
Bachelor’s Thesis Computing Science

Radboud University Nijmegen

Developer-ChatGPT Conversations: Analyzing Developer Prompts

Author:
Yiğit Batuhan Yiğin
s1082159

First supervisor/assessor:
dr. Mairieli Wessel

Second assessor:
dr. Bin Lin

October 22, 2024

Abstract

As large language models such as ChatGPT become more popular, de-
velopers started integrating these tools for software development tasks, often
sharing their conversations on platforms like GitHub. Understanding how
developers interact with ChatGPT in the context of GitHub pull requests
and issues can provide important insights into the dynamics of these inter-
actions. In this research, we analyze the characteristics of the conversations
between developers and ChatGPT in the context of GitHub pull requests
and issues using the DevGPT dataset. We specifically investigate common
words, inclusion of code blocks, types of questions, follow-up prompts and
sentiments. Our results reveal that 43% of pull request conversations contain
code blocks, this ratio is 29% for issue conversations. Code blocks mostly
appear in the first prompt of the conversation. Furthermore, closed ques-
tions are used more frequently than open questions for both pull requests
and issues. Developers provide follow-up prompt 65% of the time. Finally,
positive sentiment was the most common, followed by neutral sentiment.

Contents

1 Introduction 2

2 Background 5
2.1 ChatGPT . 5
2.2 GitHub Issues . 5
2.3 GitHub Pull Requests . 6

3 Related Work 8

4 Methodology 12
4.1 Dataset . 12

4.1.1 Data Preprocessing and Preparation 17
4.2 Type of Question . 18
4.3 Follow-up Prompts . 19
4.4 Sentiment Analysis . 19

5 Results 20
5.1 Most Common Words . 20
5.2 Code Blocks . 21

5.2.1 Pull Requests . 21
5.2.2 Issues . 23

5.3 Types of Questions . 25
5.3.1 Pull Requests . 25
5.3.2 Issues . 26

5.4 Follow-up Prompts . 27
5.4.1 Pull Requests . 27
5.4.2 Issues . 29

5.5 Sentiment . 31
5.5.1 Pull requests . 31
5.5.2 Issues . 32

6 Discussion 33

7 Conclusions 35

1

Chapter 1

Introduction

ChatGPT is OpenAI’s groundbreaking large language model-based chatbot,
published on November 30, 2022. By January 2023, it reached more than
100 million users [4]. Even though a chatbot’s main function is to mimic
human conversations, ChatGPT is highly versatile.

A vast majority of software developers often resort to online resources
for software-related tasks e.g. bug fixing, learning new technologies, un-
derstanding of various concepts, etc. These online resources include official
documentation and Q&A platforms such as Stack Overflow to seek help from
other developers [7]. However, the emergence of ChatGPT has demonstrated
a potential shift in this paradigm. Recognizing the value of this technology,
many software developers have incorporated it into their daily workflows [2].
One of the primary ways developers use ChatGPT is to quickly generate
lines of code, which helps developers to skip mundane parts of writing code.
Furthermore, it is used for debugging by providing the already-written code
and information related to the errors that are occurring. Developers also
use it to seek assistance with problem-solving, learning new technologies,
and many other tasks.

A new and powerful feature of ChatGPT is that conversations can be
shared with others through a link. As a result, ChatGPT is being used on
collaborative developer platforms such as GitHub, where multiple develop-
ers work on a project together [20]. For instance, a software development
team might be working on a project together and one of the team mem-
bers encounters a problem in their task. The team member then solves the
problem with the help of ChatGPT. However, the solution might not be en-
tirely correct, this is where link sharing feature becomes crucial. The team
members can attach this link to the solution they have provided, and other
team members can review and provide more insight into the usability of this
solution. Sharing the conversation history takes place in various GitHub
project sections such as source file, commit, issue, pull request, and discus-
sion. This feature makes it possible for multiple people to review the output

2

taken from ChatGPT. As a result, the feature for reviewing the conversation
with multiple people helps to prevent from using low-quality solutions and
to increase the efficiency of team collaboration.

Despite ChatGPT’s popularity, there has not been extensive research
into the quality and usability of its responses to software-related queries
[7]. Furthermore, little is known about how developers use ChatGPT, for
instance, what kind of questions they pose and to what degree the conversa-
tions are dynamic [20]. Therefore, this research aims to fulfill the aforemen-
tioned knowledge gaps by analyzing the DevGPT data set [9]. Furthermore,
this research aims to help future researchers by providing valuable insights
into how ChatGPT can assist better in software development tasks, enhance
code quality and improve productivity. In addition, our findings can guide
engineers in future model improvements for software development use. The
dataset contains data related to prompts and ChatGPT’s responses coupled
up with software development artifacts such as raw source files, commits,
issues, pull requests or in discussions [20]. In our research, we solely focus
on two artifacts, namely pull requests and issues. We address the research
questions below by analyzing the data on pull requests and issues so that
the efficiency of ChatGPT use for software development can be enhanced.

Research question:

• RQ1: What are the characteristics of developer interactions with Chat-
GPT in the context of pull requests and issues?

We answer RQ1 with the following sub-questions:

• SQ1: What are the most common words developers use in ChatGPT
conversations shared in pull requests/issues?

• SQ2: How frequently do developers include code blocks in their con-
versations within pull requests/issues?

• SQ3: When does a code block appear within a conversation?

• SQ4: Are open or closed questions more frequent in conversations
about pull requests/issues?

