
Bachelor’s Thesis Computing Science

Radboud University Nijmegen

Automation of Data Flow Analysis of Cryptographic Implementations

Author:
Catalin Sabau
s1070935

First assessor:
Dr. Ileana Buhan

Second assessor:
Prof. Dr. Lejla Batina

Daily supervisor:
Dr. Durba Chatterjee

January 30, 2025

Abstract: Side-channel attacks are one of the most predominant and prac-
tical attacks on cryptographic implementations, particularly targeting em-
bedded devices. With the surge of low-cost and lightweight platforms such
as RISC and ARM, software implementations have taken precedence in sev-
eral embedded devices. This makes it imperative to evaluate the security of
software implementations on such platforms and understand the root cause
of any identified side-channel leaks. This thesis addresses this aspect by
means of an interactive visualization framework that allows designers to
visualize the execution of cryptographic implementations, data interactions
and processing in architectural registers at the level of assembly instructions.

The framework is built on top of an architectural simulator for RISC-V that
generates instruction level execution traces specifying the state of architec-
tural registers throughout the execution. Our visualization framework takes
the execution traces as input along with the leakage information, in the form
of a TVLA test result and generates an interactive visualization depicting
the data interactions. The framework supports several interactive features
that enable user-friendly and efficient root-cause analysis. The tool, imple-
mented using Python libraries and Plotly with interactive callbacks, offers
adaptability for various cryptographic implementations targeting RISC-V
platforms.

Keywords: Automation, Side-Channel Analysis, RISC-V, Pre-silicon, Data
Flow Analysis, Cryptographic Security, Cryptographic Algorithm

1

Contents

1 Introduction 4

Abbreviations 7

2 Background 8
2.1 Advanced Encryption Standard (AES) 8
2.2 RISC-V . 10
2.3 Side-Channel Attacks . 12
2.4 Architecture Level Simulator for RISC-V 13

2.4.1 Archer Key Features 13
2.4.2 Motivation for Interactive Visualizations 14

2.5 Python Graphing Libraries: Plotly and Dash 14

3 Related Work 16

4 Interactive Visualizations 18
4.1 Files needed for visualizations 18

4.1.1 Trace Reference/Execution Trace 18
4.1.2 TVLA Leakage Analysis 18
4.1.3 AES Implementation Markers 20

4.2 Supported Operations and Features 21
4.2.1 Index Range Selection 23
4.2.2 Indexes Opacity Selection 24
4.2.3 Markers Opacity Selection 24
4.2.4 Search by Index . 24
4.2.5 Search by PC . 25
4.2.6 Screenshot . 26
4.2.7 Legend . 26
4.2.8 Image-Interactive Features 28

4.3 Interactions between features 30

5 Visualization code 34
5.1 Supported Files . 34
5.2 Support for Various Cryptographic Implementations 37

2

5.2.1 Configuring Cryptographic Markers 37
5.2.2 Defining Color Configurations 38
5.2.3 Customizing Marker Symbols 38
5.2.4 Automating the Configuration of Cryptographic Mark-

ers and Color Configurations 39
5.2.4.1 Dynamic Marker Configuration 39
5.2.4.2 Dynamic Color Generation 40
5.2.4.3 Automated Workflow Integration 40

5.3 Support for different implementations 41
5.3.1 Switching to Plotly Express (PX) 41
5.3.2 Switching to Bokeh . 42

5.3.2.1 Differences Between Plotly and Bokeh 42
5.3.2.2 Challenges in Migration 42
5.3.2.3 Recommendations 43

5.3.3 Deploying the Application to a Server 43
5.3.4 Common Issues . 44

5.4 Optimizations . 45
5.5 Limitations of the Tool . 47

6 Conclusions 50

A Appendix 53
A.1 Binary to RISC-V Instruction Transition Example 53
A.2 Decoding RISC-V Instructions 56
A.3 Transformation Between RISC-V Instructions and Hexadeci-

mal Representation . 58

3

Chapter 1

Introduction

Side channel attacks are a class of attacks that exploits weaknesses in the
implementation of cryptographic algorithms. Implementing cryptographic
algorithms typically follows a standard process: collecting traces of exe-
cution and applying statistical tests to detect potential side-channel leaks.
However, while this approach identifies leaks, it does not reveal their root
causes or provide strategies for mitigation. To address this gap, simula-
tors are employed to correlate power-based leaks with the data processed
within the processor during code execution. One such simulator, focusing
on architectural-level leaks for RISC systems, is presented in [1].

