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Abstract

This thesis explores polyhedra folding algorithms, a lesser-known field of
computational geometry. It begins by covering fundamental geometric con-
cepts such as polygons, polyhedra, and convexity, followed by key aspects of
computational geometry, including folding, unfolding, and curvature. The
thesis then has three core research parts. In the first part, we provide a de-
tailed analysis of methods for unfolding polyhedra. In the second part, we
analyze folding methods for polygons, as well as a dynamic programming
algorithm for a class of polygons. Lastly, in the third section, practical
applications of folding/unfolding are examined in fields such as medicine,
manufacturing, robotics, architecture, and origami design. This study aims
to make advanced topics in geometric folding more accessible to third-year
computer science students, highlighting their interdisciplinary relevance and
potential for future research.
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Chapter 1

Introduction

The research area of polygon folding lies at the intersection between mathe-
matics and computer science [13, 44]. The mathematics brings familiar con-
cepts from geometry, while computer science entails the algorithmic design.
Works ranging from the mid 50’s until late 90’s focus mainly on geometry,
while more recent works show the use of computers in computational prob-
lems. In [42] for example, a C++ program was written to find unfoldings
of various shapes. Results range from the cube, which has 11 different non-
overlaping unfoldings along the edges, to the Icosidodecahedron, with over
1 trillion of such unfoldings.

Figure 1: Icosidodecahedron 1

Polygon folding, or Polyhedra folding, is the commonly used name of this
field. It is a sub-field of Computational geometry, and it seeks answer ques-
tions such as “can this shape be folded out of this shape” or “in how many
distinct ways can this box be unfolded” or “how many different boxes can
be folded from the same polygon”[29]. These questions also explain the mo-
tivation behind this research area; its findings have a direct application in
the real world, in cardboard box manufacturing, for example, where trying
everything by hand is either not feasible or not worth the effort. A rigid

1https://en.wikipedia.org/wiki/Icosidodecahedron
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mathematical foundation based on geometry, in combination with a digital
simulation using efficient algorithms provides a solution.

A downside to this solution is that it requires a deep understanding of two
rather difficult research fields. The aim of this paper is to demystify the
intricacies of polygon and polyhedron folding, presenting complex theories
and methods into an accessible narrative. It should serve as a foundational
resource for novice undergraduate researchers interested in geometrical folds.

The motivation behind this goal stems from the current fragmented state
of literature on polygon folding. Although numerous studies have extended
the horizons of the field, to the best of our knowledge there exists no unified,
less than 400-page-long work that assimilates these separate pieces into a
cohesive whole. This incoherence presents a significant barrier, especially
for new researchers.

In this thesis, the goal is to present in a clear manner “the tip of the ice-
berg” of polygon folding, by carefully picking relevant works throughout the
history and explaining, in accessible words, their findings. After this in-
troduction, we continue with a chapter on background knowledge (Chapter
2), which places the reader into the correct theoretical, but also historical,
framework. The technical backbone of this paper is divided into three chap-
ters. Chapter 3 dives deep into the matter of polyhedra unfolding, followed
by Chapter 4 with polygon folding, presenting concepts and showing how
these directly translate into an efficient algorithm for a class of polygons.
The last part (Chapter 5) provides a high level overview of folding used in
a more practical setting.
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Chapter 2

Background Knowledge

2.1 Historical Origins

When one thinks of folding, the first thought that comes to mind is likely
origami, where paper is folded into various shapes, such as animals or flow-
ers1. However, other definitions of folding have been defined over the years.
Since Euclid established the basics of polygonal geometry around 300 B.C.
[9], including multi-dimensional shapes, scholars have been exploring the
correlation between dimensions and the process of converting from one to
another. Folding/unfolding was the intuitive answer to converting from a
dimension to another.

Figure 2: A crane, folded from one square sheet of paper2

It was not until the XVIth century, when the German painter Albrecht Dürer

1“ori” translates to “folding” and “kami” to “paper”, from Japanese; “kami” changes
to “gami” due to Japanese morphology

2https://origami.guide/origami-animals/origami-birds/traditional-origami-crane/
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(1471 - 1528) published a book, “Underweysung der Messung”3 marking a
pivotal moment in the understanding of geometrical structures, particularly
two- and three-dimensional shapes [16]. Leading up to this publication,
Dürer’s interest in geometrical shapes can be seen from some of his works
(Figure 3, where a shape resembling a cube can be seen in the background).

Figure 3: Melancholia I, 1515, Albrecht Dürer

Dürer’s illustrations, derived from his studies in Italy, depicted complex
geometric shapes “opened” into 2D planes without overlapping, ensuring
each shape remained connected and simple. These 2D polygons, named
“nets” by the German author, laid the groundwork for the contemporary
study of polygon folding, connecting the artistic side of folding to theoretical
applications in mathematics (and later on, many other fields).

Figure 4: A cuboctahedron
Figure 5: A cuboctahedron

unfolded, as depicted by Albrecht
Dürer

3Translated to “The Painter’s Manual”, from old German

6



This book, published in 1525, implicitly posed the question: Does every con-
vex polyhedron have a net? This problem, formally articulated by Shephard
in 1975 [41], has remained unsolved since then.

2.2 Geometry Concepts

Computational geometry is a field of computer science and mathematics,
which includes folding and unfolding of polyhedra. Although no advanced
concepts from computational geometry are used in this thesis, an under-
standing of advanced geometry is required. In this section, we will review
key definitions that are assumed to be familiar to the reader. Readers may
find it helpful to refer back to these definitions as needed while reading.

2.2.1 Polygon

A polygon is an enclosed planar shape consisting of straight segments, called
edges. The points where these segments intersect are called vertices. A
simple polygon’s edges do not cross each other, and form vertices only at
their endpoints. A polygon where edges cross each other is called complex.

Figure 6: Simple polygon. Figure 7: Simple polygon.

Figure 8: Complex polygon
with 14 vertices and 19 edges.

Figure 9: A polygon resembling
a cyclic graph.
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2.2.2 Geometric Notations

We will now go over notations which will be used throughout the thesis.