• SQ5: How often do developers provide follow-up prompts?

• SQ6: What sentiments are common in conversations related to pull
requests/issues?

We answer SQ1 by preprocessing prompt data, tokenizing, and then using
word frequency analysis.

For SQ2, we manually detect and replace code blocks within prompts
with a placeholder such as ”[CODEBLOCK]”. If any prompt in conversa-
tions contains this placeholder, we then count that conversation as having
a code block.

3

SQ3 is answered similarly to SQ2. Instead of counting, we identify the
specific prompt in which the first code block appears within each conversa-
tion.

For SQ4, we first categorize each prompt containing specific question
words (e.g. why, how, and so on) into open and closed categories. Then we
count the occurrences of both question types.

For SQ5, we categorize conversations based on whether they have one
prompt or more than one. Then we get the results by counting each conver-
sation.

For SQ6, we perform sentiment analysis on the prompts using the VADER
Sentiment Analysis library. We then determine the sentiment of a conver-
sation by taking the majority sentiment of prompts. The result is then the
count of conversations of each sentiment (e.g. neutral, positive, or negative).

4

Chapter 2

Background

In this chapter, we first give more context about the key concepts related
to this thesis. Furthermore, we discuss already existing related research.

2.1 ChatGPT

ChatGPT is an interactive large language model (LLM) in the form of a
chatbot developed and launched by OpenAI on November 30, 2022. It is
based on the Generative Pre-trained Transformer (GPT) architecture de-
signed to handle natural language processing (NLP) tasks, including text
generation and language comprehension [15]. It has shown powerful func-
tions on various language understanding and text generation tasks such as
multilingual machine translation, code debugging, story writing, admitting
mistakes, and even rejecting inappropriate requests according to the offi-
cial statement [19]. Unlike previous chatbots, ChatGPT can remember the
context of the conversation, which makes it possible to have continuous con-
versations [5].

Software developers are utilizing ChatGPT for various tasks such as code
generation or helping with making decisions [2]. It can speed up the coding
process by providing suggestions and generating large code blocks in a few
seconds [14]. An important and one of the newest features of ChatGPT is
the ability to share conversations with others via links. This allows others to
see every prompt and answer of a conversation. This feature is particularly
useful in collaborative software development, where developers can review
AI-generated content and reduce potential problems.

2.2 GitHub Issues

GitHub Issues are reports repository users create when a problem or un-
expected behavior occurs [3]. Issues are straightforward to work with and
flexible, they can be used for various things such as to track the work in

5

https://openai.com/

a repository, give or receive feedback, collaborate, and communicate with
others who are also working in the same repository by leaving comments
under an issue. Issues also provide an overview of the project’s progress.

Figure 2.1: An example GitHub issue

Figure 2.2 shows an example GitHub issue. Here, the issue title is ”Bug
in the Header React component”. The round green box indicates that the
issue is still open and needs to be resolved. There are two comments on this
issue: one from the owner of the issue (yeetzpxoci) added when creating the
issue, and another one from the user ”curious ant”. The first comment in
this issue has a reference to another issue which is in the same repository,
this helps to establish a connection between related issues.

2.3 GitHub Pull Requests

Another important feature that GitHub has is a mechanism called pull re-
quests. They are proposals to merge a feature branch of a repository into
the main branch. A collaborator first forks the repository, creates a feature
branch, makes changes while continuously committing these changes, and
creates a pull request to request the changes to be merged into the main
branch [16]. Finally, the collaborators decide whether they want to accept
this new feature and merge it into the main branch or decline.

6

Figure 2.2: Workflow of GitHub Pull requests

Various factors contribute to the success and failure of a pull request.
Some of these factors are the programming language of a project, the ap-
plication domain, the project age, the developers and how experienced they
are, and so on [12].

7

Chapter 3

Related Work

With ChatGPT rapidly gaining popularity, many research papers on this
cutting-edge technology are published daily. In this section, we inspect and
analyze some of the related research already done.

AlOmar et al.[1] tried to analyze the usage of ChatGPT in code refac-
toring utilizing the DevGPT dataset. They inspected the conversations
between developers and ChatGPT to understand how developers identify
parts of code that can be improved and how ChatGPT addresses the refac-
toring. They used an approach that relies on text mining the conversations
related to refactoring. Their result revealed that the conversations mostly
involve generic and specific phrases. In addition, refactoring requests made
by developers are often generic, on the other hand, ChatGPT frequently
incorporates the refactoring purpose. They found textual patterns that de-
scribe developers’ refactoring requests, the most frequently occurring refac-
toring operations included ”extract*”, ”mov*” and ”renam*”. Furthermore,
they identified the quality attributes ChatGPT considers when describing
refactoring. They specified three categories for the quality attributes: inter-
nal, external and code smells. They discovered that ChatGPT emphasizes
specific coding practices such as dependency injection, naming conventions,
unit tests, and software design patterns. Finally, they found out that most
developers copy-paste code fragments along with a text that describes how
to fix the issue.

Champa et al. [2] performed a comprehensive analysis of the usage of
ChatGPT in software development. They also utilized the DevGPT dataset.
Identified types of tasks software developers seek assistance for with Chat-
GPT. The most common task types included code quality management,
commit issue resolution, generation of documentation, implementation of a
new feature, and so on. Python was the most common language for the first
two types of tasks, while for the last it was Shell. In addition, they also
found out which task types tend to result in more or less effective help from
ChatGPT. The most efficient task types were software development man-

8

agement and optimization, and new feature implementation, while the least
efficient was documentation generation. They inspected if the initial prompt
had any effect on the efficiency of a task’s completion. They inspected the
correlation between the length of the conversations and the prompt quality
using metrics such as mutual information, distance correlation, and Spear-
man correlation. The prompt quality includes three metrics: readability
score, sentence complexity, and grammar errors. The results indicated that
the initial prompt does not affect the efficiency of completing a task with
the help of ChatGPT.

