BACHELOR’S THESIS COMPUTING SCIENCE

RADBOUD UNIVERSITY NIJMEGEN

Predicting DN A sequence pair similarity with HyenaDNA

Leveraging foundational models for biological downstream tasks.

Author: First supervisor/assessor:
Samuel Padron Asst. Prof. Twan van Laarhoven
s1059584

Second assessor:

Prof. Dr. Ir. Dick de Ridder

August 18, 2024

Abstract

The rise of large language models (LLMs) has revolutionized the field of ge-
nomics by providing new tools for research and analysis. For example, tra-
ditional methods for detecting regions of similarity between genomes, which
rely on local genome alignments, are often computationally expensive. This
is particularly the case when dealing with whole genomes. To address this
challenge, we propose the use of HyenaDNA, a foundation model pre-trained
on the human genome, for the task of predicting DNA sequence similarity.
By leveraging the embeddings generated by HyenaDNA within a Siamese
neural network architecture, we aim to bypass the need for traditional align-
ment tools to directly predict DNA sequence pair similarity.

This study investigates the effectiveness of using HyenaDNA as a back-
bone for such a prediction task. The model demonstrates the ability to
detect similar pairs of DNA sequences with an average test accuracy of
0.841 across various species, with a notably higher accuracy of 0.927 in
chimpanzees (panTro6). Additionally, a regression variant of the model was
tested to predict a similarity score for a pair of sequences, though it yielded
unsatisfactory results. The promising outcomes of our multi-species evalua-
tion, however, suggest that HyenaDNA has significant potential in genomic
similarity studies, offering a more efficient alternative to conventional meth-
ods.

Contents

B Prelminarics

2.1 Genome Similarity]

[2.2 Large Language Models and Foundation Models|

2.3 HyenaDNA|
2.4 Siamese Neural Networks|

[3 Methodology|

[3.3 Training and Validation| .
[3.4 Regression Model|
[3.5 Training Resources|

4 Results]

[4.1.1 Training and Validation|

4.1.3 Hyperparameter Tuning|

4.1.4 Training Set Size| .
4.2 Multi-Species Evaluation| .
4.3 Regression Model |
E31 Faliation Nond

5 Conclusion|

[A° Model Diagram)|

13
13
13
13
15
16
17
18
18

19

22

(B Training and Evaluation Metrics|
IB.1 Multi-Species Training and Validation Results|.
IB.2 Multi-Species Evaluation Results|
IB.3 Regression Model Results|

Chapter 1

Introduction

The rise of large language models (LLMs) has led to advancements in the
field of genomics. The development of DNA LLMs is aiding researchers
in the study of homology by providing more sophisticated tools for ana-
lyzing genomic sequences. These LLMs and so called foundation models,
which are capable of understanding the underlying ”language” and patterns
within genomic data, have the potential to evaluate the similarity of re-
gions through evolution more effectively than traditional methods. These
traditional methods for detecting similar sequences rely on local genome
alignments, which involve aligning small regions of genomes to identify ho-
mologous sequences. However, when whole genomes are involved, these
methods become computationally intensive and time-consuming. To make
this process more efficient, we propose the use of a foundation model called
HyenaDNA, an extensively pre-trained LLM which can be fine-tuned for a
range of specific tasks with relatively minor adjustments, to help predict
whether two sequences are similar or not. This approach aims to reduce
the dependency on traditional alignment tools to evaluate similar regions
between genomes through evolution.

We investigate the potential of HyenaDNA for the downstream task of
predicting sequence similarity by using embeddings from HyenaDNA as in-
puts into a Siamese neural network. By using both aligning and non-aligning
sequence pairs during training, we develop a model that essentially screens
for sequence similarity, potentially serving as a preliminary step before em-
ploying more computationally intensive methods. This not only eliminates
reliance on traditional tools, but also demonstrates HyenaDNA’s ability to
be used in genomics studies related to sequence similarity opens up new
possibilities for larger scale studies.

Our contributions in this paper are the following:

e We provide a brief introduction to HyenaDNA, explaining its archi-
tecture and what makes it more suitable for the context of predicting
local genome similarity than other existing models (Chapter 2).

e In Chapter 3 we provide the implementation of our deep learning model
that uses a Siamese neural network architecture with HyenaDNA as a
backbone layer to predict DNA sequence pair similarity.

e We experiment on the ability of the model to generalize on different
species, showcasing HyenaDNA’s ability to perform in a multi-species
context.

e Turn our classification model into a regression model for predicting a
DNA sequence similarity score by making minimal adjustments to its
architecture.