This simulator includes two key components: a side-channel analysis
module that detects leaks in simulated traces using statistical methods,
and a data interaction module critical for identifying the underlying causes
of leaks. However, the process of analyzing data flow—particularly track-
ing intermediate data through registers across multiple assembly instruc-
tions—becomes increasingly complex with tabular representations, espe-
cially for complete cryptographic implementations.

To overcome these challenges, this thesis introduces an automated visu-
alization framework for data flow analysis. This framework systematically
maps and visually tracks the movement of data within cryptographic im-
plementations, enabling developers, researchers, and security evaluators to
identify potential vulnerabilities more effectively. Notably, the proposed
framework is designed to function independently of specific cryptographic
algorithms, offering a versatile and interactive tool for understanding and
mitigating data flow leaks in diverse implementations. By automating this
process, the proposed framework enables the identification of key points of
potential data leakage, thus providing a foundation for comprehensive se-
curity evaluations. This automation not only reduces the time and effort
required for analysis but also enhances the accuracy and scalability of the
process, making it applicable to a wide range of cryptographic software im-
plementations.

4

Motivation

The primary motivation for this research arises from the need to enhance
the security of cryptographic software implementations. Cryptographic al-
gorithms, despite being designed for robust security, remain vulnerable to
side-channel attacks[2]. These attacks exploit unintended information leak-
age, such as variations in execution timing, power consumption(the only
type we cover in this paper), or electromagnetic emissions, to infer sensitive
information about the cryptographic keys or plaintext data.

By visualizing the data flow within cryptographic implementations, this
research facilitates side-channel analysis by allowing researchers to trace
and monitor intermediate data states during the execution of cryptographic
operations. The ability to track these states systematically enables the iden-
tification of potential vulnerabilities and side-channel leaks, contributing to
the development of more resilient cryptographic software. Moreover, the
visualization aids in understanding the complex interplay of data within
cryptographic processes, making the framework a valuable tool for security
researchers, evaluators and developers in the field.

Major Contributions

The core contributions of the thesis are :

• Automated Framework: Development of an automated framework
for data flow analysis, which streamlines the process of identifying and
visualizing data movement in cryptographic implementations.

• Interactive Features: We add several features to aid in the data
flow analyses, such as searching by the index for precision, searching
for Program Counter(PC) to observe the evolution of the instructions
at different indexes but with the same PC and figure-related features
which will help you in your analyses.

• Enhanced Visualization through Color-Coding: Introduction of
a proper color-coding scheme within the visualizations to improve clar-
ity and interpretability of the data flow, making it easier to distinguish
between different states and flows.

• Comprehensive Legend Integration: Inclusion of a detailed leg-
end to provide a contextual understanding of the visualized data, en-
suring that users can easily interpret and analyze the presented infor-
mation.

These contributions collectively advance the state of the art by address-
ing both the technical and usability aspects of data flow analysis in crypto-
graphic software. The proposed framework not only facilitates more efficient

5

and accurate security evaluations but also enhances the accessibility and us-
ability of the analysis for researchers and practitioners alike.

Outline of the Thesis

The thesis is organized as follows:

• Chapter 1: Introduction
This chapter introduces the thesis topic, outlines the research ques-
tions, and sets the context and motivation for the work.

• Chapter 2: Background
This chapter provides the necessary background information required
for understanding the thesis.

• Chapter 3: Related Work
This chapter offers a review of the related work, highlighting what has
been done in the field.

• Chapter 4: Interactive Visualization
This chapter discusses several features of interactive visualization.

• Chapter 5: Visualization Code
This chapter presents a discussion about the code implementation, in-
cluding files, different approaches, improvements made, and the chal-
lenges encountered.

