know that the puzzle
has multiple solutions. If the SAT solver does not return a solution, we
know that the puzzle has a unique solution.

5.3 Making puzzles unique

When generating puzzles, we want to make sure that the puzzles are unique,
meaning that there is only one solution to the puzzle. When generating
puzzles using either of our strategies, we can not guarantee that the puzzles
are unique. Therefore we want to develop some algorithm that changes
puzzles that are not unique into unique puzzles.

5.3.1 Determining variable fields

We know that when a puzzle has multiple solutions, multiple fields can be
either black or white. The goal of the algorithm is to find these variable
fields and change the accompanying clues in such a way that the puzzle has
a unique solution. We can find these variable fields by using the solutions
we obtained from the SAT solver. We take the first solution we find, and
we use that as our baseline. For each new solution we find, we compare it
to the baseline solution. Any field that differs from the baseline solution
is variable and is stored in a list. Eventually, we end up with a list of all
variable fields in the puzzle.

5.3.2 Changing the clues

Now that we know which fields are causing the puzzle to have multiple
solutions, we can change the clues in such a way that the puzzle has a
unique solution. To determine how the clues need to be changed, we take a
look at where the variable fields are located in the puzzle. More specifically,
we look at how the variable fields are placed in comparison to each other.
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Figure 5.2 shows three puzzles with their variable fields greyed out. You
can see three different ways in which the variable fields are placed in the
puzzle. In the first puzzle, the number of variable fields in each row and
column is equal. In the second puzzle, the number of variable fields in each
column is equal, but the number of variable fields in each row is not equal.
In the third puzzle, the number of variable fields differs in each row and
column. We can use this information to determine how the clues need to
be changed. For each of the three different placements of variable fields, we
have a different way of changing the clues.

1. If the number of variable fields for each row and column is equal, we
fill the variable fields in one of the rows or columns with the highest
number of variable fields with black fields and the rest of the variable
fields with white fields.

2. If the variable fields are placed in such a way that each row has the
same amount of variable fields, but the columns do not, we take the
column with the most variable fields and fill those with black fields
and the rest with white fields. We can do the opposite if the columns
have the same amount of variable fields, but the rows do not.

3. If the variable fields are placed in such a way that neither the rows
nor the columns have the same amount of variable fields, we take the
row or column with the most variable fields and fill those with black
fields and the rest with white fields.

Besides the placement of the variable fields, we also need to take into
account the other fields in each row and column. It could happen that when
we change the clues, we create a row or column that has no black fields.
According to the rules of the puzzle, there must be at least one black field in
each row and column. To avoid this issue, we need to make sure that each
row and column has at least one black field apart from the variable fields.
If this is the case, we can use one of the three ways to change the clues. If
this is not the case, we use the empty row to move the clues, regardless of
the placement of the variable fields. In case we have multiple empty rows
or columns, we fill all of them.

Using these strategies to change the clues, we decrease the number of
puzzles generated by our algorithm from Section 5.1.2 that have multiple
solutions. In Section 6.2 you can see the results of the experiments run with
these strategies.

The reasoning behind this strategy is that we wanted to change the
puzzle as little as possible while trying to keep the amount of black fields
in the puzzle as close to the original. We started with the simple example
of four variable fields aligned in a square where there were two solutions
possible; one with the top left and bottom right fields black and the other
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Figure 5.3: On the left is a puzzle with multiple solutions, and on the right is
the left puzzle but with a few clues altered such that it is uniquely solvable.

with the top right and bottom left fields black. If we take both solutions
and look at them from a column perspective, we see that both columns have
at least one black field in each column. We can move one black field from
the top row to the bottom row, and that perspective would be the same.
However, looking at the full puzzle we see that the puzzle is now uniquely
solvable after moving one black field to the bottom row. We expanded this
idea to the full puzzle and various configurations of variable fields to come up
with a strategy that makes unique puzzles out of most non-uniquely solvable
puzzles.
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Chapter 6

Experiments

In this chapter, we will look at the experiments that were conducted to
evaluate the performance of the two algorithms proposed to solve puzzles,
as well as the experiments conducted to evaluate the performance of the
generation algorithms. As explained before, we have two different algorithms
to solve puzzles, one naive algorithm and one improved algorithm. Because
of the naive nature of the first algorithm, it has significantly more clauses,
and thus worse performance, than the improved algorithm.