Chapter 2

Preliminaries

Before moving on to the details of HyenaDNA, we give a short introduction
to some key topics that the reader should have some understanding of before
continuing. The topics covered in this section are DNA sequence alignments,
Natural Language Processing (NLP), and foundation models. Lastly, we
explain Siamese neural networks and how they fit within the context of the

paper.

2.1 Genome Similarity

A genome consists of one or more chromosomes i.e. long DNA sequences[§],
so the task of predicting genome similarity is that of determining the sim-
ilarity between two DNA sequences. The similarity of two sequences is a
measure determined by sequence alignment tools [7]. The term ’local’ refers
to a similarity measure calculated by an algorithm that performs local se-
quence alignment. A local alignment of two DNA sequences consists of
considering segments of various lengths (regions) of the sequences and find-
ing the one with the highest similarity measure. These alignments are made
with sequence alignment programs which are described in more detail in

Section B.1.11

2.2 Large Language Models and Foundation Mod-
els

Large Language Models (LLMs) are machine learning models based on deep
learning techniques. This means they are neural networks with many layers
which allow them to learn complex patterns in large datasets. The devel-
opment of LLMs has been a significant milestone in NLP, enabling a wide
range of applications from text generation to translation, sentiment analysis,
and most relevant to this research, genomics.

The use of LLMs has greatly increased in the past years in the field
of genomics. The creation of the Transformer architecture has allowed re-
searchers to leverage the power of these new models for use in genomics
applications. This has led to the creation of task-agnostic “foundation mod-
els” in genomics. The goal of such models is to learn generalizable features
from unlabeled genome data so a researcher can later fine-tune it to their
experiment’s needs.

In the field of genomics, foundation models are increasingly being used to
analyze and interpret genomic data [3,/4, [5]. By treating DNA sequences as a
form of language, these models are able to generate embeddings that capture
the functions and interactions of nucleotide sequences. These embeddings
can then be used for various genomics tasks such as identifying genetic
variants or understanding the functional structure of genes. The use of
LLMs in this context leverages their ability to recognize complex patterns
in large datasets, making them powerful tools for advancing research in
genomics.

2.3 HyenaDNA

HyenaDNA is a genomic foundation model developed to address the lim-
itations of previous genomics models [3], 4] that struggled with long-range
dependencies and high computational costs [6]. HyenaDNA leverages the
capabilities of Hyena, a model based on implicit convolutions, which allows
HyenaDNA to handle long sequences efficiently (such as genomes which can
be billions of nucleotides in length).

HyenaDNA can process sequences up to 1 million tokens long at single
nucleotide resolution, significantly surpassing the capabilities of previous
models that handled only up to 4,000 tokens [6]. This extended context
length enables better modeling of long-range interactions within DNA se-
quences.

Unlike models that rely on tokenization methods, HyenaDNA maintains
single nucleotide resolution, which allows it to capture more subtle genetic
variations that can have significant biological implications. In addition, Hye-
naDNA’s architecture scales sub-quadratically with sequence length, making
it much faster and more efficient than traditional Transformer-based mod-
els. For instance, it can train up to 160 times faster than Transformers on
long sequences [6]. These key factors are why HyenaDNA has been selected
as the backbone model we build our prediction model with.

Another feature of HyenaDNA is that it can adapt to new tasks with-
out requiring updates to its pre-trained weights, a significant advantage for
rapidly evolving fields like genomics where new data and tasks frequently
emerge. This feature of HyenaDNA is what allows us to utilize it for pre-
dicting DNA sequence similarity.

2.4 Siamese Neural Networks

A Siamese Neural Network (SNN) is a type of neural network which has
two inputs and one output value which indicates the similarity of the two
inputs [2]. The architecture of SNNs consist of two or more sub-networks
which each process one of the inputs to the model. The outputs of these
sub-networks are then usually combined using a distance metric to produce
a similarity score. In our model we use instances of HyenaDNA as our sub-
networks which give us embeddings that we then process to get an output
value. Since we are determining whether two sequences align or not, we
replace the usual distance metric with a value which indicates the probability
that the two sequences align.