• Chapter 6: Conclusion
The final chapter summarizes the findings, discusses their implications,
and suggests directions for future work.

6

Abbreviations

The following list describes the abbreviations used in this thesis.

AES – Advanced Encryption Standard
API – Application Programming Interface
ARM – Advanced RISC Machine
HD – Hamming Distance
HW – Hamming Weight
ID – Identity
ISA – Instruction Set Architecture
LUT – Look-Up Table
PC – Program Counter
RISC – Reduced Instruction Set Computing
RISC-V – Open standard RISC five
RV32I – 32-bit RISC-V base integer instruction set
RV64I – 64-bit RISC-V base integer instruction set
S-box – Substitution box used in cryptography
TVLA – Test Vector Leakage Assessment
WebGL – Web Graphics Library
XOR – Exclusive OR logical operation

7

Chapter 2

Background

This chapter provides an overview of the concepts required to under-
stand this work. We provide a brief overview of Advanced Encryption Stan-
dard (AES) that is used to demonstrate the tool, RISC-V architecture, which
is the target platform in our analysis, and Python-based libraries such as
Plotly and Dash, which are used to implement the visualization framework.

2.1 Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) is a widely recognized symmetric-
key cryptographic cipher adopted as a standard by the National Institute
of Standards and Technology (NIST). This cipher is based on the Rijndael
algorithm [3] and processes an N-bit plaintext into an N-bit ciphertext using
an N-bit key. AES supports key and plaintext sizes of 128, 192, or 256 bits,
with the number of transformation rounds determined by the key size: 10
rounds for 128-bit keys, 12 rounds for 192-bit keys, and 14 rounds for 256-
bit keys. These variations offer increasing levels of security and complexity,
making AES suitable for a wide range of applications.

Each round of the AES-128 algorithm transforms the input state, rep-
resented as a 16-byte (128-bit) matrix S(4x4 blocks of 128 / 16 = 8 bits
each), through a sequence of operations designed to ensure both confusion
and diffusion. As we can see in Figure 2.1 these operations include [2]:

• SubBytes() — Substitutes each byte in the state matrix with a corre-
sponding value from the S-box, a nonlinear substitution table, thereby
introducing non-linearity and enhancing confusion. The S-Box trans-
forms 8-bit input into 8-bit secret data using a precomputed lookup
table (LUT).

• ShiftRows() — Cyclically shifts the rows of the state matrix by vary-
ing offsets: the first row remains unchanged, while subsequent rows are

8

Figure 2.1: Schematic representation of AES-128. Adapted from [2].

shifted by one, two, and three positions, respectively, ensuring diffu-
sion.

• MixColumns() — Treats each column of the state matrix as a poly-
nomial and multiplies it by a fixed polynomial matrix, enhancing dif-
fusion within columns.

• AddRoundKey() — Performs a bitwise XOR between the state ma-
trix and the corresponding round key, ensuring encryption is heavily
dependent on the key.

The complete sequence of AES-128 operations is visually depicted in
Figure 2.2, which provides a matrix-based visualization of the encryption
steps based on Figure 2.1.

Figure 2.2: Schematic representation of AES-128 steps. Adapted from [1].

9

2.2 RISC-V

RISC-V is an open, free, and extensible Instruction Set Architecture
(ISA). Unlike proprietary ISAs such as x86 or ARM, RISC-V is released
under permissive open licenses. At its core, RISC-V embodies the principles
of Reduced Instruction Set Computing (RISC). It features a relatively small
set of simple instructions that can be executed quickly. By maintaining
an orthogonal and minimal ISA, RISC-V simplifies hardware implementa-
tion, enabling efficient pipelines, reduced power consumption, and simplified
control logic. It adheres to a LOAD/STORE architecture, meaning that op-
erations cannot be performed directly on memory. Instead, data must first
be moved to registers. This design ensures that any data-dependent activity
is visible in the register state [4] [1].

Instruction Types in RISC-V

RISC-V supports a variety of fundamental operations that enable effi-
cient computation. Key instruction types [4] include:

• ARITHMETIC: The ARITHMETIC operations encompass basic
mathematical computations such as addition, subtraction, multipli-
cation, and division between registers. These are fundamental to nu-
merical processing and algorithm implementation.