Jin et al. [6] Conducted an empirical analysis of conversations found
in the DevGPT dataset. They focused on how developers interact with
ChatGPT in terms of code generation and how helpful the generated code is
in helping developers. They found out that 65.3% of the conversations within
GitHub sources were related to code generation. They manually labeled
the data using a crowdsourcing process. Most of the conversations were
requests for improvements, adding descriptions, etc. while only a few were
about requesting examples or verification. They found out that providing
code snippets immediately to ChatGPT for improvement makes getting the
desired outcome more efficient. Regarding being helpful, 32.8% percent of
the ChatGPT generated code is not used. This shows the need for further
examination of the practical usability of ChatGPT-generated code.

Rabbi et al. [11] performed a quantitative analysis using the DevGPT
dataset. They assessed the quality and security issues found in the Python
code snippets that were generated by ChatGPT. They categorize code snip-
pets into two: ChatGPT-generated(generated by ChatGPT from scratch)
and ChatGPT-modified(modified user-provided code). They use four met-
rics for the comparative quantitative analysis, both for code quality issues
and security issues. The results showed that the most frequent code quality
issue was errors followed by convention violations, warnings, and refactoring
suggestions. Developer-provided code had a lower amount of errors, conven-
tion violations, and refactoring suggestions compared to ChatGPT-modified
code. In terms of security issues, they checked different CWEs (Common
Weakness Enumeration). But in contrast to the code quality issues, both
ChatGPT-generated and ChatGPT-modified code equally included security
vulnerabilities.

Yang et al. [21] is a systematic literature review about how non-functional
properties other than the accuracy of large language models for code (LLM4Code)
are evaluated and improved. These properties include robustness, security,
privacy, explainability, efficiency, and usability. In total, 146 relevant papers
were identified. Despite the success of LLM4Code in vulnerability detection
and code generation, research highlights their flaws such as low robustness,
lack of explainability, and insecure code production. Through the systematic
literature review, they categorize the challenges and opportunities for im-
proving LLM4Code into three different views: data-centric, human-centric,

9

and system-centric. The data-centric view is concerned with the training
data LLMs use, it emphasizes the training dataset quality. Human-centric
view on the other hand focuses on the continuous interaction of LLMs with
humans. Adoption of a human-centric view can improve the usability and
developers’ well-being. Lastly, the system-centric view aims to enhance the
integration of LLM4Code into broader systems where it is considered an es-
sential part of the overall system. This view is more real-life-oriented than
the previous two. Some of the research opportunities identified include iden-
tifying high-quality training data, factors that affect usability, and building
attack-resistant systems.

Researchers have tried to evaluate the effectiveness of ChatGPT as a
tool for software engineers [10]. This evaluation is divided into three parts:
evaluation of the code refactored by ChatGPT, evaluation of a simple appli-
cation created by ChatGPT, and evaluation of machine learning code created
by ChatGPT. For the refactoring task, the researchers provided ChatGPT
with smelly C# code (a characteristic of code that indicates a problem with
the fundamental design principles). The results indicate that ChatGPT
improved the structure, and readability and applied the best practices in
software development. The refactored code is well-structured and easily
maintainable. This indicates that ChatGPT can be a really helpful tool for
software engineers in enhancing the overall quality of code. However, the
code taken from ChatGPT may contain mistakes and not be fully correct.

ChatGPT also created a fully working tic-tac-toe game that can be
played against a smart bot. It implemented the bot by making use of game
theory. It can also generate fully working code for machine learning. It
created a machine learning code to predict if user input indicates diabetes.
The code generated by ChatGPT was almost indistinguishable from the
code generated by humans in terms of prediction accuracy. This shows
ChatGPT’s potential as a useful tool in the domain of machine learning.

This paper concludes that ChatGPT can be a really powerful tool in soft-
ware development for various tasks. However, the code generated by Chat-
GPT might consist of problems or unexpected behavior, therefore, these
solutions must be taken with a grain of salt. Even if the generated code is
correct, it can still not really understand anything. Because of this, contex-
tual problems might also arise. In addition, ChatGPT’s reliance on training
data potentially results in biases or weaknesses in its responses.

[22] This study focuses on generator tools that utilize LLM’s abilities.
These tools consist of ChatGPT, GitHub Copilot, and Amazon CodeWhis-
perer. They analyze the quality of generated code for each tool regarding
validity, correctness, security, reliability, and maintainability using the Hu-
manEval 1 dataset. The results demonstrated that ChatGPT was the most
successful code-generation tool among all three. ChatGPT was the winner

1https://github.com/openai/human-eval/

10

https://github.com/openai/human-eval/

in terms of validity and correctness. In terms of code security, there were
no differences between the tools. Finally, the reliability and maintainability
aspects of the tools can not be compared, as most vulnerabilities and code
smells are unique to the tool and vary in severity.