• LP is the perimeter of polygon P (the sum of all edge lengths); it is a
numerical value

• |x, y| is the distance from a point x to a point y; it is a numerical value

• xy is the segment that has points x and y as endpoints; it is a physical
element

• ∂P is the boundary of the polygon P (the continuous line made up of
all the edges); it is a physical element

• α(v) is the angle of a vertex v; it is a numerical value expressed in
orders of π, with π = 180

◦
; it is a numerical value

2.2.3 Polyhedron

A polyhedron (and plural, polyhedra) is a three-dimensional figure with
polygons as faces. An edge of the polyhedron is the segment where two
faces intersect. The points where the faces (or rather, edges of the faces)
intersect are called vertices. These points are crucial in the unfolding process
because “squishing” them is not always trivial. Formal explanations to this
are given in the subsection Curvature.

There are infinitely many polyhedra. For example, the platonic solids, a
class of polyhedra studied extensively by ancient Greek mathematicians,
get their name from the philosopher Plato, who considered these shapes to
have a cosmic meaning4. Figure 10 depicts the Platonic Solids5.

Figure 10: Platonic Solids

4The dodecahedron, for example, Plato believed that “the god used [it] for arranging
the constellations on the whole heaven”. More information can be found in this ar-
ticle: https://www.cosmic-core.org/free/article-51-geometry-platonic-solids-part-12-the-
dodecahedron/

5https://en.wikipedia.org/wiki/Platonic solid
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2.2.4 Convexity of Polygons and Polyhedra

Convexity is the property that if any two points within a polygon/polyhedra
are chosen, the shortest path (line) connecting them lies entirely within the
boundary. In other words, a convex polygon is topologically a circle, while
a convex polyhedron is topologically a sphere. A non-convex shape is also
called concave.

For example, the polygon from Figure 6 is convex, while the polygon from
Figure 7, is not, because there exist two points, whose resulting segment
partially lies beyond boundary (a “proof” can be seen in Figure 11). The
platonic solids are convex polyehdra, while the small stellated dodecahedron6

in Figure 12 is clearly not convex.

Figure 11: Non-convex polygon Figure 12: Non-convex
polyhedron

2.2.5 Graph Theory

A tree is a connected graph with no cycles, and a spanning tree is a tree
that includes all the vertices of a given graph.

Figure 13: A graph and two spanning trees

2.2.6 Folding vs Unfolding

Folding and unfolding in the context of polyhedra involve transformations
such that a two-dimensional (2D) surface is transformed into a three-dimensional

6https://en.wikipedia.org/wiki/Small stellated dodecahedron
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shape (3D), and vice versa, without overlapping, preserving the connectivity
(no disjoint sub-shapes).

Figure 14: Cyclic relation of folding and unfolding

2.2.7 Nets

This term was coined by the German painter Albrecht Dürer and represents
a single, non-overlapping, simply connected polygon resulting from unfolding
a polyhedron. Note that the term is usually not used for a polygon which
meets the criteria but is not the result of unfolding, or for a polygon for
which it is not known whether it can fold into a polyhedron, without cuts
or overlaps. In [16], Albrecht Dürer’s unfolded the Snub cube7 (Figure 15)
into a shape resembling a star (Figure 16).

Figure 15: Snub cuboctahedron
Figure 16: Snub cuboctahedron

net

2.2.8 Curvature

Gaussian curvature, or simply curvature, represents one of the core concepts
of advanced geometry. It originates from the differential geometry of smooth
curves and surfaces, but it can also be adapted and used in polyhedra. René

7https://en.wikipedia.org/wiki/Snub cube
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Descartes (1596-1650) defines it as the angle deficit at a given point [19]: 2π
minus the angle incident in that point.

On a polyhedron, curvature is relevant only at the vertices. A point on a
face has 2π angle around it, thus curvature is zero. A point on an edge that
is not an end-point has two angles of π incident, thus also curvature zero.

For example, all the vertices of a cube have a curvature of π/2 because at
each vertex we have three connected squares, each with an angle of π/2,
making the curvature be 2π − (π/2 + π/2 + π/2) = π/2. If we add another
vertex with curvature π/2 (e.g. a fourth square), the result will be a flat
point with curvature zero. The curvature of a vertex v is denoted as κ(v).

For the vertices of a polyhedron, we make the following distinction based on
the curvature:

Zero Curvature: The vertex is lying on a face or an edge.

Positive Curvature: A cut is required to unfold the vertex.

Negative Curvature: Indicates a non-convex polyhedron and more
than one cut is necessary.

Figure 17 [13] shows a non-convex polyhedron, where many faces concen-
trate in point v.

Figure 17: Point v has negative curvature

2.2.9 Cutting

Cutting is the “action” to unfold a polyhedron, sometimes also called “un-
folding”. The lines where a 3D shape is opened represent the cuts made in
the unfolding process. A valid cutting must visit all the non-zero curvature
vertices. This implies that a cutting is a spanning tree of the graph that
has all the vertices as nodes. Cutting negative curvature points is generally
a challenge and will be discussed in Section 3.4.3.
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Figure 18: Cutting of a cube to result a
Latin cross

2.2.10 Gluing

The opposite action of cutting. Gluing represents the action to “unify” two
edges of a polygon, resulting in a 3D shape. In this thesis, the edges that
are meant to be glued are connected by an arrow. In literature, valley folds
and mountain folds are also commonly used.

A polygon with fold instructions marked with arrows is also called a gluing,
and throughout this thesis we will use both meanings of gluing. Whether
the polygon and the gluing actually result in a polyhedron will be discussed
in Chapter 4 (section Alexandrov Gluings).

Figure 19: A gluing which
results in a cube

Figure 20: A gluing that does
not result in a convex polyhedron

12



Chapter 3

Polyhedra Unfolding

3.1 Overview

The study of polyhedra unfolding involves the use of various techniques/meth-
ods to “flatten” three-dimensional shapes into two-dimensional representa-
tions without overlap. The lack of overlap sets this field apart from other
geometrical folding paradigms, such as paper folding for example, where
overlap is allowed (used in mathematical origami research1).