• LOAD: The LOAD instruction transfers data from memory into a
register. It is a crucial operation in the LOAD/STORE architecture,
ensuring that data is available for processing in registers.

• STORE: The STORE instruction writes data from a register to mem-
ory, allowing results to be saved or shared with other parts of a pro-
gram.

• SHIFT: The SHIFT instructions, such as logical and arithmetic shifts,
modify the bitwise representation of data, useful in various computa-
tional scenarios.

• BRANCH: The BRANCH instructions enable conditional or un-
conditional changes in program flow, facilitating decision-making and
loops within programs.

• UBRANCH: The UNCONDITIONAL BRANCH instructions alter
the flow of execution without requiring any condition evaluation. They
are vital for directing program control explicitly and implementing
control flow structures.

These operations form the foundation of RISC-V’s functionality, en-
abling efficient data manipulation, memory access, and control flow man-
agement.

10

Reg Alias Description Preserved Across Calls

x0 zero Hard-wired zero Immutable

x1 ra Return address No

x2 sp Stack pointer Yes

x3 gp Global pointer Unallocatable

x4 tp Thread pointer Unallocatable

x5 t0 Temporary/alt. link register No

x6-7 t1-2 Temporary registers No

x8 s0/fp Saved register/frame pointer Yes

x9 s1 Saved register Yes

x10-11 a0-1 Function arg./return value No

x12-17 a2-7 Function arguments No

x18-27 s2-11 Saved registers Yes

x28-31 t3-6 Temporary registers No

Table 2.1: Register table of RISC-V. Adapted from [4].

Register Set and Calling Conventions

The base integer register file of RISC-V comprises 32 registers, each
capable of holding a word-sized value (commonly, the 32-bit instruction set
in the RV32I variant or the 64-bit instruction set in the RV64I variant is
used). These registers are named x0 through x31, each serving a specific
purpose as outlined in Table 2.1. Notably, x0 is hardwired to zero and
cannot be modified, which simplifies operations such as nullifying register
values without requiring a separate constant.

The registers in the RISC-V ISA are categorized into three primary
groups: temporary (caller-saved) registers, saved (callee-saved) registers,
and special-purpose registers. Temporary registers are used for interme-
diate calculations and do not retain their values across function calls; the
calling function (caller) is responsible for saving these values if necessary.
Conversely, saved registers preserve their contents across function calls, as
the called function (callee) is required to maintain their values. Special-
purpose registers include the stack pointer (x2), global pointer (x3), and
thread pointer (x4), which are reserved for compiler or runtime usage and
should not be altered in most application-level code.

11

2.3 Side-Channel Attacks

Side-channel attacks exploit unintended physical or logical channels to
extract sensitive information from a system, often bypassing the mathe-
matical robustness of cryptographic algorithms [5]. These attacks leverage
observable characteristics such as power consumption, electromagnetic emis-
sions, timing variations, or even acoustic signals, which can reveal internal
states or the secret key. A critical aspect of defending against side-channel
attacks is minimizing these unintended leakages through careful implemen-
tation and robust design [6].

The security of cryptographic algorithms is not only dependent on their
mathematical strength but also on their implementation. Even robust al-
gorithms like AES can become vulnerable if the implementation introduces
side-channel leakages. There are several side-channel attacks based on the
exploited physical information, such as timing-based attacks, power-based
attacks, and cache attacks; we focus on power-based attacks in this paper.
Power-based side-channel attacks are detected using statistical methods. We
describe one such test based on hypothesis testing in the following section.

Test Vector Leakage Assessment

Test Vector Leakage Assessment (TVLA) [7] has emerged as a widely
used technique to identify leakage points in cryptographic implementations.
TVLA uses Welch’s t-test to detect statistical deviation of two distributions,
one corresponding to a set of fixed inputs and another corresponding to a
set of randomly chosen data. Each set comprises a set of power traces.
The t-test outputs a t-score, which, when greater than 4.5 or less than -4.5,
indicates a leak. While TVLA is effective in detecting leakage as we can see
in Figure 2.3, it lacks the ability to pinpoint its root causes, making further
analysis and mitigation difficult [6] [1].