Chapter 3

Methodology

3.1 Data

3.1.1 Data Collection

To train the model to predict whether two sequences are similar we make use
of pairwise sequence alignments. These alignments come from the University
of California Santa Cruz (UCSC) Genome Browser, in which one can find
a multitude of genomes belonging to different species. For the purpose of
this paper, we use the pairwise alignments from the hg38 (human) and
galGal6 (chicken) genomes which are aligned using the LASTZ alignment
program. This program pre-processes the target sequences from hg38 and
aligns the query sequences from galGal6 to them using the scoring matrix
seen below in Figure 3.1. We select the hg38 and galGal6 genomes to ensure
the sequences in a pair come from two species that are not too close in
terms of evolutionary distance. This is important to avoid the risk of our
model learning to distinguish only between closely related species (such as
a human and gorilla) which might limit our model’s ability to generalize
to pairs of sequences from more distantly related species. In Section we
explore how the model performs when trained on more species to evaluate its
performance when trained with species of increasing evolutionary distance
from humans.

The pairwise alignments come in a Multiple Alignment Format (MAF)
file which consists of a series of alignment blocks. Each block consists of
an alignment block line which indicates the start of the block and includes
a score variable which indicates the score that was assigned to the pair
alignment. The alignment block line is then followed by two sequence lines
(one for each sequence in the pair in the alignment).

A C G T

91 -9 -25 -186

-98 1@ -1 -25

-25 -108 100 -90
-180 -25 -9 91

= o O I

Figure 3.1: Scoring matrix used by LASTZ for aligning galGal6 sequences
with hg38 sequences [9]

3.1.2 Data Processing

Before using the hg38 and galGal6 pairwise alignments, some processing
has to be done in order to train the model. The MAF file has to first be
converted to a CSV file. This allows us to be able to write a script using the
Pandas library to parse the alignment blocks in the MAF file into tensors
that our model can use for training. The alignment blocks are parsed in
such a way that each pair of sequences is represented in one line with four
values: an ID for the pair, the blastz score, the first sequence of the pair,
and the second sequence. The alignment blocks that are longer than 5,000
nucleotides are split into smaller blocks of 5,000. This allows us to to train
the model using a single GPU and remove the necessity of setting up a
distributed training strategy.

Another important step in data collection is to get non-aligning pairs of
sequences to serve as negative samples when training. This is accomplished
by taking the aforementioned pairwise sequence alignments and making a
new CSV file in which the second sequence of a pair (the sequence from
the galGal6 genome) gets swapped with the second sequence of the next
pair. Although there is a theoretical chance that the resulting pairs contain
similar sequences after the swap, this is highly unlikely in practice. As
evidenced by our results, this simple approach proves to be effective since
the model, trained with these negative samples, successfully generalizes and
predicts sequence similarity for other species’ genomes. This indicates that
this method of creating negative samples allows the model to distinguish
between aligning and non-aligning sequence pairs accurately.

After making the two CSV files from the MAF file obtained in UCSC
Genome Browser, they are then concatenated to create a single CSV file
containing both positive and negative samples. This final CSV file is the file
we use to create the dataset that we train the model on.

3.2 Model Architecture

3.2.1 Overview

we use a Siamese neural network architecture with HyenaDNA as a back-
bone model. When a pair of sequences is retrieved from the dataset, we
individually run each of them through the HyenaDNA model to get an em-
bedding for each of them. We then pass these embeddings through a head
module which turns these embeddings into a prediction. The final layer
has an output of size one, a number that represents the probability that
the sequences align. Our model is built using PyTorch v2.2.1 and PyTorch
Lightning v1.8.6. A diagram of the model is provided in Appendix [A]

3.2.2 Backbone

We use HyenaDNA as a backbone model since it allows us to extract mean-
ingful features from the input sequences. The backbone is configured with
the following default hyperparameters:

e dmodel: The dimensionality of the model (hidden size) : 256.
e n layer: The number of layers in the model : 4.
e d_inner: The dimensionality of the inner feed-forward layers : 1024.

e vocab_size: The size of the vocabulary, adjusted to be a multiple of
a specified padding size : 12.

e resid _dropout: Dropout probability for the residual connections :
0.0.

e embed_dropout: Dropout probability for the embedding layers : 0.1.

e layer norm epsilon: Epsilon value for layer normalization :

1.00 x 107°

During training, the backbone’s parameters are frozen since we only want
the embeddings of the input sequences from the pre-trained HyenaDNA
model without additional fine-tuning. This results in a faster training pro-
cess since the model does not need to train on the 3.3M parameters of the
HyenaDNA backbone model.