The significance of this research area comes from its theoretical and practi-
cal applications. For example, having a 2D representation of 3D shape helps
with visualization, and is generally preferred in specific scenarios, such as
architecture and manufacturing (more in Chapter 5). On the 2D gluing,
shortest paths from the 3D model can be computed. This is relevant be-
cause we can define the a path using two coordinates, rather than three. For
example, we know that the following gluing results in a cube. The shortest
distance between vertices A and B is obvious on the cube (Figure 21), but
on the gluing it does not even connect vertices A and B (Figure 22).

1This field has developed quite a lot in the last two decades. To our knowledge, the
latest comprehensive work is “Introduction to Computational Origami”[44], and it is an
impressive overview of both polygon and paper folding).
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Figure 21: Shortest path
between A and B on the cube

Figure 22: Shortest path
between A and B on the

unfolding

The concept of paths on 3D solids is relevant, for example, in plane flight
planning [11]. A plane maintains constant altitude, thus its flight path is
not a straight line, but rather a curved path, called geodesic 2. Unfolding
spherical shapes gave birth to a new class of algorithms: geodesic path plan-
ning. The research spans from its beginning in 1985, proposed by O’Rourke
et al. [32], and is still ongoing at the time of writing, in 2024 [35].

In this chapter, the known unfolding methods will be discussed, then the
folding problem will be examined, along with various attempts at solving it.

3.2 Edge Unfolding

Edge unfolding involves cutting a polyhedron along its edges to form a sin-
gle, non-overlapping flat piece. This method is particularly significant in the
manufacturing industry, where sheet metal parts are cut from flat sheets and
bent into the desired shapes. The primary challenge with edge unfolding is
ensuring that the unfolded piece does not overlap itself, a problem that re-
mains unsolved for the class of convex polyhedra. Naturally, edge unfolding
is bound by the number of edges.

3.3 General Unfolding

General unfolding allows cuts through the interior of the faces, not limited
to edges. These methods guarantee that any convex polyhedron can be un-
folded into a single, non-overlapping polygon. General unfolding is versatile
and applicable to a wide range of polyhedra but is often computationally
intensive.

2This article also explains this concept in a very intuitive and over-simplified way:
https://gisgeography.com/great-circle-geodesic-line-shortest-flight-path/
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Figure 23: A face is cut along
the diagonal

3.4 Unfolding Problem

The current status of the unfolding problem is summarized by the following
table [13]:

General unfolding Edge unfolding

Convex polyhedra Yes, various methods Open problem

Non-Convex polyhedra Open problem No, counterexample

Although the first row has more interesting findings, we will tangentially
address the challenges regarding non-convex polyhedra.

3.4.1 Convex Polyhedra

General Unfolding

The general unfolding of convex polyhedra is a problem that has been solved
in many elegant ways throughout the years.

A lot of methods of general unfolding start from the star of shortest paths.
The general idea is based on shortest geodesics from a chosen source x to the
vertices of the shape. One property of such path is that it never crosses itself
or another path3. Another property is that it never passes through a positive
curvature vertex. An intuitive explanation is that it’s always shorter to go
around such a vertex. Additionally, they pass each face exactly once. These
properties are key aspects in proving that the unfolded state is connected.
The following unfolding techniques were based on these properties.

3One path can be a prefix or a sufix or another, but that case is an exception
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Figure 24 , from Geometric Folding Algorithms [13], depicts an example of
such star of geodesics on a convex polyhedron with 100 vertices.

Figure 24: Paths spanning from x to all vertices

Star unfolding was first theoreticized by Alexandrov in 1955 [2], but
the author claimed that it may overlap (“Of course the polygon [...] may
overlap itself when unfolded”[3]). A proof that it does not overlap was pub-
lished almost 40 years later, by Aranov et al.[5].

This folding can be applied if the source x is chosen such that all the short-
est paths to the vertices are unique. If x meets this criteria, then cutting
from each vertex along the edges of the graph unfolds without overlap. An
example from [13] is shown bellow. The star is depicted by the continuous
lines, going from x to all the vertices vn.

Figure 25: A pyramid
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Figure 26: Star unfolding of the pyramid from Figure 25

Source unfolding was introduced in the computational community in the
mid 80s [30, 39]. It relies in the the following lemma, based on Alexan-
drov’s Theorem [3] (discussed in-depth in Chapter 4, section Alexandrov’s
Theorem):

Lemma. Let p1 and p2 be distinct shortest paths emanating from x, which
meet again at a point y ∈ p1 ∩ p2 distinct from x. Then either one of the
paths is a sub-path of the other, or neither p1 nor p2 can be extended past y
while remaining a shortest path.

In simpler terms, two of such paths cross at most once; a property that was
already mentioned before-heand.

For this folding method, we can choose any source x. Once chosen, we draw
the shortest path star. On any polyhedron, there will exist points that have
a non-unique shortest path to x, and the set of these points forms the cut
locus[23], or the ridge tree[39]. For consistency with graph notation, we will
call it a ridge tree. This set of points can be found by leaving from x in
two opposite directions and finding the intersection of these shortest paths.
This intersection will be one of the nodes in the ridge tree, and the paths
themselves will be the edges. There can be many variations of the ridge
tree. Figure 25 depicts a ridge tree using the dotted lines on the “back” of
the pyramid.

The cutting can be made along the edges of the tree described above. In
contrast to the star unfolding, the source x stays central in the unfolding,
with the initial star still visible.

17



Figure 27: Source unfolding of the pyramid from Figure 25

Edge Unfolding

As seen in Historical Background, this problem was born in 1525 and has yet
to be solved. In this thesis two techniques which have been used to unfold
specific shapes are discussed.

Volcano unfolding is particularly suited for prismoids and dome-like struc-
tures. It involves cutting along edges that connect the base to the top,
unfolding the sides around the base like a volcano, and flipping the top out-
ward. This method has been proven to work without overlap for specific
classes of polyhedra [13], but faces challenges when extended to more com-
plex shapes, such as prismatoids. The figures bellow [13] depict examples of
this unfolding.

Figure 28: A prismoid Figure 29: Volcano unfolding
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Figure 30: A dome

Belt unfolding is the opposite of Volcano Unfolding. It involves cutting
along the edges that connect the top and the bottom faces to the lateral
ones, keeping the lateral faces connected in a belt. The top and bottom are
then kept attached to one of the belt faces. Both Volcano and Belt Unfolding
still fail at very specific shapes (too many faces, or very wide bases) or in
case the unfolding order is not correct.