Figure 2.3: Schematic representation of a leakage model

12

2.4 Architecture Level Simulator for RISC-V

ARCHER [1] is a dedicated architecture-level tool designed for side-
channel analysis in RISC-V processors. Its primary purpose is to identify
the root causes of side-channel leaks in cryptographic implementations at
the architectural level, enabling targeted and effective mitigation strategies.
Below, we outline the key features and functionality of ARCHER:

2.4.1 Archer Key Features

• Execution Trace and Power Simulation:

– ARCHER processes binary files of target implementations to gen-
erate detailed execution traces at the instruction level.

– Using a leakage model, the tool transforms execution traces into
simulated power traces, reflecting hypothetical power consump-
tion (Figure 2.3).

– Supported leakage models include:

- Hamming Weight (HW) a value-based leakage model

- Hamming Distance (HD) a transition-based leakage model

- Identity (ID) a value-based leakage model

• Purpose and Methodology:

– ARCHER identifies the root causes of side-channel leaks by corre-
lating execution behavior with power side-channel leakage results.

– By focusing on the architectural level, it isolates leaks from mi-
croarchitectural effects, providing insights into implementation-
level vulnerabilities.

• Visualizations:

– ARCHER incorporates some limited visualization tools that high-
light leaking instructions and their causes.

– These visualizations, combined with statistical results from TVLA,
offer an intuitive interface for analyzing execution flow and data
dependencies.

• Support for Cryptographic Algorithms:

– The tool supports pre-silicon analysis of various cryptographic
algorithms, including AES and ASCON.

– It detects vulnerabilities in unprotected implementations and aids
developers in enhancing software resilience.

13

2.4.2 Motivation for Interactive Visualizations

The interactive visualization capabilities of ARCHER play a crucial role
in analyzing the complex interactions between instructions and data in cryp-
tographic algorithms. These visualizations:

• Enable pinpointing of specific instructions responsible for leaks.

• Highlight patterns in intermediate value propagation and register us-
age.

• Simplify the process of communicating findings and deriving actionable
insights.

By combining detailed trace analysis, leakage modeling, and interactive
feedback, ARCHER bridges the gap between detecting and mitigating side-
channel leaks at the architectural level, fostering a deeper understanding of
cryptographic security on RISC-V platforms.

2.5 Python Graphing Libraries: Plotly and Dash

Python is a versatile programming language in data visualization due
to its rich ecosystem of libraries [8] [9]. Among the most popular graphing
libraries are Plotly and Dash, which are widely used for creating interactive,
visually appealing, and customizable visualizations.

Plotly

Plotly [10] is an open-source graphing library that enables users to create
interactive and publication-quality visualizations. It supports a wide range
of chart types, including scatter plots, line graphs, bar charts, pie charts,
heatmaps, 3D plots, and more. One of Plotly’s standout features is its inter-
activity, which allows users to zoom, pan, hover, and export visualizations
seamlessly.

Plotly is designed to work across various platforms, making it ideal for
sharing insights in web applications or embedding them in reports and dash-
boards. It integrates smoothly with popular data analysis libraries like
pandas and NumPy, enabling users to create visualizations directly from
dataframes.

Some of the commonly used methods and functions in Plotly include:

• plotly.graph objects: A lower-level module that provides fine-grained
control over chart customization. Key functions include:

– go.Figure(): Constructs figures for custom layouts and traces.

– go.Scatter(): Plots scatter data with advanced options.

14

– go.Layout(): Configures layout properties such as titles, axes,
and annotations.

• add trace(): Adds multiple data series to a single figure.

• update layout(): Modifies the layout of a chart dynamically.

Dash

Dash [11] is a Python framework built on top of Plotly, Flask, and Re-
act.js, designed for creating interactive web applications for data visualiza-
tion and analysis. Unlike Plotly, which focuses on individual graphs, Dash
provides a full-fledged platform to develop dashboards and applications with
interconnected components and interactive features.