[13] conducted a comparative analysis on successful (merged) and unsuc-
cessful (open or closed) pull requests under different aspects. They looked
at pull requests under the eight most common technical issues. The success
rate of the merge pull requests was rather low, with only 7.76% on aver-
age. Furthermore, they inspected pull requests for different programming
languages such as Ruby, Java, and JavaScript. The results were identical to
those obtained in the analysis of technical issues. The average number of
unsuccessful pull requests was significantly higher than the successful pull
request number. The study suggests that this might be potentially related
to excessive forking; however, more future research is needed on language-
specific factors affecting pull request success. Finally, projects in the IDE,
Framework, and Client Apps domains demonstrated a higher success rate of
pull requests compared to the Networking, Database, Statistics, and Library
domains.

Another study tried to verify whether the rejection rate of the pull re-
quest is related to the quality of the code [8]. They used a tool called PMD,
which can be used for static code analysis. However, they were unable to
find any correlation between code quality and pull request acceptance.

Finally, research also tried to identify and present prompt patterns to
solve common problems when using LLMs for software engineering-related
tasks [18]. They classified different patterns into different categories accord-
ing to the type of problem they were trying to solve. These categories include
Requirements Elicitation, Code Quality, System Design, and Simulation and
Refactoring. In each category, various patterns specify the structure of the
prompts. According to the paper, the patterns can help reduce the er-
rors LLMs make while performing software engineering tasks by providing.
They concluded the research by mentioning that the capabilities of LLMs
like ChatGPT are not fully understood, and human expertise is still needed
to leverage ChatGPT for software engineering tasks.

11

Chapter 4

Methodology

4.1 Dataset

The dataset [9] consists of links to ChatGPT conversations between software
developers and ChatGPT. The data is categorized into software development
artifacts such as source code, commits, issues, pull requests, and Hacker
News threads. The data for an artifact is stored in a JSON file and is called
X sharings.json, where X is the artifact name. A data entry in an artifact
is called a ”ChatgptSharing” (code sharing, commit sharing, etc.) and has
additional information related to the entry itself, such as the source of the
entry, author, and so on.

Figure 4.1: An example entry in the context of GitHub pull request

There are 6 different snapshots (datasets) collected at 6 different times,
the last one being the most recent one. Each snapshot contains the data
from the previous snapshot and new additional data; thus, we chose to work
with the most recent snapshot. As this research is only concerned with
GitHub issues and pull requests, we decided to focus only on the data of

12

these two artifacts. The structure of the relevant data is shown in the tables
4.1, 4.2, 4.3, 4.4 and 4.5 respectively.

Attribute Description

Type Source type

URL URL to the mentioned source

Author Author who introduced this men-
tion

RepoName Name of the repository that con-
tains this issue

RepoLanguage Primary programming language of
the repository (can be null)

Number Issue number

Title Title of the issue

Body Description of the issue

AuthorAt When the author created this issue

ClosedAt When this issue was closed (can be
null)

UpdatedAt When the latest update occurred

State The state of the issue (OPEN or
CLOSED)

ChatgptSharing List of ChatGPT link mentions

Table 4.1: Structure of the GitHub issue sharing data

13

Attribute Description

Type Source type

URL URL to the mentioned source

Author Author who introduced this men-
tion

RepoName Name of the repository that con-
tains this pull request

RepoLanguage Primary programming language of
the repository (can be null)

Number Pull request number

Title Title of the pull request

Body Description of the pull request

CreatedAt When the author created this pull
request

ClosedAt When this pull request was closed
(can be null)

MergedAt When this pull request was merged
(can be null)

UpdatedAt When the latest update occurred

State The state of the pull request
(OPEN, CLOSED, MERGED)

Additions Number of lines added in this pull
request

Deletions Number of lines deleted in this pull
request

ChangedFiles Number of files changed in this pull
request

CommitsTotalCount Number of commits included in this
pull request

CommitShas List of commit Shas included in this
pull request

ChatgptSharing List of ChatGPT link mentions

Table 4.2: Structure of the GitHub Pull Request sharing data

14

Attribute Description

URL URL to the shared ChatGPT links

Mention Attributes about mention. Refer to
the Mention structure for details

Status HTTP response status when access-
ing this URL

DateOfConversation Date when this conversation oc-
curred

DateOfAccess Date when we accessed this URL

NumberOfPrompts Number of prompts in this conver-
sation

TokensOfPrompts Number of tokens of prompts in this
conversation

TokensOfAnswers Tokens of answers in this conversa-
tion

Model Version of the model used in this
conversation

Conversations List of conversations. Refer to the
Conversations structure for details

HTMLContent HTML content from the shared
ChatGPT link

Table 4.3: Structure of the ChatgptSharing data

15

Attribute Description

MentionedURL URL to the mentioned source

MentionedProperty What kind of property was men-
tioned in this shared ChatGPT link

MentionedAuthor Who mentioned this shared Chat-
GPT link

MentionedText The context when this shared Chat-
GPT link was mentioned

MentionedPath Where the comment was added in
files for reference of shared Chat-
GPT links in review threads of
GitHub pull requests (only exists
when referenced in review threads of
pull requests)

MentionedIsAnswer Whether this comment is marked as
an answer in discussion (only exists
when referenced in comments of dis-
cussion)

MentionedUpvoteCount Number of upvotes that this com-
ment has received (only exists when
referenced in comments of discus-
sion)

Table 4.4: Structure of the Mention data

Attribute Description

Prompt Prompt that user inputted

Answer Answer that ChatGPT generated

ListOfCode Code list from the answer (includes
code type and content)

Table 4.5: Structure of the Conversations data

16

Statistic Pull Requests (PR) Issues

Total Number of Sharings 152 311

Total Number of Prompts 723 1259

Total Number of Code Blocks 130 215

Mean Number of Code Blocks per Sharing 0.855263 0.691318

Table 4.6: Summary Statistics of ChatGPT Sharings in Pull Requests and
Issues

4.1.1 Data Preprocessing and Preparation

We used Jupyter Notebook with Python 3.10 for reading, preprocessing, and
analyzing the data. The pull request and issue-sharing data were read from
corresponding CSV files and converted into pandas DataFrames using the
pandas library.