Figure 31: A pentagonal prism and its belt unfolding4

Related Work

Research is still in progress to find the net of every convex polyhedra, but the
current results have not yet found an universal solution. A strong candidate
for finding a solution was Schlickenrieder’s hypothesis (1997), stating that
a method called Steepest Edge Unfolding would find an unfolding for any
convex polyhedra [37]. Figure 32 has been adapted from the companion
slides of the undergraduate course based on [13].

4https://www.cuemath.com/geometry/pentagonal-prism/

19



Figure 32: Steepest Edge unfolding results

Although the author himself found overlapping counterexamples to specific
convex shapes (Figure 32, the net on the right), Schlickenrider’s Master
thesis concluded the following [37]:

At each vertex, cut along the steepest ascending edge w.r.t. a
certain objective function c. This approach does not always pro-
duce a net. However, experimenting with different (deterministic
as well as randomized) choices of c, we found strong empirical
evidence that for every polyhedron P there exists an objective
function c such that this rule does produce a net.

This turned the 5-century old folding problem into an optimization problem:
finding the best function c . In 2004, however, the claim was proved to be
false [25].

Given this unfortunate situation, researchers have started seeking alterna-
tive problems to solve, which hopefully will contribute to solving the bigger
problem once enough knowledge has been pooled. Such a problem was pro-
posed by O’Rouke and Demaine in 2004 [13]. The problem allowed the edge
unfolding to result in multiple disjoint polygons, aiming to minimize the
their count. To our knowledge, the best result is 3/8 times the number of
faces of the polyhedron [34].

Another sub-problem formulated involved finding overlapping edge-unfoldings.
A recent paper addressing it presents an algorithm that computes all unfold-
ings for certain classes of (regular) convex polyhedra. The algorithm also
counts how many of these unfoldings overlap [42].

The fact that not many papers are currently published on the topic also
shows that research is very close to solving this problem. For example, re-
cent result from December 2023 [33] uses the concept of the star of shortest

20



paths and develops a technique resembling source unfolding to unfold a class
of convex polyhedra.

In conclusion, we found various techniques which work for different classes
of convex polyhedra, but no algorithm that englobes all convex shapes.

3.4.2 Non-Convex Polyhedra

In this subsection we will show counterexamples (for edge unfolding), and
analyze an interesting technique which unfolds a class of non-convex polyhe-
dra (for general unfolding). If finding an edge unfolding for convex polyhedra
had an optimistic tone to it, finding any unfolding for non-convex polyhedra
is close to impossible, due to the “irregularity” of these solids.

General Unfolding

As with the 5-century open problem, researchers have sought to solve re-
stricted categories of shapes. In this thesis, we will only go over the findings
on Orthogonal Polyhedra, particularly polycubes. Polycubes are a type of
orthogonal polyhedra made of cubes of equal edge length, entirely glued to-
gether at the faces. The technique we will examine is called grid unfolding.

Grid unfolding is an interesting technique which unfolds various sub-
classes of Orthogonal Polyhedra, including polycubes. It first divides the
surface into squares. In the literature, this technique is called tiling. A
polycube is always depicted like this (to differentiate from a regular orthog-
onal polyhedra), so, depending on the context, this first step can be skipped.
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Figure 33: An polycube, divided into cubes

The different levels on the z-axis are called bands. The different levels on
the y-axis are called beams. The levels on the x-axis are labeled as On

and represent orthogonal faces. Damian and Meijer’s paper [12] describes
the correctness of grid unfolding. The polycube (Figure 33), as well as the
unfolding (Figure 34) are adapted from their work. Note that the long
“strips” are connected; top strip connects via L3 to the middle strip, which
is connected to the bottom strip via L5.
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Figure 34: Grid unfolding of the polycube from Figure 33

Edge Unfolding

Unfortunately neither of the techniques used for convex polyhedra work for
non-convex. An overly simplified explanation is that these techniques are
well defined on convexity, and especially for positive curvature. A negative
curvature vertex requires at least two cuts, and most of the time these cuts
are going to discontinue the unfolding.

Figure 35: Orthogonal polyhedra that cannot be edge-unfolded [7]
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Some non-convex polyhedra can be edge-unfolded though. A very recent
paper (July 2024) shows a method based on tabu search [45]. The shapes it
can unfold are truly impressive.

Figure 36: A dragon with 600 faces

Figure 37: An Utah Teapot with 890 faces

This method it was only tested on a limited number of shapes with at most
a few hundred faces. Another downside to this algorithm is that it cannot
handle shapes which are not unfoldable. In other words, if the input is
known to be unfoldable, the algorithm will efficiently (O(n3logn)) find its
unfolding, otherwise it will fail.
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Chapter 4

Polyhedra Folding

4.1 Overview

We have already established that unfolding polyhedra presents significant
challenges. In contrast, the problem of folding polygons into polyhedra also
encompasses considerable complexity.

In this chapter, we will first explore the theoretical foundations of folding,
followed by an examination of the folding problem and the various techniques
used to solve it.

4.2 Theoretical Foundation

Russian scientist and mathematician Aleksandr Danilovich Aleksandrov (1912-
1999), whom we mentioned in Chapter 3, made significant contributions to
the study of folding polyhedra in his 1955 work [2] (translated from Russian
in 2005 [3]). Although Alexandrov’s work was primarily focused on convex
polyhedra rather than folding in particular, a variant of the folding prob-
lem was formally articulated by Lubiw and O’Rourke in 1996 [24], posed as
When can a polygon fold into a convex polyhedron?,

4.2.1 Cauchy’s Rigidity Theorem

We will first look at one of the theorems that laid the ground for mathe-
maticians to follow. According to Cromwell [9], Cauchy formulated this work
based on Euclide’s work from 300 B.C., which contained a statement about
comparing solids (polyhedra). This statement was modernly (at the time)
formulated and proved by Cauchy in 1813, but Steinitz found a mistake in
a lemma proof and corrected it in 1934 [43]. Additionally, Alexandrov ex-
tended this work to a polytope in any dimension in 1941 (previously limited
to 3D), although in this thesis we are only analyzing 2D and 3D polytopes
(polygons and polyhedra) [2].
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A formulation of the theorem is as follows [13]:

Theorem. If two convex polyhedra have the same combinatorial structure
[...] and their corresponding faces are congruent [...], then the polyhedra are
congruent [...]