Dash applications are structured as a combination of three main compo-
nents:

1. Layout: Defines the structure of the application using Dash HTML
and core components such as dropdowns, sliders, and graphs.

• Commonly used functions:

– dash.html.Div(): Creates containers for grouping compo-
nents.

– dash.dcc.Graph(): Embeds Plotly figures into the app.

– dash.dcc.Store(): Stores user input and other types of
data.

2. Callbacks: Enable interactivity by connecting inputs (e.g., dropdown
selections) to outputs (e.g., graph updates) using Python functions.

• @app.callback(): A decorator that defines the logic for interac-
tivity.

3. Server: Executes the application and handles user requests.

• app.run server(): Launches the Dash application.

Dash’s integration with Plotly makes it an ideal choice for developing
data-driven dashboards that combine static and dynamic visualizations with
user input. Its modular approach simplifies the creation of complex appli-
cations, allowing to build interactive tools for analysis.

Plotly and Dash together offer powerful tools for creating engaging visu-
alizations and interactive applications as we will see in the following chap-
ters. While Plotly focuses on creating standalone visualizations, Dash ex-
tends this capability to build dynamic and user-friendly dashboards. Their
intuitive APIs and extensive functionality make them indispensable for pro-
fessionals in fields such as data science, business analytics, and academic
research.

15

Chapter 3

Related Work

Although no existing work directly automates data flow analysis for cryp-
tographic implementation with a focus on side-channel analysis [10] [12], this
research incorporates concepts from established visualization frameworks,
particularly Plotly which is a versatile visualization library known for its
ability to create interactive and customizable data representations. Exam-
ples from [10] showcase a variety of advanced visualization techniques, which
have inspired the design of the visual components in this project.

Further inspiration is drawn from data science projects utilizing Plotly,
such as those detailed at [12]. These projects emphasize clarity, interactivity,
and accessibility in data visualization, principles that are critical for making
complex datasets more interpretable. While these projects focus on general-
purpose visualization, their underlying principles have been adapted to suit
the specific needs of cryptographic data flow analysis.

By building on the foundational concepts of tools like Plotly and adapt-
ing them to an entirely new context, this work offers a unique framework
for exploring and mitigating side-channel vulnerabilities in cryptographic
software.

Novelty of our Approach

While the visualization concepts used in this project build on the capa-
bilities of Plotly, the implementation represents a novel application tailored
to the unique demands of analyzing cryptographic implementation. Unlike
generic visualization tools, this work introduces domain-specific innovations,
such as:

• Automated Data Flow Analysis: A fully automated process for
identifying and visualizing intermediate data points within crypto-
graphic computations.

• Specialized Visualization Techniques: Customized graphical rep-
resentations designed specifically to highlight data flows relevant to

16

side-channel vulnerabilities.

• Enhanced Usability: Intuitive color schemes, interactive elements,
and detailed legends to aid researchers in interpreting complex cryp-
tographic processes.

These enhancements distinguish this work from existing frameworks and
projects, as no prior approach has integrated such visualization techniques
with automated data flow analysis in the cryptographic domain.

17

Chapter 4

Interactive Visualizations

This chapter presents an interactive data flow visualization framework
for software implementations of cryptographic algorithms, which forms the
core focus of the thesis. To demonstrate the features of the visualization
framework, we use a C implementation of unmasked AES-128[3] executed
on PicoRV32 (a RISC-V core)[13]. We analyze the implementation using two
leakage models, namely HD and HW. The tool is implemented in Python3
using plotly package. The possible visualizations of the framework are
depicted in Figure 4.1. The tool takes as input one mandatory file(trace ref-
erence) and combines it with various optional files(TVLA leakage model and
Cryptographic algorithm markers), resulting in a few possible visualizations.
The details of the inputs are provided in the next section 4.1.

4.1 Files needed for visualizations

In order to build the visualization, you need the following files:

4.1.1 Trace Reference/Execution Trace

The dataset file provides a detailed breakdown of assembly instructions
executed by the program. Each row represents an instruction execution with
various associated details, including PC, instruction name and type, and
operand values. Additionally, it includes states of all 32 registers, enabling
the analysis of system behavior at the instruction level during the execution.