3.2.3 Prediction Head

The second component of our model is the PredictionHead component.
This component processes the output from the backbone and predicts the
similarity between input sequences. The architecture of the PredictionHead
is as follows:

10

e Initialization:

— input_size: The number of input features.
— hidden_size: The size of the hidden layer.
— dropout_prob: The dropout probability (set to 0.5 by default).

e Layers:

— self.convid: A 1D convolutional layer that processes the input
sequences.

— self.fcl: A fully connected layer that takes the concatenated
input features and reduces them to the hidden size.

— self.fc2: A fully connected layer that further processes the hid-
den representation.

— self.fc_out: The output layer that reduces the hidden repre-
sentation to a single value.

— self.dropout: A dropout layer added between the fully con-
nected layers to prevent overfitting.

e Forward Pass:

We describe the the forward pass of a pair of sequences through the
model to illustrate how a pair of DNA sequences get reduced to the
single value indicating the probability that the sequences align. Note
that for the description of the tensor shapes we have batch size B = 16,
sequence length L = 5,000, hidden size of HyenaDNA H = 256, and
output dimensions of the fully connected layers F'1, F'2 = 256.

Step Tensor Shape
Initial Tensors seql, seq2 (B,L,H)

Pass through 1D convolutional layer (B,L,H) — (B,H, L)
self.convld

Mean of the convolutional output across (B,H,L) — (B,H)
sequence length dimension

Compute absolute difference and (B,H),(B,H)

element-wise product of seql and seq?2

Concatenate seql, seq2, absolute difference, | 4- (B, H) — (B,4H)
and element-wise product

Pass through fully connected layers (B,4H) — (B, F1) —
(self.fcl and self.fc2) with activations (B, F2)
and dropout

Final output through self.fc_out (B, F2) — (B,1)

11

3.3 Training and Validation

To train the model, the CSV file described in Section is split into a
training, validation, and test sets with a 70-15-15 ratio. We then perform
random shuffling on the data as the original dataset contains all positive
samples first followed by the negative ones.

Since the output of our model is a tensor containing the probability of
each pair of sequences in the batch, we calculate the loss by passing these
probabilities through the sigmoid function to get a prediction for each pair
and compare it to the pair’s label. We use binary cross entropy as our loss
function as well as the Adam optimizer to update the weights of the network
after each epoch.

3.4 Regression Model

In order to further see how suitable HyenaDNA is for predicting DNA se-
quence pair similarity, we make a regression model based on our classification
model in order to predict a similarity score. To make the model we simply
include the blastz score from each pair of sequences in the MAF file as a new
feature to our dataset. This score is then normalized using the length of the
largest sequence in the pair. Since we are now predicting a score, this means
that the last output layer of our model does not output the probability for
whether a pair aligns or not, but instead directly outputs the similarity score
for the pair. For this reason, we use the Means Squared Error (MSE) as our
loss function to replace Binary Cross Entropy. The results of this version of
our model are shown in Section [4.3

3.5 Training Resources

Both the classification and regression models were trained using a single
RTX 2080ti GPU with 16 GB of VRAM of a computer cluster node running
on a Xeon 4212 processor and 10 GB of memory.

12

Chapter 4

Results

To predict whether two sequences are similar, we use HyenaDNA as the
backbone of a Siamese neural network. In our model, the embeddings gen-
erated by HyenaDNA serve as features to predict the probability that two
sequences are similar. Here, we present results for the model trained with
the hg38 (human) and galGal6 (chicken) genomes, here onwards referred to
as the “baseline model”, to get an idea of how well the model performs. In
Section [4.2] we investigate how well the model performs when it is trained
on other species. Lastly, in Section the results of the regression model
from Section [3.4] are shown. All collected training and evaluation metrics
are shown in Appendix

4.1 Baseline Model Performance Evaluation

4.1.1 Training and Validation

We train the Siamese network and keep track of the validation set loss and
accuracy for ten epochs in order to get a baseline performance for compari-
son.