Combinatorial structure refers to the way in which the structure (faces,
edges, vertices) of a polyhedron is arranged and connected (there can be
many permutations of the structural elements). Two polyhedra have the
same combinatorial structure, if there exists a surjective function that maps
the elements from one polyhedron to the other such that the connections
remain the same. Two faces are congruent if they can be superimposed
through rigid transformations: translation, rotation and reflection. Sim-
ilarly, two polyhedra are congruent if they can be perfectly overlapped
through rigid transformations.

This theorem states that a 3D shape is dictated by the arrangement of its
2D elements. It serves as the backbone of proving that two polyhedra are
the same.

4.2.2 Alexandrov Gluings

As mentioned in the preliminaries, we need a tool to check whether a gluing
on a polygon can actually be folded. The key is a polyhedral metric. A poly-
hedral metric is a function that describes the distance between two points
(metric) on a polyhedron (hence, polyhedral). It maps a pair of points to a
geodesic. As the name suggests, a polyhedral metric operates on a polyhe-
dron; however, a gluing can also be used to describe a polyhedron. Following
this logic, a gluing is enough to define a distance function.

As with Cauchy’s Rigidity Theorem, we aim to work on 2D whenever possi-
ble, rather than 3D. Figure 38 depicts an example of such metric, where the
dotted line is the shortest distance between A and B, on the folded cube.

Figure 38: A metric applied on a gluing
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Clearly, not all gluings can induce a polyhedral metric, i.e. are “valid”. In
his work, Convex polyhedra, Alexandrov proved when a gluing can induce a
metric, and this type of gluing was later named after him.

An Alexandrov Gluing is a gluing that meets following the conditions [3]:

Property 1: The gluing should be convex (all points have positive
curvature less or equal to 2π)

Property 2: The gluing should be topologically a sphere (there should
be no unglued edges and no crossings

Property 3: The gluing should be polyhedral (finite number of points
have non-zero curvature)

In other words, an Alexandrov gluing should not glue more than 360 degrees
of “material” in one point, covers all the edges and the “arrows” don’t cross
each other. Property 3 holds for all polygons that are finite and have no
curved edges, which are essentially the all the polygons we discuss in this
thesis.

4.2.3 Alexandrov’s Theorem

We have seen that Cauchy’s Rigidity Theorem (CRT) represents a unique-
ness constraint. Alexandrov’s theorem (1941) builds on top of that, adding
an existence claim [3]:

Theorem. For every convex polyhedral metric, there exists a unique convex
polyhedron realizing this metric.

In the previous subsection, we have seen what a polyhedral metric is and
how we can induce one using a gluing (convexity of the metric is guaranteed
by the first property of an Alexandrov Gluing). Alexandrov’s Theorem
basically tells us that an Alexandrov Gluing will result in a unique convex
polyhedron.

4.3 Folding Problem

There are several version of this problem [13]:

Decision problem: Given a polygon, can it fold into a convex poly-
hedron by gluing its edges?

Enumeration problem: Given a polygon, list all the gluings that
satisfy the Alexandrov Gluing.
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Combinatorial problem: Given a polygon, into how many distinct
convex polyhedra can it fold?

All of these problems have been extensively studied and solved (though there
is room for optimization). Note that these problems target convex polyhedra
simply because any polygon can (partially) fold into some non-convex shape.
In this thesis, we will proceed with discussing the decision problem.

For convex polyhedra we have a straightforward answer for the decision
problem: if the polygon has an Alexandrov Gluing, it will always fold into
a unique convex polyhedron. The problem then turns into: When does a
polygon have an Alexandrov Gluing? To address it, we will distinguish cases
based on the convexity of the polygon.

4.3.1 Convex Polygons

All convex polygons can be folded into a convex polyhedron using the tech-
nique known as Perimeter Halving [13]. We will now discuss and prove this
claim.

As the suggests, Perimeter halving halves the perimeter by choosing an arbi-
trary point x ∈ ∂P , then finding the point y ∈ ∂P such that |x, y| = |y, x| =
LP /2, with xy ∈ ∂P and yx ∈ ∂P . Figure 39 displays that.

Figure 39: A convex polygon,
with points x and y chosen as

described

After this, starting from x, we go along ∂P in opposite directions, and
whenever we encounter the vertex on either side we mark it (say v1) and its
symmetrical point over x on the opposite side (say w1, resulting in |v1, x| =
|x,w1|). Figure 40 depicts this first step. Now, in a recursive way, starting
from the vertex which was first encountered (v1 or w1), repeat until vn, wn

are found such that |vn, y| = |y, wn|. Figure 41 shows the second iteration
of the algorithm.

28



Figure 40: We find the first
vertex v1 and its symmetrical to

x, which we mark as w1

Figure 41: We find the next
closest vertex on either side, w2

Figure 42: After marking all the
references, we should end in y

As figure 42 depicts, we should now have ∂P divided into pairs of seg-
ments of equal lengths: (xv1, xw1), (v1v2, w1w2), ..., (vny, wny). We can now
draw the gluing by connecting each segment with its pair (Figure 43), and we
claim that it is an Alexandrov gluing, thus it folds into an convex polygon.

Figure 43: Alexandrov gluing
resulting from Perimeter halving
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Proof. Since the polygon is convex (property 3), all the vertices have an
angle of strictly less than π, thus it is not possible to glue more than 2π
material at any given time (property 1). Additionally, the entire boundary
of the polygon is glued to itself and the pairs of segments are generated
in such an order that there will be no overlaps during the gluing process
(property 2).

In the case x and y are vertices, polygon gluing will still realize to a convex
polyhedron, except for the case in which the other vertices are symmetrical
to xy (note that xy /∈ ∂P ). This will result in folding along xy, halving
the polygon, resulting in a perfect overlap. This is called a degenerate case.
Although the outcome is a polygon, since it was obtained by folding, it is
called a degenerate polyhedron1. For example, a square where x is one of
the corners will result in a doubly covered triangle.