Visualization: Figure 4.2 shows the entire set of instructions executed
by the implementation of the target device before any leakage model is
applied.

4.1.2 TVLA Leakage Analysis

The dataset file provides results from a TVLA for identifying potential
information leakage during cryptographic operations. Each row represents

18

Figure 4.1: Toolflow of the Visualization Framework

Figure 4.2: Execution Trace Visualization

19

Figure 4.3: Visualization of TVLA leakage across instruction indices

a specific instruction with its associated T-score, indicating whether the
instruction shows leakage depending on the input(nTraces) where all plain-
text bytes remain the same except for one byte or multiple, which is/are
randomly varied. A T-score exceeding the defined threshold signifies a po-
tential leakage and is marked with 1 otherwise with 0.

Visualisation: Figure 4.3 highlights the leaky instructions using red
and blue colors. Red indicates leakage as per HD leakage model, whereas
blue indicates leaks corresponding to HW leakage model.

4.1.3 AES Implementation Markers

This dataset provides detailed marker indexes and register values re-
quired for analyzing and implementing cryptographic algorithm encryption
over the current trace reference. It categorizes information into specific reg-
isters, enabling targeted analysis of instruction sequences essential for cryp-
tographic operations. For unprotected AES implementation, the interme-
diate data(data generated during the code execution [1]) includes plaintext
bytes (PT), SubBytes output (SB), RoundKey bytes (RK), MixColumn out-
puts (MC OUT), and key bytes (K). These data are stored as a dictionary
in a .pkl file. The keys of the dictionary are the architectural registers (a1,
a2, · · ·), and each key is associated with a list that includes the instruction
indexes, where an intermediate occurs in that register.

Visualisation: Figure 4.4 depicts the intermediate data using various
markers, each for a different intermediate value. This figure provides in-
sights into the register usage pattern for a given implementation, how long

20

Figure 4.4: Visualization of AES marker indexes and register utilization

the values remain in the register, and which registers are used by which
operations of the cryptographic algorithm.

By combining everything, you obtain Figure 4.5:

4.2 Supported Operations and Features

The visualization framework supports several key operations designed
to enhance user interaction and data exploration. The inspiration for the
features was taken when reading [1] and discussing with the project owners
what are they looking for to achieve with this tool. The layout of the
interactive visualizations along with the features is depicted in Figure 4.6.
We tabulate the features in Table 4.1 and describe each feature as follows:

21

Figure 4.5: Visualization of unmasked AES

Feature Description How to Access

Index Range Selection
(Sec. 4.2.1)

Allows users to select a specific range of indexes. Range slider

Index Opacity Selection
(Sec. 4.2.2)

Adjusts the transparency of the indexes for clarity. Index Opacity slider

Markers Opacity Selec-
tion (Sec. 4.2.3)

Adjusts the transparency of the markers for clarity. Marker Opacity slider

Search by Index
(Sec. 4.2.4)

Find a specific index. Search bar (left container)

Search by PC
(Sec. 4.2.5)

Find specific index(es) based on PC. Search bar (right container)

Screenshot (Sec. 4.2.6) Captures the current visualization as an HTML file. “Screenshot” button below
the image

Legend (Sec. 4.2.7) Toggle visibility of the markers for clarity. Above the figure

Image-Related Features
(Sec. 4.2.8)

Includes the following tools: pan, zoom, zoom in,
zoom out, zoom scroll, autoscale, reset axes, and box
select.

Toolbar (right corner of the
figure) or mouse interactions

Table 4.1: Summary of Interactive features supported in the Visualization
Framework.

22

Figure 4.6: Interactive Visualization Layout

4.2.1 Index Range Selection

Description: The visualization framework allows users to select a specific
range of instructions. This feature is particularly useful for focusing on
subsets of instructions within the visualization, enabling targeted analysis
or highlighting specific sections of interest.