The prompts contained various code blocks, that can affect our data
analysis, as these code blocks mostly consist of non-linguistic words. We
had to manually replace these code blocks by reviewing all the prompts in
our dataset as there was no specific formatting of the code blocks for every
prompt. In a conversation, we replaced the code blocks with placeholders
”CODEBLOCK0”, ”CODEBLOCK1” and so on. We identified code blocks
by looking at specific phrases such as ”here is the code:”, and ”this is the
code:” or keywords used in code such as ”import”, ”if”, ”else” and so on.
Moreover, we only included sharings that contained only a single ChatGPT
conversation to make our analysis more consistent.

We created additional features for all sharings that are useful for the
data analysis:

• Prompts: List of prompts used in the corresponding sharing. Punctu-
ation marks were removed, and all letters were converted to lowercase.

• Language: Represents the language of the conversations found in the
sharing. We used langid for categorizing the prompts. The language
of a conversation is then the majority language of the prompts.

• NumberOfCodeBlocks: Total number of code blocks included in
the corresponding sharing.

• FirstIndexOfCodeBlock: Index of the prompt where a code block
is encountered for the first time.

• QuestionTypes: List of question types that correspond to prompts
respectively. We have come up with two question types, namely open
and closed. Open questions are questions that contain question words
that the answer is not simply ”yes” or ”no” (”how”, and ”why” are

17

https://pypi.org/project/langid/

such question words). Closed questions, on the other hand, have an
answer of ”yes” or ”no”, these have words such as ”is”, ”can”, ”does”,
and so on. To categorize the prompts, we checked if a prompt con-
tained any words corresponding to one of the two question types.

To ensure consistent results, we filtered out non-English conversations,
as the linguistic structure and availability of language-specific libraries (e.g.,
VADER Sentiment Analysis) could skew results.

4.2 Type of Question

We defined two categories for the types of questions: open and closed.
Treude et al. [17] did a similar categorization by question types. How-
ever, they only had the category for how-to questions and other categories
were related to the topics of the questions. For both pull requests and
issue sharings, prompts were categorized by identifying the presence of spe-
cific keywords. For open questions, we checked if the prompt contained the
words ”how” or ”why”. For closed questions, we checked if the prompt con-
tained any of the words ”is”, ”our”, ”do”, ”does”, ”can”, ”will”, ”would”,
or ”should”.

After categorization, each sharing was assigned a list of question types
corresponding to its prompts. This list was then one-hot encoded to convert
the categorical data into a numerical format. The one-hot encoded data was
combined with the state column from the original dataset.

State closed open other

OPEN 1 1 0

OPEN 1 0 0

OPEN 13 1 2

OPEN 2 1 1

OPEN 24 1 5

Table 4.7: Example result of the categorization

An example resulting data is presented in Table 4.7. Each row corre-
sponds to a sharing, and the columns represent different types of questions.
The cells indicate the number of prompts that contain that type of ques-
tion. For example, in the last row, the pull request state for the sharing
is ”OPEN,” and the sharing includes 24 prompts with closed questions, 1
prompt with an open question, and 5 prompts with other question types.

18

4.3 Follow-up Prompts

To investigate follow-up prompts, we labeled each sharing based on the pres-
ence of follow-up prompts. Sharing that included conversations with only a
single prompt was labeled as ”true,” indicating no follow-up prompts. Con-
versely, sharings that contained conversations with more than one prompt
were labeled as ”false”. In addition, we look into the number of follow-up
prompts.

4.4 Sentiment Analysis

We applied the VADER Sentiment Analysis library to classify each prompt
into one of three categories: Positive, Negative, or Neutral. For each sharing,
we determined the overall sentiment based on the most frequent sentiment
category within its prompts. For example, if a conversation contained three
prompts with two labeled as Negative and one as Neutral, the overall senti-
ment for that sharing would be classified as Negative.

19

Chapter 5

Results

5.1 Most Common Words

Word Count

file 170

use 148

code 118

run 115

test 111

using 108

want 104

like 90

name 89

user 72

Table 5.1: Top 10 Most Common
Words in Pull Request Sharings

Word Count

file 328

line 230

using 193

use 192

code 187

return 140

get 159

would 151

module 144

import 135

Table 5.2: Top 10 Most Frequent
Words in Issue Sharings

The word ”string” occurred almost 2000 times. After checking the prompts
that included ”string”, we have seen that they do not make logical sense,
but rather gibberish prompts. Therefore, we decided to ignore the word
”string” from the result and focus on other results.

The word ”file” is the most common word used for pull requests and issue
sharing. File operations such as writing or reading from a file are common
tasks in programming projects. Developers might also begin their prompts
using the word ”file”, e.g. ”I have this code in my test.js file...”