We will look at solving puzzles using both algorithms and compare the
performance of the two algorithms. They will be evaluated in terms of the
number of clauses and the time it takes to solve the puzzles, compared to
their size. We will also look at the performance of the generation algorithms.
They will be evaluated in terms of the time it takes to generate a puzzle
and whether the generated puzzle is uniquely solvable, compared to its size.
Lastly, we will look at making puzzles that have multiple solutions into
puzzles that have a unique solution, and evaluate the performance of our
algorithm in terms of time and success rate.

6.1 Comparing both algorithms

To compare both algorithms we need a set of puzzles that are guaranteed
to have a unique solution. We will use Simon Tatham’s Portable Puzzle
Collection [4] to generate puzzles of different sizes. We have downloaded
1000 puzzles each of size n ∗ n for n ∈ {5, 10, 15, 20, 25, 30, 35, 40}. These
puzzles are made to be humanly solvable so we expect our algorithms to be
able to solve them in a reasonable amount of time. We let the algorithms
solve the puzzles and we noted the time it took them to generate the full
CNF formula and how long it took the SAT solver to find a solution to the
formula. When first testing out the process of this experiment, we noticed
that the naive algorithm took a long time to solve the puzzles, especially of
sizes 25 and above. Therefore we decided to adhere to a time limit for each
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size and not consider puzzles of sizes 30 and higher for the naive algorithm.
The improved algorithm is significantly faster thus we did not need to adhere
to a time limit for it to get reasonable results.

Table 6.1 shows the size of the puzzle, which algorithm was used, the time
limit, the average time it took to generate the CNF formula, the average
time it took the SAT solver to solve the formula, and the percentage of
puzzles that were solved within the time limit. Important to note, is that
all puzzles both algorithms attempted to solve were solved successfully.

Figure 6.1 shows a graph of the total time it took to solve the puzzles of
different sizes using both algorithms.

We can see that overall the improved algorithm is faster than the naive
algorithm. Only for smaller sizes, the improved algorithm is slower than the
naive algorithm; this is because the improved algorithm has to generate a
larger CNF formula than the naive algorithm for smaller puzzles.

Size Algorithm Limit (ms) Generation (ms) Solving (ms) Success Rate

5x5 Naive 500 2.83 1.02 100%

5x5 Improved - 6.08 0.05 100%

10x10 Naive 500 21.92 1.06 100%

10x10 Improved - 26.63 0.14 100%

15x15 Naive 500 223.32 7.61 99.6%

15x15 Improved - 90.37 0.98 100%

20x20 Naive 4000 2973.33 124.51 85.9%

20x20 Improved - 249.5 6.24 100%

25x25 Naive 50000 38105.71 1942.56 51%

25x25 Improved - 770.78 34.87 100%

30x30 Naive - - - -

30x30 Improved - 1515.35 129.89 100%

35x35 Naive - - - -

35x35 Improved - 2562.76 351.56 100%

40x40 Naive - - - -

40x40 Improved - 4283.21 937.39 100%

Table 6.1: Performance results of both algorithms on puzzles of different
sizes.

6.2 Generation of puzzles

To evaluate the performance of the generation algorithms, we will look at
the time it takes to generate a puzzle and whether the generated puzzle is
uniquely solvable. We let each generation algorithm generate 500 puzzles of
different sizes, n ∗ n for n ∈ {5, 10, 15, 20, 25}. The algorithms first generate
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Figure 6.1: Performance results of both algorithms on puzzles of different
sizes.

a puzzle using their respective strategies and we note the time it took to
generate the puzzle. Then we check if the generated puzzle is uniquely
solvable using the improved algorithm. To do this, we generate the CNF
formula normally and then add a clause to the CNF formula to see whether
another solution can be found, as described in Section 5.2

For the puzzles that are generated with our second strategy and are not
uniquely solvable, we also attempt to adjust the puzzle in such a way that
it becomes uniquely solvable. We call this the reduced version of the second
strategy. The process for this is described in Section 5.3.