4.3.2 Non-Convex Polygons

The issue of folding non-convex polygons arises from vertices with an angle
greater than π. In order to address this, we will make a (sub-)distinction on
the edge lengths.

Matching edge-length polygons

We are going to analyze a specific class of polygons, which we called match-
ing edge-length polygons. These are polygons where for every edge ex there
exists at least one edge ey such that |ex| = |ey|. This makes gluing easier
because we will only glue together edges of the same length (this is called
edge-to-edge gluing); we only need to check that the curvature at the end-
points does not go over 2π.

Lubiw and O’Rourke proposed an algorithm that finds such gluings in their
work from 1996 [24]. The algorithm solved the enumeration and combina-
torial problem for matching edge-length polygons in exponential time; the
same algorithm was then adapted to solve the decision problem in polyno-
mial time. The algorithm is based on the principle of dynamic programming.

Dynamic programming refers to splitting the problem into smaller non-
overlapping sub-problems then solving these, usually recursively, to solve
the whole problem. In our context, the algorithm selects a pair of matching
length edges, and if the edges can be glued then it proceeds to solving the
two sub-polygons resulting from gluing two edges.

Figure 44 shows a polygon (left) where gluing that we know is Alexandrov.

1https://en.wikipedia.org/wiki/Degeneracy (mathematics)

30



To help visualization, we are going to introduce a slightly different perspec-
tive on folding polygons. Instead of drawing a 3D solid, we are going to
draw the two edges close to each other, showing that they have been glued.
This is called a gluing tree, and its the main tool on which folding algorithms
have been developed. Gluing trees have a lot of properties associated that
govern the validity of an iteration of an algorithm, but in this thesis, we
are only going to use them as a tool for visualization within the context of
this dynamic programming algorithm. In the same figure, the gluing tree is
also depicted (right). The red x-marks suggest the nodes in the gluing tree,
which correspond to the vertices in the resulting polyhedron (cube).

Figure 44: A gluing and its gluing tree

Figure 45 shows another example, where only edges e1 and e2 are glued. The
curved lines represent the rest of the edges v1v2, v2, v3, v3v4 and v5v6, v6v7, v7v8, v8v9
respectively. The points v2, v3 and v6, v7, v8 respectively are drawn some-
where on the curve respecting their topological order, but not necessarily
their relative distance to each other. Edges e1 and e2 can now be seen as a
“stitching”, connecting two new sub-polygons: P1 and P2.
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Figure 45: A gluing and its gluing tree

These two sub-polygons will be now be the sub-problems that the algorithm
will proceed to solve. The end goal is to find an Alexandrov Gluing.

We will now formalize this algorithm and give its implementation in pseu-
docode. The algorithm and its description have been adapted from [13] and
[24]. The pseudocode has been written as a companion to the description.

Dynamic programming algorithm for edge-to-edge gluing

We have a polygon P defined by the set of vertices VP = {v1, v2, ..., vn} the
set of edges EP = {e1, e2, ..., en} and the set of angles at a vertex AP =
{α(1), α(2), ..., α(n)}, each angle corresponding to a vertex. An edge ei
has its endpoints in the vertices vi and v(i+1)%n. The length of an edge is
denoted as li = |ei|. The polygonal chain, also called partial boundary, from
vi to vj is denoted as P [i, j]. Obviously, P [i, j] ∈ ∂(P ). P [i, j] can also be
interpreted as the edges and the vertices, with the respective vertex angles,
from vi to vj ; this chain is closed (i.e. is a polygon itself) when i = j or
when vi and vj are glued. We denote as {ei, ej} or {vi, vj} when two edges,
or two vertices respectively, are being glued to each other in a state of the
gluing process.

The sub-problems are generated when two edges ei and ej are glued to
each other. As we have seen before, this generated two sub-polygons, more
precisely P [i + 1, j] and P [j + 1, i]. An example can be seen in Figure
45 , where edges e9 and e4 are glued, generating P [1, 4] and P [5, 9] (edge
indexes have been adapted to reflect the notation of the algorithm, while
vertex indexes have remain the same). The two sub-problems P [i+1, j] and
P [j+1, i] are “linked” by {ei, ej}; an edge ex ∈ P [i+ i, j] cannot be glued to
an edge ey ∈ P (j+1, i), because {ex, ey} would result in a shape that is not
topologically a sphere. The main idea of the algorithm is to solve P [i, j], for
all valid combinations of i and j, and pick the “best” solution (“best” will

32



be defined bellow). The sub-problem that coincides with the main problem
is P [1, 1] (or any i such that i = j), and that is why the algorithm falls in
the class of dynamic programming.

We can now turn our attention to a gluing of vertices, say vi and vj . We
denote the resulting angle of the associated match {vi, vj} as α(i, j), and
the key aspect of the algorithm is that it tries to minimize the angle it glues
at any point. The gluing which minimizes angles glued together is, using
a greedy approach, the “best” because it is less likely to glue more than
360◦ at any given point. We will write that as αmin(i, j), we can draw the
following definitions:

• D1. If |j− i| is odd, one edge in P [i, j] does not have a matching edge
of equal length. Thus we define αmin(i, j) = ∞, because the polygonal
chain of i and j cannot be glued together

• D2. If i = j, then we are gluing a vertex to itself. This happens when
we fold two adjacent edges. Trivially, the result angle is αmin(i, j) = 0

• D3 If |j − i| ≥ 2 and even, then we have an even length polygonal
chain where every edge could have a match. We now want to find a
k, i < k ≤ j−1 with a different parity2 from i such that {ek, ei} is valid.
To do that, we try all values for k such that αmin(i, j) is minimized
when adding the extra angle ∆(k) from gluing ek. If li ̸= lk, then
αmin(i, j) = ∞. Otherwise, this creates two other sub-problems:

– P [vi+1, vk]: If i + 1 = k, this problem is vacuous and ∆(k) is
determined by the second sub=problem. Assume i + 1 ̸= k. If
αi+1 +α(k)+α(i+1, k) < 2π, ∆(k) is determined by the second
sub-problem, otherwise {e+k, ei} is not valid and αmin(i, j) = ∞

– P [vk+1, vj ]: ∆(k) = 0 if k + 1 = j, otherwise ∆(k) = α(k + 1) +
αmin(k + 1, j)

Definition D3 is where the recursive calls are made, and to explain it better
we will depict a small example using the polygon in Figure 46 .