”test” is another word that is common within pull request sharings. As
pull requests also include test-related changes, it makes sense that the word

20

”test” is commonplace.
”line” is a high-frequency word in issue sharings but not in pull request

sharings. GitHub issues are used commonly for reporting bugs and develop-
ers might use the word ”line” to point out bugs in the code. For example:
”There is a semi-colon missing on line 35”. The same explanation can be
said for the word ”error”. ”import” and ”module” are both related to im-
porting different modules or dependencies in projects, which are prone to
errors, this explains why they occur frequently within issue sharings.

Words such as ”use”, ”using”, ”want”, ”like” and ”please” are all high-
frequency words in both pull request and issue sharings (even though the
last three are not in the top 10 for issue sharings, they are still in the top
15). These words are commonly used and not specific to certain tasks.

SQ1: What are the most common words developers use in ChatGPT
conversations shared in pull requests/issues?

For pull requests, the most common words include ”string”, ”file”,
”use”, ”run” and ”code”. While, for issues words such as ”file”, ”line”,
”return”, and ”import” are included. For more details, refer to the
tables 5.1 and 5.2.

5.2 Code Blocks

5.2.1 Pull Requests

Number of Code Blocks Count of Conversations

0 88

1 37

2 18

3 4

4 3

22 1

11 1

Table 5.3: Number of conversations in pull request sharings per number of
code blocks

Around 57% of the conversations do not contain any code blocks 5.3. This
might indicate that developers mostly use ChatGPT for knowledge retrieval
rather than direct requests with their existing code.

21

Number of Code Blocks Count of Prompts

0 658

1 150

2 6

3 1

Table 5.4: Number of prompts in pull request sharings per number of code
blocks

The majority of prompts included in pull request sharings do not contain
any code blocks 5.4. This is because most of the time, developers just include
the code block in one simple prompt and follow with other requests regarding
this code block. A more interesting approach is to see when these code blocks
are first introduced in a conversation and how often conversations include
any code blocks at all, that is shown below.

Figure 5.1: Histogram showing the distribution of the first index of prompts
with a code block

Figure 5.1 shows the distribution of the first index of prompts that con-
tain a code block. For example, in a conversation, if the first prompt con-
tains a code block, this would be included with a 0 in figure 5.1. Most of
the time, code blocks were included in the first prompt. As we are only
interested in conversations with multiple prompts, conversations that con-
tain only 1 prompt were not included. It can be seen from the resulting
histogram that in most conversations, code blocks were introduced immedi-

22

ately. This indicates that developers first provide their code to ChatGPT
for context, and then they provide follow-up requests.

5.2.2 Issues

Number of Code Blocks Count of Conversations

0 206

1 70

2 18

3 8

4 5

14 2

5 1

6 1

7 1

8 1

11 1

13 1

Table 5.5: Number of conversations in issue sharings per number of code
blocks

With 65%, most of the conversations in issues do not contain any code
blocks. Compared to pull request sharings, conversations in issues are less
likely to include code blocks. This can be explained by pull requests being
directly related to code changes while issues are not necessarily about code
changes but can be more general.

Number of Code Blocks Count of Prompts

0 1114

1 191

2 7

3 2

4 1

Table 5.6: Number of prompts in issue sharings per number of code blocks

Similar to the pull request sharings, a high percentage of the prompts
(around 88%) do not contain any code blocks. This is again due to develop-

23

ers including the code block in a single prompt and then providing multiple
follow-up requests.

Figure 5.2: Histogram showing the distribution of the first index of prompts
with a code block

Again, similarly to the pull request sharings, most code blocks were in-
troduced immediately in a multi-prompt conversation. This again indicates
that developers first provide their code for context, and then the follow-up
requests.

SQ2: How frequently do developers include code blocks in their
prompts within pull requests/issues?

For conversations related to pull requests, 43% contain code blocks.
For issues, the percentage is 35%.

SQ3: When does a code block appear in a prompt?

For conversations related to pull requests, 65% of the time code blocks
were introduced in the first prompt of a conversation. This percentage
is 70% for issues.

24

5.3 Types of Questions

5.3.1 Pull Requests

Figure 5.3: Box plot showing the distribution of the number of questions
per question type in pull requests

The box plot 5.3 shows that closed questions are in the majority. As closed
questions have a median of 1, we can say that most conversations contained
in pull requests contain closed questions. On the other hand, open questions
have a median of 0, it can be inferred that most conversations do not include
open questions. In addition, closed questions have a broader range compared
to open questions.

25

5.3.2 Issues

Figure 5.4: Box plot showing the distribution of the number of questions
per question type in issues

In the case of issues, closed questions appear more compared to open ones.
They also have a higher variety than open questions. Open questions seem
to have a more uniform frequency of occurrence.

SQ4: Are open or closed questions more frequent within conversations
related to pull requests/issues?

Closed questions are more frequent in both conversations related to
pull requests and issues.

26

5.4 Follow-up Prompts

5.4.1 Pull Requests

Figure 5.5: Count of pull request sharings with follow-up prompts

Around 65% of pull request sharings contain conversations with follow-up
prompts. This indicates that developers usually keep asking additional ques-
tions after initial prompts in the context of pull requests.

27

Figure 5.6: Number of follow-up prompts for pull requests

In pull requests, developers often provide only a single follow-up prompt
before ending the conversation. As the number of follow-up prompts in-
creases, the frequency drops sharply, indicating that extended conversations
involving 4 or more prompts are uncommon in the context of pull requests.

28

5.4.2 Issues

Figure 5.7: Count of issue sharings with follow-up prompts

Almost the same outcome can be seen for the issue sharings, this is most
likely a coincidence. Around 65% of issue sharings contain follow-up prompts.