We obtain an average training loss of 0.576. As for validation, the average
loss obtained is 0.432 while achieving an accuracy of 0.842 with a standard
deviation of 0.0197. Figure 4.1 shows the model’s validation accuracy over
training epochs in one run. We can see that the model flattens out after the
third epoch, indicating that increasing the number of epochs will not help
the model learn better.

4.1.2 Testing

We evaluate the model using the accuracy, precision, recall and F1-score
metrics. The model was tested ten times in order to get a mean for each
metric score. The mean test accuracy achieved by the model is 0.841. The

13

0.9

0.85

0.8

0.75

0.7

Accuracy

0.65
0.6
0.55

05

Figure 4.1: Validation accuracy as a function of the number of training
epochs.

TARGET
Mot similar Similar
k=
E
2 1016 113
o
=
=
)
P—
o
=)
w
o
o
©
E 184 1087
&

Figure 4.2: Confusion matrix of the baseline model on the training set.

value for the other metrics are 0.856 for precision, 0.823 for recall, and 0.837
for the Fl-score.

14

TARGET
Not similar Similar
5
E
2 1006 113
o
=4
=
o
}_
o
O
w
o
o
I
£ 194 1087
w

Figure 4.3: Confusion matrix of the baseline model on a test run.

4.1.3 Hyperparameter Tuning

Next, we attempt to optimize the hyperparameters of our baseline model to
see to what extent performance could be improved. To this end, we use the
Optuna framework. By performing hyperparameter optimization, we aim
to eliminate any human biases when choosing the original hyperparameters.
Optuna employs a Random Search strategy to find the optimal hyperparam-
eters, which has been demonstrated to be highly effective due to its ability
to explore the hyperparameter space without the biases associated with grid
search methods [I].

The hyperparameter search space was created using the following ranges:

e Learning Rate: [1 x 107°,1 x 1073], using a logarithmic scale

Weight Decay: [1 x 10751 x 1072], also on a logarithmic scale

Dropout: [0.2,0.5]

e Number of Layers: [1,4]
e Number of Units per Hidden Layer: [256, 1024]

These hyperparameters were selected due to their likely high impact on
model performance and generalization.

After conducting twenty trials, we observe the highest validation accu-
racy of 0.868 in Trial 3 and the lowest in Trial 5 with a value of 0.815. All

15

other trials after Trial 5 are pruned by the optimization framework. The
optimal hyperparameters found during Trial 3 are as follows:

e Learning Rate: 6.1-1074

e Weight Decay: 9.1-107°

e Dropout: 0.33878600984991813

e Number of Layers: 1

e Number of Units per Hidden Layer: 516

After running a study on the hyperparameters, the best hyperparameters
found do not improve our model’s performance but actually decrease it. This
means that our initial values for our chosen hyperparameters of our baseline
model are more effective in achieving higher validation accuracy.

4.1.4 Training Set Size

To investigate the importance of the training set size to determine whether
more data might improve performance, we train the model using subsets of
the original training dataset:

0.9

0.85

0.8

0.75

0.7

Accuracy

0.65
0.6
0.55

05
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Size (Samples)

Figure 4.4: Average validation accuracy as a function of the number of
training samples.

The model’s accuracy improves significantly as the size of the training
dataset increases, especially when the dataset size is relatively small. How-
ever, the rate of improvement slows down as the dataset size continues to
grow. After 4,000 samples, the gains in accuracy begin to lower. This

16

is shown in the improvements between 4,000 to 8,000 samples and 8,000
to 16,000 samples. Based on this trend, while training on larger training
datasets might yield an improvement in the model’s performance, it will
likely be marginal. For practical purposes we conclude that 16,000 sam-
ples is indeed sufficient and that increasing the number of samples will not
improve our model’s performance.

4.2 Multi-Species Evaluation

With our evaluation of the baseline model complete, we train and test the
model on datasets from different species apart from galGal6 to show that
the model’s architecture generalizes to other species. This is important to
determine that the model’s performance is not reliant on a single train-
ing dataset. The chosen species are panTro6 (chimpanzee), susScrll (pig),
xenTrol0 (tropical clawed frog), and danRerl0 (zebrafish). These species
are chosen based on their increasing evolutionary distance from the human
species. The model is trained and tested ten times to get an average of each
evaluation metric as well as the validation accuracy for comparison with the
baseline model.