2Optimization trick to avoid ending up in case D1
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Figure 46: A complex polygon,
the Latin Cross

Say we want to compute αmin(2, 6)) corresponding to {v2, v6}. There are
two valid values for k: 3, 5. Case k = 3 corresponds to {e2, e3}. This
yields P [v2, v2] (D1), and P [v4, v6], which result in the extra angle ∆(3) =
α(4) + αmin(4, 6) = 3/2π + 0 = 3/2π (270

◦
). Case k = 5 corresponds

to {e2, e5} and generates two sub-problems (P [v3, v4] and P [v6, v6] (D1).
The first sub-problem is legal since ∆(5) = α(3) + α(5) + αmin(3, 5) =
π + 1/2π + 0 = 3/2π < π. Finally, αmin(2, 6) = min(∆(3),∆(5), meaning
that the chain P [2, 6] can me folded such that no extra angle is matched to
v2 = v6 (i.e. the final polyhedron, a cube, has angle, or curvature, 270

◦
in

that point).

The complexity of the algorithm is O(n3). This is explained using the pseu-
docode bellow:

// O(n2) subproblems

for each subproblem P [i, j] do
// O(n) choices for k, then constant computations

find k such that it minimizes the angle glued at the point i = j;

end

Generic polygons

We will start off by pointing out that there exist polygons which cannot fold
at all into a convex polyhedron. Figure 47 depicts such a polygon, where
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“inner” vertices have an angle of more than π. No matter how the polygon
is glued, the result will have a point with curvature greater than 2π.

Figure 47: A non-convex
polygon that cannot be glued

This raises the question that if we generate a random polygon (with any
reasonable definition of random), what is the probability that it will fold
into a convex polyhedron? With a random polygon with n vertices drawn
from some continuous density distribution, at least half of the vertices will
be concave. We will now claim and prove the following statements based on
the number of such vertices.

The following lemma is derived from the definition of Perimeter Halving
(although it was not explicitly labeled as a theorem)[13]:

Lemma. A randomly generated polygon with exactly one vertex v with
κ(v) > π folds into a convex polyhedron.

Proof. There exist three options for gluing a vertex:

i. Gluing v to a point v′ on an edge then the resulting curvature will be
κ(v) + κ(v′) > 2π, which implies a non-Alexandrov gluing.

ii. If there is a Perimeter Halving configuration such that it glues v and
v′ with κ(v′) = 2π − κ(v), then it will result in a convex polyhedron.
We will leave out this case, since the probability of having such two
vertices is low in a randomly generated polygon.

iii. Gluing together the edges adjacent in a vertex is called zipping. If and
only if Perimeter Halving either starts v, i.e. x = v, or ends in that
point, i.e. x is chosen in such a way that y = v, the outcome is zipping
at the vertex v. We will call these two edges e1 = av and e2 = vb. If
|e1| = |e2|, then the resulting end point c will have κ(c) = κ(a)+κ(b) <
2π, because κ(a) < π and κ(b) < π. If |e1| ̸= |e2|, then the end, say a
with κ(a) < π will glue to a point a′ ∈ e2. Since κ(a′) = π, this is an
Alexandrov gluing.
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We will now analyze the case where the polygon has more than two non-
convex vertices (such as the one in Figure 47) [13]:

Lemma. If a polygon has two or more concave vertices and random edge
lengths, then there exists no Alexandrov gluing such that the polygon folds
into a convex polygon.

Proof. We consider a random polygon with two concave vertices v1 and v2.
The convex vertices are denoted as c1, c2, ..., ck. We will prove by induction
on k, with the base cases of k = 0.
Case k=0. Very abstract, but can be imagined as two points being connected
by two lines. Since the two edge lengths are generated by a continuous
density function, they will have different lengths. The longer edge must
be “pinched” and glued to the shorter one, resulting in a point of 2π −
(π + π + π) = −π curvature. Figure 48 (left) shows the two points A and
B where the vertices lie, the dotted lines representing the two edges, and
the continuous line representing the two lines, compressed and overlapped.
Figure 48 (right) also shows the longer edge pinched, and the intersection
of three points p1, p2, p3 with κ(p1) = π, κ(p2) = π, κ(p3) = π
Case k > 0. We assume that the lemma holds for k − 1, i.e. there is no
Alexandrov gluing for a polygon with two concave vertices and k−1 convex
vertices. Say we zip at v1 (analogously for v2). If v2 lies at the end of one
of edges adjacent in v1, then it is not possible to glue. If v2 lies somewhere
else on the boundary, then the zip will result the result is a concave vertex
v2, in a polygon with k−1. This is our induction hypothesis, thus this state
does not result in an Alexandrov gluing. The only option left is to glue
one or more convex vertices into v1, then zip the difference. Gluing n > 0
vertices will result in n “holes” in the current shape, each hole being a sub-
polygon of the initial polygon. In all of these polygons, there now exists a
concave vertex obtained from the gluing. Lastly, one of these sub-polygons
contains v2, therefore all of these polygons have two concave vertices and
k−m,m > 0 convex vertices. We have now reached the induction hypothesis
again.

Figure 48: Case k=0

In conclusion, we can fold all convex and some non-convex polygons using
Perimeter halving, and all matching edge-lengths polygons using a dynamic
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programming algorithm. Most randomly generated polygons don’t fold into
a convex polyhedron.
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Chapter 5

Practical Applications of
Folding

As we have seen in the previous two chapters, folding and unfolding have
been studied extensively in a theoretical setting. In this chapter of the thesis,
we will look at practical applications, without going into the mathematics
or physics behind them.

This chapter is structured in various sections, each looking at a specific use
case of folding/unfolding. An overview is provided without an extensive
discussion or reasoning; these fall outside of the scope of computer science
and of this thesis.

5.1 Linkages

A linkage is made of rigid bars (segments) connected in a joint (vertex),
allowing the bars to rotate around the joint, while the bar itself doesn’t
bend. Figure 49 shows a linkage; the x-marks are stationary, while the
dots change their position. The dotted line represents the movement of the
right-most joint.
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Figure 49: Two states in the movement of the linkage

This linkage is known as the “Peaucellier–Lipkin” linkage and it was invented
in 1864. It could convert rotary motion into a perfect straight-line motion,
and it was revolutionized steam engines at the time, which were previously
inefficient at the motion conversion [21].