29

Figure 5.8: Number of follow-up prompts for issues

Similarly to pull request sharings, single follow-up prompt is the most
popular in issues. However, two follow-up prompts are much higher com-
pared to pull request sharings.

SQ5: How often do developers provide follow-up prompts?

Developers include follow-up prompts in 65% of the conversations
found both in pull request and issues.

30

5.5 Sentiment

5.5.1 Pull requests

Figure 5.9: Pie chart of pull request sharing sentiment

Most of the pull request sharings were categorized as Positive and Neutral.
The positive sentiment can be explained by the usage of the words like
”please” or ”thanks”. ”Please” was one of the top common words from
section 6.1, both within pull requests and issue sharings, this explains the
high percentage of positive sentiments. Furthermore, developers often voice
their requests or questions neutrally without imposing any explicit emotions.
Words that might indicate negative sentiment are really rare within the
prompts, which explains the low percentage of negative sentiment.

31

5.5.2 Issues

Figure 5.10: Pie chart of issue sharing sentiment

Similarly, issue sharings have a high percentage of positive sentiments. The
percentage of negative sentiment is lower compared to pull requests.

SQ6: What sentiments are common in conversations related to pull
requests/issues?

Positive sentiment is the most common, followed by neutral sentiment
in both issues and pull requests. Negative sentiment is only a small
percentage of all for both pull requests and issues, with issues having
a smaller percentage.

32

Chapter 6

Discussion

In this chapter, we present the findings of our research, offering a detailed
analysis of the results and their implications. Furthermore, we provide in-
sights and recommendations for future research to further enhance the prac-
tical application of ChatGPT in developer interactions.

The most common words in conversations varied across the type of
GitHub artifact, namely, pull requests and issues. Conversations regarding
pull requests tend to include terms such as ”file”, ”code” and ”run”. This
result aligns with the focus of pull requests on the manipulation of code
and execution. On the other hand, conversations about issues frequently
included terms like ”line,” ”module,” and ”error,” indicating a focus on
debugging. These findings are in line with AlOmar et al. [1] who also pre-
sented that developers often utilize ChatGPT for code manipulation and
debugging.

Results showed that code blocks were found more frequently in conversa-
tions related to pull requests (43%) than issues (35%). This aligns with pull
requests being closely related to code changes within projects. Yet, more
than half of conversations related to pull requests did not contain any code
blocks. This might result in ChatGPT giving lower or irrelevant answers, as
ChatGPT doesn’t have contextual clues from code blocks. We recommend
future researchers to focus on this, as not enough research is available. Fur-
thermore, code blocks are typically introduced within the first prompt of
conversations (65% of the time for pull requests and 70% for issues). This
suggests that developers often seek immediate help with their code snip-
pets. Jin et al. [6] also underlined that providing code snippets directly
streamlines getting help from ChatGPT.

The dominance of closed questions over open questions in both pull re-
quests and issue-related conversations suggests that developers primarily use
ChatGPT for confirmation rather than broader questions.

Follow-up prompts were frequently used by developers. This indicates
that the developers mostly participate in continuous conversations with

33

ChatGPT, refining or providing more context to their initial prompt. Due to
this continuous nature of conversations, developers might put less emphasis
on providing high-quality initial prompts. This can also explain the results
of the study [2] et al. which found out the initial prompt’s quality did not
impact task completion. In addition, most times, developers provided 3 or
less follow-up prompts. This behavior may suggest that developers typically
prefer short, productive interactions with ChatGPT and will discontinue the
conversation or try a different strategy if the initial follow-ups do not lead
to satisfactory results. We recommend that future researchers focus more
on overall conversation rather than only initial prompts.

Positive sentiment is the most prevalent sentiment within conversations,
both for pull requests and issues. This suggests that developers often use a
friendly approach or achieve successful outcomes in their interactions with
ChatGPT, reflecting satisfaction or encouragement during their problem-
solving processes. Neutral sentiment is the second most frequent sentiment
within conversations, both for pull requests and issues. This suggests that
developers mostly remain objective and instructional, not showing emotions.
This aligns with the developer’s main goal of solving problems or knowledge
retrieval. The relatively small proportion of negative sentiment, especially
in issues, might suggest occasional frustrations that can arise during tech-
nical problem resolution. This pattern aligns with the findings of [11] et al.,
who observed that while ChatGPT often provides beneficial code modifica-
tions, it can also introduce errors or shortcomings, contributing to occasional
disappointment within the conversation.

34

Chapter 7

Conclusions

Our data analysis revealed interesting trends of the usage of ChatGPT
among developers. The most common words used in pull requests emphasize

Inclusion of code blocks were surprisingly lower than expected, especially
for pull requests (43%) as they are closely related to code changes. In
addition, most developers included the code blocks in their first prompt.

Questions asked by developers were mostly categorized as closed ques-
tions. This trend highlights a more task-focused and goal-oriented approach
in their use of ChatGPT.

Follow-up prompts were common in developer interactions, suggesting
that developers often engage in iterative dialogue with ChatGPT to refine
their previous prompts.

The dominance of positive sentiment reflects the positive attitude and/or
satisfactory outcomes of developers’ interactions with ChatGPT. Following
this, neutral sentiment indicates the practical and solution-oriented nature
of developers.