Species Accuracy Precision Recall Fl-score

panTro6 0.927 0.948 0.912 0.928
susScrll 0.841 0.889 0.789 0.831
galGal6 0.841 0.856 0.823 0.837
xenTrol0 0.853 0.863 0.843 0.850
danRer10 0.838 0.864 0.807 0.832

Table 4.1: Test results for chosen species

The results in Table indicate that the model performs well across
all tested species, demonstrating its ability to generalize beyond the initial
training dataset. We can see the model achieves the highest accuracy and
Fl-score with panTro6 (chimpanzee), with an accuracy of 0.927 and an F1-
score of 0.928. This performance is expected, given the close evolutionary
relationship between humans and chimpanzees, which likely leads to more
similar sequence patterns.

For the other species, the accuracy ranges from 0.838 (danRerl0) to
0.853 (xenTro10), with corresponding F1-scores ranging from 0.832 to 0.850.
Although these results are slightly lower than those observed with panTro6,
they still indicate strong performance, suggesting that the model effectively
captures relevant features across a diverse set of species.

Overall, these results confirm that the model’s architecture is robust and

17

capable of generalizing across species with varying evolutionary proximity
to the human species. The relatively consistent performance across different
species highlights the model’s potential applicability in a broad range of
biological contexts, making it a valuable tool for research in the field of
genomics.

4.3 Regression Model

We show the results of the adaption our classification model into a regression
model in order to predict similarity scores for sequence pairs.

4.3.1 Evaluation Metrics

Like the previous versions, we run the regression model ten times, using the
Mean Squared Error (MSE) as our evaluation metric. In these ten runs the
model achieves an average MSE of 294.0684 with a standard deviation of
28.971 which indicates some variability in the model’s performance.

In a random batch sample containing target we observe that the simi-
larity scores land in the range (—5,75). Given this range, an MSE value of
294.0684 is quite considerable, suggesting that this model’s predictions are
significantly inaccurate. Since a high MSE indicates that the predicted simi-
larity scores deviate considerably from the true values. This result highlights
the need for improvements to reduce the model’s error.

18

Chapter 5

Conclusion

We have created a model that uses HyenaDNA as a backbone to classify
whether a pair of sequences are similar or not. Despite its relatively simple
architecture, the model consistently demonstrates adequate performance,
achieving an average test accuracy of 0.841. In our multi-species experiments
we similarly obtain average test accuracies around 0.850 with the panTro6
model being an exception with an accuracy of 0.927.

Furthermore, we extended our classification model into a regression frame-
work to predict similarity scores between DNA sequences. Although the
regression model did not produce satisfactory results due to the high aver-
age MSE value obtained, our effort highlights the need for more extensive
research in how HyenaADNA may be leveraged for such a task.

The consistent performance of our baseline model, particularly its ability
to generalize across species, suggests that HyenaDNA has significant poten-
tial as a tool for predicting local genome similarity. These findings suggests
that further investigation into its application in comparative genomics and
other related fields is warranted. Future work could focus on improving
the models using more complex architectures and more computational re-
sources for training to see how HyenaDNA would perform in state-of-the-art
research. Furthermore, expanding the scope of species evaluated to plants
and fungi could help us further explore the full potential of HyenaDNA in
genomic analysis.

19

Bibliography

1]

[4]

[7]

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and
Masanori Koyama. Optuna: A next-generation hyperparameter opti-
mization framework. In The 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, pages 2623-2631, 2019.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Sackinger, and
Roopak Shah. Signature verification using a ”siamese” time delay neural
network. In J. Cowan, G. Tesauro, and J. Alspector, editors, Advances in
Neural Information Processing Systems, volume 6. Morgan-Kaufmann,
1993.

Hugo Dalla-Torre, Liam Gonzalez, Javier Mendoza Revilla, Nico-
las Lopez Carranza, Adam Henryk Grzywaczewski, Francesco Oteri,
Christian Dallago, Evan Trop, Hassan Sirelkhatim, Guillaume Richard,
Marcin Skwark, Karim Beguir, Marie Lopez, and Thomas Pierrot. The
nucleotide transformer: Building and evaluating robust foundation mod-
els for human genomics. bioRxiv, 2023.

Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davuluri.
DNABERT: pre-trained Bidirectional Encoder Representations from
Transformers model for DNA-language in genome. Bioinformatics,
37(15):2112-2120, 02 2021.

Alexander Karollus, Johannes Hingerl, Dennis Gankin, Martin
Grosshauser, Kristian Klemon, and Julien Gagneur. Species-aware
dna language models capture regulatory elements and their evolution.
Genome Biology, 25(1):83, Apr 2024.

Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Callum Birch-
Sykes, Michael Wornow, Aman Patel, Clayton Rabideau, Stefano Mas-
saroli, Yoshua Bengio, Stefano Ermon, Stephen A. Baccus, and Chris Ré.
Hyenadna: Long-range genomic sequence modeling at single nucleotide
resolution, 2023.

William R Pearson. An introduction to sequence similarity (“homology”)
searching. Curr. Protoc. Bioinformatics, Chapter 3(1):3.1.1-3.1.8, June
2013.

20

[8] Stephanie Clare Roth. What is genomic medicine? J. Med. Libr. Assoc.,
107(3):442-448, July 2019.

[9] Scott Schwartz, W James Kent, Arian Smit, Zheng Zhang, Robert
Baertsch, Ross C Hardison, David Haussler, and Webb Miller. Human-
mouse alignments with BLASTZ. Genome Res., 13(1):103-107, January
2003.

21

Appendix A

Model Diagram

SEQ1

¥

Backbone
HyenaDNA HyenaDNA
| |
PredictionHead
A ¥y ™
convid convid
avg ABS DIFF avg

| S | S

FEATURES
:

FC1

1

FC2

I

FC_OUT

PROBS

Figure A.1: Model diagram of our classification Siamese

SIGMOID

PREDICTION

22

neural network

Appendix B

Training and Evaluation
Metrics

We provide the various training and evaluation metrics for all runs of the
different models in the paper. Section 1 shows the training and validation
metrics for the multi-species models. Section 2 and 3 show the evaluation
metrics for the multi-species and regression versions respectively. Note that
the baseline model is included in the multi-species version under galGal6.

B.1 Multi-Species Training and Validation Results

Run Validation Accuracy Validation Loss Training Loss

1 0.842 0.242 0.466
2 0.931 0.216 0.467
3 0.938 0.183 0.446
4 0.937 0.198 0.420
5 0.923 0.232 0.470
6 0.933 0.215 0.460
7 0.943 0.186 0.311
8 0.934 0.185 0.403
9 0.935 0.226 0.409
10 0.933 0.272 0.524

Table B.1: Training and validation metrics for panTro6

23

Run Validation Accuracy Validation Loss Training Loss

1 0.822 0.405 0.585
2 0.833 0.374 0.490
3 0.793 0.432 0.556
4 0.844 0.378 0.604
5 0.853 0.362 0.538
6 0.846 0.390 0.532
7 0.863 0.360 0.509
8 0.869 0.351 0.494
9 0.877 0.347 0.561
10 0.830 0.399 0.458

Table B.2: Training and validation metrics for susScrll

Run Validation Accuracy Validation Loss Training Loss

1 0.855 0.398 0.418
2 0.833 0.410 0.590
3 0.849 0.725 0.725
4 0.855 0.373 0.558
5) 0.858 0.418 0.858
6 0.852 0.394 0.587
7 0.812 0.388 0.485
8 0.850 0.409 0.533
9 0.855 0.402 0.479
10 0.803 0.403 0.523

Table B.3: Training and validation metrics for galGal6

24

Run Validation Accuracy Validation Loss Training Loss

1 0.861 0.399 0.452
2 0.852 0.396 0.529
3 0.857 0.394 0.417
4 0.860 0.401 0.524
5 0.832 0.423 0.489
6 0.837 0.419 0.484
7 0.863 0.398 0.568
8 0.854 0.434 0.602
9 0.849 0.392 0.696
10 0.866 0.413 0.527