Linkages have been studied and used in practice for many years. We will
now look at some of their applications, but for more details we recommend
the chapter dedicated on linkages alone from O’Rouke and Demaine’s work
[13], but also the most extensive work we could find on linkages, which could
as well serve as material for an undergraduate physics or mathematics course
[27].

5.1.1 Robotics

Most robot mechanisms use linkages (e.g. excavator arm) that are based on
linkage folding. This concept was first introduced in late 80’s [26], and has
been proven since to be effective (an interesting PhD thesis analyzes three
folding methods of these king of robotic arms [6]).

Figure 50: Robot arm, adapted from [13], page 12

5.1.2 Writing Tool

An interesting historical machinery is an polygraph, which consists of a
linkage-based tool used to copy text. It was first invented by John Isaac
Hawkins, and it had two or more pens connected by linkages, mimicking the
same movement, based the the movement made by the writer, holding one
pen [28].
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Figure 51: Polygraph, adapted from [13], page 13

5.1.3 Biology

While a computer scientist might not immediately relate to the term, a
biologist often associates “folding” with protein folding. Similarly, when
describing a linkage, a biologist is likely to also think of chemical molecules
or DNA structures.

Proteins are, from a structural point of view, linkages. The protein folding
problem is the equivalent of the convex polyhedra unfolding problem, in
the sense that various questions have been posed by scientists over the last
decades (e.g. speed of folding, end result of folding), yet no answers have
been found [15]: it is not yet possible to predict what a protein will fold
into.

Figure 52: Protein folding1

Another use of folding is in DNA analysis, where it allowed scientists to cre-
ate precise molecular structures that can be tailored with extreme precision
down to a few nanometers [36].

1https://medium.com/qiskit/qiskits-protein-folding-module-has-moved-here-s-how-to-
use-it-991b32381933
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Figure 53: DNA folding

5.2 Medicine

Origami-based principles (paper folding) have been directly applied to create
biomedical devices, particularly at very small scales, in orders of nanometer
(1 millimeter = 1 000 000 nanometers). Two fascinating papers on the topic
have been written by Ahmed et al. [1] and Johnson et al. [22].

Figure 54: Various biomedical devices based on origami [1]
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5.3 Manufacturing

In manufacturing, folding techniques are crucial for creating complex struc-
tures from simple sheets, enhancing efficiency and reducing material waste.
A 3D part is approximated as a polyhedron, its surface is mapped to a col-
lection of 2D flat patterns, each is cut from a sheet of material and folded
[17].

Figure 55: Chevron pattern, folded

In sheet-metal manufacturing, folding allows for the fabrication of parts for
automotive and aerospace industries. This process is guided by algorithms
that ensure optimal folds, minimizing the need for welding and fastening,
thereby streamlining production lines and improving product integrity [4].

5.4 Airbag Design

Airbags are bags which are inflated within milliseconds with air to protect
the passengers of a car in case of a crash. In its compact form, it needs to
take as little space as possible. When the air is pushed into it, it should
totally and efficiently unfold. Thus, scientists have turned to origami in
order to find reliable folding methods [8].
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Figure 56: Airbag folding pattern [31]

5.5 Architectural Design

Applying the concept of folding in architecture is not straightforward, as
buildings themselves do not fold. However, the idea of folding is utilized in
various ways. For instance, it can be employed to enhance the visualization
skills that architects need to effectively design building schematics. [18].

Another use case is artistic: building design. Origami has its roots in arts,
and these beautiful shapes and figures have inspired architects to create
buildings that are structurally stable but also pleasing to the eye, from the
inside and the outside [40, 10].

Figure 57: Air Force Academy Chapel, Colorado Springs, USA [38]
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5.6 Spatial Engineering

In spatial engineering and spacecraft design, folding technologies play a piv-
otal role in optimizing the deployment of structures in the constrained en-
vironments of space missions [20]. These applications include the compact
folding of solar panels and satellite antennae, which must be tightly packed
for launch and then efficiently deployed once in orbit.

Figure 58: An satellite panel that can fold in a circular manner around
its hub

5.7 Origami Art and Design

There have been entire books written on the topic of computational origami
[44]. In this section, I will discuss Origamizer, an open-source software2

that can generate folding patterns (similar to nets) for any shape, whether
convex or non-convex [14]. Although the folding process for nets does not
allow overlaps, paper has more relaxed folding rules compared to polygons
and overlapping material (paper) is not a problem. A famous example used
in the referenced paper [14] is the Stanford Bunny. The paper unfolding of
the Stanford Bunny, as computed by the Origamizer, is shown in the image
below.

2Note that the tilde might render to a different ascii character when copy-pasted:
https://origami.c.u-tokyo.ac.jp/∼tachi/software/
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Figure 59: Origami pattern that results in a bunny
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Chapter 6

Conclusions

This thesis focused on the sub-field of Computational Geometry known as
Polyhedra Folding. The primary research question aimed to explore the
methodologies for polygon folding and polyhedra unfolding, providing a
bridge for novice researchers, particularly third-year Computer Science stu-
dents, to understand this complex field.

The thesis provided the minimum necessary terminology in the Background
Knowledge chapter, dissected core research into unfolding and folding in
subsequent chapters, and informally described several practical applications
of the theory.

However, this research faced several limitations. The scope was restricted
to a review of existing literature without experimental validation of algo-
rithms. Additionally, the complexity of some theoretical concepts could not
be entirely simplified without losing depth.

Future research could build upon this foundation by experimentally validat-
ing the discussed algorithms, for example by implementing them in a pro-
gramming language such as C++ and observing their behaviour, or writing
a library that could simulate the methods. A novice researcher reading this
thesis could also proceed to deepen their knowledge by analyzing the origi-
nal sources.

In conclusion, this thesis provides a foundational resource that demystifies
polygon and polyhedron folding, helping novice researchers navigate and un-
derstand the intricacies of this fascinating field. By building on this work,
future research can continue to advance the practical and theoretical under-
standing of computational geometry.
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