35

Bibliography

[1] Eman Abdullah AlOmar, Anushkrishna Venkatakrishnan, Mo-
hamed Wiem Mkaouer, Christian D. Newman, and Ali Ouni. How
to refactor this code? an exploratory study on developer-chatgpt refac-
toring conversations. In MSR, pages 202–206. ACM, 2024.

[2] Arifa I. Champa, Md. Fazle Rabbi, Costain Nachuma, and Minhaz F.
Zibran. Chatgpt in action: Analyzing its use in software development.
In MSR, pages 182–186. ACM, 2024.

[3] Akash Balasaheb Dhasade, Akhila Sri Manasa Venigalla, and Sridhar
Chimalakonda. Towards prioritizing github issues. In ISEC, pages
18:1–18:5. ACM, 2020.

[4] Krystal Hu. Chatgpt sets record for fastest-growing user base - analyst
note, 2023.

[5] Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Xing Wang, and
Zhaopeng Tu. Is chatgpt A good translator? A preliminary study.
CoRR, abs/2301.08745, 2023.

[6] Kailun Jin, Chung-Yu Wang, Hung Viet Pham, and Hadi Hemmati.
Can chatgpt support developers? an empirical evaluation of large lan-
guage models for code generation. In MSR, pages 167–171. ACM, 2024.

[7] Samia Kabir, David N. Udo-Imeh, Bonan Kou, and Tianyi Zhang. Who
answers it better? an in-depth analysis of chatgpt and stack over-
flow answers to software engineering questions. CoRR, abs/2308.02312,
2023.

[8] Valentina Lenarduzzi, Vili Nikkola, Nyyti Saarimäki, and Davide Taibi.
Does code quality affect pull request acceptance? an empirical study.
J. Syst. Softw., 171:110806, 2021.

[9] NAIST-SE. Devgpt: A dataset of developer interactions with chatgpt
for software development artifacts. https://github.com/NAIST-SE/

DevGPT, 2023.

36

https://github.com/NAIST-SE/DevGPT
https://github.com/NAIST-SE/DevGPT

[10] Justine Winata Purwoko, Tegar Abdullah, Budiman Wijaya, Alexan-
der Agung Santoso Gunawan, and Karen Etania Saputra. Analysis
ChatGPT potential: Transforming software development with AI chat
bots. In 2023 International Conference on Networking, Electrical Engi-
neering, Computer Science, and Technology (IConNECT), pages 36–41.
IEEE.

[11] Md Fazle Rabbi, Arifa Islam Champa, Minhaz F. Zibran, and Md Rak-
ibul Islam. Ai writes, we analyze: The chatgpt python code saga.
Proceedings of the 21st International Conference on Mining Software
Repositories, 4:177–181, Apr 2024.

[12] Mohammad Masudur Rahman and Chanchal K. Roy. An insight into
the pull requests of github. CoRR, abs/1807.01853, 2018.

[13] Mohammad Masudur Rahman and Chanchal K. Roy. An insight into
the pull requests of github. CoRR, abs/1807.01853, 2018.

[14] Wahyu Rahmaniar. Chatgpt for software development: Opportunities
and challenges. IT Prof., 26(3):80–86, 2024.

[15] Partha Pratim Ray. Chatgpt: A comprehensive review on background,
applications, key challenges, bias, ethics, limitations and future scope.
Internet of Things and Cyber-Physical Systems, 3:121–154, 2023.

[16] Daricélio Moreira Soares, Manoel Limeira de Lima Júnior, Leonardo
Murta, and Alexandre Plastino. Acceptance factors of pull requests in
open-source projects. In SAC, pages 1541–1546. ACM, 2015.

[17] Christoph Treude, Ohad Barzilay, and Margaret-Anne D. Storey. How
do programmers ask and answer questions on the web? In ICSE, pages
804–807. ACM, 2011.

[18] Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and Dou-
glas C. Schmidt. Chatgpt prompt patterns for improving code qual-
ity, refactoring, requirements elicitation, and software design. CoRR,
abs/2303.07839, 2023.

[19] Tianyu Wu, Shizhu He, Jingping Liu, Siqi Sun, Kang Liu, Qing-Long
Han, and Yang Tang. A brief overview of chatgpt: The history, status
quo and potential future development. IEEE CAA J. Autom. Sinica,
10(5):1122–1136, 2023.

[20] Tao Xiao, Christoph Treude, Hideaki Hata, and Kenichi Mat-
sumoto. Devgpt: Studying developer-chatgpt conversations. CoRR,
abs/2309.03914, 2023.

37

[21] Zhou Yang, Zhensu Sun, Terry Yue Zhuo, Premkumar T. Devanbu, and
David Lo. Robustness, security, privacy, explainability, efficiency, and
usability of large language models for code. CoRR, abs/2403.07506,
2024.

[22] Burak Yetistiren, Isik Özsoy, Miray Ayerdem, and Eray Tüzün. Evalu-
ating the code quality of ai-assisted code generation tools: An empirical
study on github copilot, amazon codewhisperer, and chatgpt. CoRR,
abs/2304.10778, 2023.

38

	Introduction
	Background
	ChatGPT
	GitHub Issues
	GitHub Pull Requests

	Related Work
	Methodology
	Dataset
	Data Preprocessing and Preparation

	Type of Question
	Follow-up Prompts
	Sentiment Analysis

	Results
	Most Common Words
	Code Blocks
	Pull Requests
	Issues

	Types of Questions
	Pull Requests
	Issues

	Follow-up Prompts
	Pull Requests
	Issues

	Sentiment
	Pull requests
	Issues

	Discussion
	Conclusions