Table B.4: Training and validation metrics for xenTrol0 training runs

Run Validation Accuracy Validation Loss Training Loss

1 0.840 0.419 0.592
2 0.861 0.411 0.474
3 0.839 0.398 0.564
4 0.844 0.447 0.545
5 0.844 0.423 0.470
6 0.849 0.389 0.489
7 0.804 0.425 0.493
8 0.842 0.435 0.553
9 0.818 0.431 0.570
10 0.844 0.399 0.418

Table B.5: Training and validation metrics for danRer10

25

Multi-Species Evaluation Results

Run Test Accuracy Precision Recall Fl-score

1 0.850 0.989 0.774 0.868
2 0.930 0.945 0.913 0.929
3 0.939 0.936 0.942 0.939
4 0.941 0.950 0.931 0.940
5 0.936 0.950 0.921 0.935
6 0.938 0.941 0.935 0.938
7 0.942 0.940 0.943 0.942
8 0.932 0.951 0.910 0.930
9 0.930 0.929 0.930 0.930
10 0.933 0.945 0.919 0.932

Table B.6: Evaluation metric results for panTro6 testing runs

Run Test Accuracy Precision Recall Fl-score

1 0.814 0.922 0.733 0.812
2 0.830 0.896 0.748 0.815
3 0.802 0.932 0.651 0.766
4 0.847 0.895 0.785 0.837
5 0.859 0.882 0.828 0.854
6 0.835 0.887 0.768 0.824
7 0.873 0.817 0.907 0.859
8 0.852 0.854 0.884 0.869
9 0.876 0.886 0.863 0.874
10 0.825 0.915 0.718 0.804

Table B.7: Evaluation metric results for susScrll testing runs

26

Run Test Accuracy Precision Recall Fl-score

1 0.839 0.848 0.823 0.837
2 0.843 0.878 0.797 0.835
3 0.861 0.849 0.877 0.863
4 0.862 0.863 0.798 0.829
5 0.854 0.860 0.858 0.859
6 0.842 0.873 0.706 0.781
7 0.812 0.869 0.853 0.861
8 0.836 0.827 0.895 0.860
9 0.860 0.811 0.891 0.849
10 0.802 0.886 0.730 0.800

Table B.8: Evaluation metric results for galGal6 testing runs

Run Test Accuracy Precision Recall Fl-score

1 0.869 0.874 0.863 0.868
2 0.858 0.834 0.894 0.863
3 0.870 0.853 0.895 0.874
4 0.870 0.839 0.915 0.876
5 0.825 0.904 0.728 0.806
6 0.822 0.882 0.743 0.807
7 0.846 0.886 0.794 0.837
8 0.860 0.817 0.928 0.869
9 0.851 0.871 0.824 0.847
10 0.858 0.870 0.843 0.856

Table B.9: Evaluation metric results for xenTrol0 testing runs

27

Run Test Accuracy Precision Recall F1-score

1 0.834 0.852 0.809 0.830
2 0.856 0.841 0.878 0.859
3 0.844 0.869 0.810 0.838
4 0.835 0.802 0.890 0.845
5 0.853 0.900 0.795 0.844
6 0.835 0.885 0.769 0.823
7 0.803 0.903 0.678 0.775
8 0.839 0.807 0.891 0.847
9 0.829 0.901 0.739 0.812
10 0.848 0.877 0.810 0.842

Table B.10: Evaluation metric results for danRer10 testing runs

28

B.3 Regression Model Results

Run MSE

262.466
311.496
338.037
332.906
304.686
268.113
267.090
278.551
266.347
310.992

© 00 N O U e W N

—
]

Table B.11: MSE for regression model runs

29

	Introduction
	Preliminaries
	Genome Similarity
	Large Language Models and Foundation Models
	HyenaDNA
	Siamese Neural Networks

	Methodology
	Data
	Data Collection
	Data Processing

	Model Architecture
	Overview
	Backbone
	Prediction Head

	Training and Validation
	Regression Model
	Training Resources

	Results
	Baseline Model Performance Evaluation
	Training and Validation
	Testing
	Hyperparameter Tuning
	Training Set Size

	Multi-Species Evaluation
	Regression Model
	Evaluation Metrics

	Conclusion
	Model Diagram
	Training and Evaluation Metrics
	Multi-Species Training and Validation Results
	Multi-Species Evaluation Results
	Regression Model Results