Table 6.2 shows the size of the puzzle, which strategy was used, the time
it took to generate the puzzle, the time it took to check whether the puzzle
is uniquely solvable, and the percentage of uniquely solvable puzzles. We
used density 0.5 for the naive algorithm.

Figure 6.2 shows one graph containing the total time it took to generate
and verify the uniqueness of the puzzles of different sizes using both strate-
gies and one graph containing the amount of uniquely solvable puzzles out
of 500 puzzles generated by each strategy.

We can see that the first strategy is overall slower than the second strat-
egy, but also that it is less successful in generating uniquely solvable puzzles.
It is interesting to see the difference in solving time between the two strate-
gies. While the generated puzzles in both strategies are solved with the same
algorithm, the second strategy is significantly faster in solving the puzzles.
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Size Strategy Generation (ms) Solving (ms) Unique

5x5 First 4.11 0.02 77.6%

5x5 Second 8.31 0.02 91.2%

5x5 Second, reduced 7.50 1.08 93.8%

10x10 First 28.02 0.24 54.2%

10x10 Second 35.48 0.14 73.5%

10x10 Second, reduced 38.44 1.31 95.9%

15x15 First 93.69 3.56 27.0%

15x15 Second 121.35 0.82 59.2%

15x15 Second, reduced 118.2 4.38 89.1%

20x20 First 301.27 49.88 15.4%

20x20 Second 300.84 3.34 42.7%

20x20 Second, reduced 321.4 17.49 87.6%

25x25 First 875.49 297.84 5.2%

25x25 Second 889.69 6.81 29.4%

25x25 Second, reduced 915.83 50.32 83.4%

30x30 First 1284.65 1626.93 3.4%

30x30 Second 1323.4 11.65 19.0%

30x30 Second, reduced 1128.25 110.33 72.6%

35x35 First 2413.2 10020.04 0.8%

35x35 Second 2166.94 14.44 7.9%

35x35 Second, reduced 2014.88 235.57 63.9%

40x40 First 3638.45 22190.12 0.0%

40x40 Second 3523.75 23.49 3.4%

40x40 Second, reduced 3549.5 767.03 56.6%

Table 6.2: Performance results of both strategies generating puzzles of dif-
ferent sizes.

Table 6.3 shows the results of the reduction of puzzles that are not
uniquely solvable. We can see that the algorithm is succesfull in making
most puzzles uniquely solvable and also within a reasonable amount of time.
The reduction time also grows at approximately the same rate as the num-
ber of solutions. This makes sense as the more solutions a puzzle has, the
higher the number of variable fields is and thus the higher the number of
fields involved in the reduction process.
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Figure 6.2: Performance results of both strategies generating puzzles of
different sizes.

Size Reduced puzzles Reduction (ms) Solutions Success rate

5x5 48 1.08 2 93.8%

10x10 121 1.07 3 95.9%

15x15 201 1.37 4 89.1%

20x20 274 7.30 35 87.6%

25x25 379 26.08 98 83.4%

30x30 420 126.61 155 72.6%

35x35 457 526.55 205 63.9%

40x40 472 1013.40 238 56.6%

Table 6.3: Performance results of reduced puzzles.

6.3 Downloaded versus Generated puzzles

Now that we have measured the performance of the generation algorithms,
we can compare the performance of solving puzzles generated by the gener-
ation algorithms versus puzzles downloaded from Simon Tatham’s Portable
Puzzle Collection. To do this, we take all of the uniquely solvable puzzles
generated by the generation algorithms and all of the downloaded puzzles
and let the improved algorithm solve them. In Table 6.4 and Figure 6.3
we can see the results of this experiment. We can see that the total time
for generating and solving puzzles is around the same for both generated
and downloaded puzzles, but downloaded puzzles take a bit longer. We do
see that the downloaded puzzles take longer to generate the CNF formula,
but how the solving time compares differs per size. In general, we can say
that the downloaded puzzles are slightly more difficult to solve than the
generated puzzles.
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Size Method Generation (ms) Solving (ms)

5x5 Downloaded 6.08 0.05

5x5 Generated, first 6.84 0.10

5x5 Generated, second 5.74 0.07

5x5 Generated, second, reduced 5.74 0.07

10x10 Downloaded 26.63 0.14

10x10 Generated, first 23.40 0.24

10x10 Generated, second 19.93 0.12

10x10 Generated, second, reduced 20.05 0.21

15x15 Downloaded 90.37 0.98

15x15 Generated, first 81.36 2.46

15x15 Generated, second 71.99 0.89

15x15 Generated, second, reduced 73.47 1.11

20x20 Downloaded 249.50 6.24

20x20 Generated, first 194.94 19.35

20x20 Generated, second 186.13 4.77

20x20 Generated, second, reduced 187.97 6.02

25x25 Downloaded 770.78 34.87

25x25 Generated, first 532.77 124.50

25x25 Generated, second 503.24 18.58

25x25 Generated, second, reduced 553.71 25.34

30x30 Downloaded 1515.35 129.89

30x30 Generated, first 1006.35 518.71

30x30 Generated, second 1012.39 72.02

30x30 Generated, second, reduced 1078.12 81.66

35x35 Downloaded 2562.76 351.56

35x35 Generated, first 1595.50 2501.50

35x35 Generated, second 1681.44 137.38

35x35 Generated, second, reduced 1891.51 228.59

40x40 Downloaded 4283.21 937.39

40x40 Generated, first - -

40x40 Generated, second 2776.59 423.06

40x40 Generated, second, reduced 3164.80 717.53

Table 6.4: Performance results of solving generated puzzles versus down-
loaded puzzles.
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Figure 6.3: Performance results of solving generated puzzles versus down-
loaded puzzles.

6.4 Pixel art

Pattern puzzles are a type of puzzle that can be seen as a form of pixel art.
It is very common that in puzzle books, these puzzles create some image
when solved. Therefore we also want to look at what happens when we give
our solver several pixel art images. We want to find out whether there are
premade images that can be converted into a uniquely solvable puzzle. We
found five different sets of 16 by 16 pixels images containing a total of 1256
images. Figure 6.4 shows a few examples of each set that we used.

We wrote a simple Python script that first filtered out any illegal puzzles,
and then converted each image to a text file where characters represent the
color of the fields. From there we processed the text files in our Java code
into a grid and then we could generate the clues for the puzzle. We then let
the improved algorithm solve the puzzles, noted the time it took to solve the
puzzles, and tested whether the puzzles were uniquely solvable. The results
of this are in Table 6.5 and Figure 6.5.
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Images from the Keyboard set[3].

Images from the Controller[3] and Tiles set[5].

Images from the Icons 1 set [1] and Icons 2 set[2].

Figure 6.4: Performance results of solving pixel art.

Set Amount Generation (ms) Solving (ms) Unique

Controller 60 121.72 1.08 68.33%

Keyboard 74 198.12 0.88 0.0%

Icons 1 441 101.51 0.68 62.59%

Icons 2 441 87.28 0.49 67.57%

Tiles 240 104.89 9.38 55.0%

Table 6.5: Performance results of solving pixel art.

We can see that the puzzles are solved in a reasonable amount of time
and that a good amount of the puzzles are uniquely solvable. Only from
the Keyboard set of images, there was not a single uniquely solvable puzzle.
This is because the images in this set contain very few black fields, which
makes it very unlikely for the puzzle to be uniquely solvable.

We also compared the performance of solving pixel art puzzles versus
the performance of solving downloaded puzzles to see whether the pixel art
puzzles are of similar difficulty. The results of this are in Figure 6.6. We can
see that the downloaded puzzles are the same difficulty as or more difficult
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Figure 6.5: Performance results of solving pixel art.

than the pixel art puzzles. The Controller set is more difficult than the other
sets, but the other sets have more difficult puzzles, but also puzzles that are
less difficult than the downloaded puzzles.

Figure 6.6: Performance results of solving pixel art(Controller, Icons 1 Set,
Icons 2 Set, Tiles) compared to solving downloaded puzzles(Benchmark 15).
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Chapter 7

Related Work

The Pattern puzzle has already been approached as an SAT problem[6].
However, the approach we take in this thesis is different from the ones taken
in the previous work. K Joost Batenburg and Walter A Kosters took an ap-
proach using concepts of dynamic programming and network flows, whereas
we take a more SAT-based approach focussing more on the constraints of
the puzzle.

There is a general interest in reducing problems to the SAT problem
since SAT solvers can be a very powerful tool to solve difficult problems.
There is so much interest that annual SAT competitions 1 are held.

Besides the interest in reducing problems to SAT, there is also a lot
of interest in logic puzzles. Various logic puzzles have been approached as
SAT problems, such as the famous Sudoku puzzle[10][13], but also other
puzzles like Flood-it[16], Mosaic[8], and Bridges[14]. Pattern is somewhat
comparable to the Mosaic puzzle, as both of their concepts are based on
coloring cells in a grid. However, the Mosaic puzzle contains an extra layer
of complexity, as clues can be added or removed to make the puzzle more or
less difficult. Pattern is rather limited to the constraints of the puzzle itself,
which makes it a more straightforward puzzle to solve.

1https://satcompetition.github.io
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Chapter 8

Conclusions and Future
Work

In this thesis, we have shown two ways of encoding the Pattern puzzle as a
SAT problem. Firstly, we showed a naive encoding, which is a brute-force
approach to solving the puzzle. Secondly, we showed an improved encoding,
which is based on the rules of the puzzle and the logical implications that
arise from these rules.

After showing the two encodings, we have shown how to generate Pattern
puzzles. We have shown two different ways of generating puzzles; one that
generates puzzles by generating a random grid of black and white cells, and
one that generates puzzles using a line-by-line technique that is also based
on statistics found from pre-made puzzles. In the second approach, we have
also shown a technique to make non-unique puzzles unique.

In our experiments, we saw that the naive encoding is not very efficient,
especially for larger puzzles. The improved encoding is much more efficient.
We see that both encodings scale exponentially with the size of the puzzle,
but the improved encoding scales better than the naive encoding. We also
ran experiments on the generation algorithms, and we saw that the algo-
rithms do not differ much in performance for smaller puzzles. However, for
larger puzzles, there is a clear difference between the first algorithm and the
second algorithm. The first algorithm is much slower than the second algo-
rithm. We then compared our generated puzzles to the downloaded puzzles,
and we found that the downloaded puzzles were slightly more difficult than
the generated puzzles.

Finally, we experimented with pixel art. Pattern puzzles found in puzzle
books are often pixel art, and we wanted to see if we could take random
black-and-white pixel art and convert it to a Pattern puzzle. We found that
this is possible, but it depends on the image. Generally, images with more
black pixels have a higher chance of being converted to a Pattern puzzle.
How difficult these puzzles are, really depends on the image. Some are
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more difficult than others, but generally, they are more difficult than the
downloaded puzzles.

In terms of future research, there is not much more to be done or op-
timized in the first encoding, as it is a brute-force approach. However, the
second encoding does have the potential for further optimization. The en-
coding could be optimized by taking a look at the constraints of the puzzle
and starting from scratch, or taking the current encoding and trying to op-
timize it. This could be done by trying to find implications that arise from
the rules described in Section 4.4.

Furthermore, there could be more research into the generation of puzzles.
Specifically on generating puzzles using different approaches. One suggestion
would be to let the color of a field be dependent on the color of the fields
around it. This way, the puzzle could be generated more cohesively, meaning
that there are larger fields of connected black cells. Currently, we see that
the generated puzzles are often very fragmented, but the downloaded puzzles
seem to be more cohesive. This might also affect the difficulty of the puzzle,
possibly making them slightly more difficult.

Besides this different approach to generating puzzles, there could also be
research into improving the current generation algorithms. We saw that for
larger puzzles, the algorithms do not generate larger puzzles as well as they
do for smaller puzzles. By improving the algorithms, we could generate
larger puzzles more accurately. A suggestion for this would be to take a
look at the way non-unique puzzles are altered to be unique. The current
approach could be extended to work better for puzzles that have a lot of
variable fields.
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