How to use: Users can adjust the range by dragging one end of the slider
at a time to define the desired range. (Figure 4.7)

Where to find it: The “Range Slider” is located at the very top and is
the longest slider in the interface. (Figure 4.6)

Figure 4.7: Range slider used for selecting a specific range of indexes.

23

4.2.2 Indexes Opacity Selection

Description: To enhance visualization clarity, users can adjust the trans-
parency of instructions. This feature is especially useful for improving visi-
bility when overlapping elements are present in the visualization.

How to use: Users can modify the instruction opacity using the “Index
Opacity” slider. (Figure 4.8)

Where to find it: The “Index Opacity” slider is located at the very top,
on the left side. (Figure 4.6)

Figure 4.8: Index Opacity slider for adjusting transparency of indexes.

4.2.3 Markers Opacity Selection

Description: Similar to the “Index Opacity” feature, the framework al-
lows users to adjust the transparency of markers for improved clarity. The
“Marker Opacity” slider provides flexibility in visualizing dense or overlap-
ping data points effectively.

How to use: Users can modify the marker opacity using the “Marker
Opacity” slider. (Figure 4.9)

Where to find it: The “Marker Opacity” slider is located at the very top,
on the right side. (Figure 4.6)

Figure 4.9: Marker Opacity slider for adjusting transparency of markers.

4.2.4 Search by Index

Description: The “Search by Index” feature allows users to locate specific
instructions efficiently by knowing the index. A search bar located in the left
container facilitates this functionality, enabling precise and quick navigation
within the dataset if the zoom checkbox is selected.

How to use: Users can simply type the desired index instruction into
the search bar to visualize it. The selected index instruction will be high-
lighted with three different colors: one for the two predecessors, one for the
current index, and one for the two successors. Additionally, users can en-
able the ’Zoom’ checkbox to quickly locate the index instruction within the
visualization. (Figure 4.10, Table 4.2)

24

Figure 4.10: Search by Index

Where to find it: The “Search by Index” functionalities are found in the
left container below the figure. (Figure 4.6)

Note: “Search by Index” can be combined with the “Search by PC”
functionalities.

4.2.5 Search by PC

Description: This feature allows users to search for instruction indexes
based on the PC. A dedicated search bar supports the functionality of search-
ing for multiple PCs using comma-separated values, making it a convenient
method for program-related data analysis.

25

Functionality Description

“Search” Button (Fig-
ure 4.10)

Initiates the search for the specified index instruction and
displays the instructions indexes accordingly.

“Next” Button (Fig-
ure 4.10)

Moves the search to the next instruction index to the right.

“Predecessor” Button
(Figure 4.10)

Moves the search to the previous instruction index to the
left.

“Remove Index High-
light” Button (Fig-
ure 4.10)

Removes the current search, erases the highlights applied to
the traces, and restores them to their original color.

Data Table (Fig-
ure 4.10)

Displays the searched instructions and provides additional
information about them, such as index, PC, instruction,
operands. The rows are highlighted to indicate the corre-
sponding leakage model of the instruction.

Table 4.2: Buttons and their functionality in the visualization framework.

How to use: Users can type the desired PC instruction(s) into the search
bar to locate and visualize all matching instruction indexes. The indexes
corresponding to the searched PCs will be highlighted in a color distinct
from the “Search by Index” section. Additionally, users have the option
to highlight all matches or selectively highlight specific ones. (Figure 4.6,
Table 4.3)

Where to find it: The “Search by PC” functionalities are found in the
right container below the figure. (Figure 4.6)

Note: “Search by PC” can be combined with the “Search by Index”
functionalities.

4.2.6 Screenshot

Description: The framework offers a feature to capture the current vi-
sualization and save it as an HTML file. This functionality provides a con-
venient method to preserve and share the current state of the visualization.

How to use: Simply press the “Screenshot” button in Figure 4.6, and
the current visualization will be saved to the path you specified.

Where to find it: The “Screenshot” button is located directly below the
figure within the interface. (Figure 4.6)

Note 1: The autoscale and reset axes buttons functionalities are inversed.
Note 2: The user can still access the full figure if needed by zooming out

or using pan.
Note 3: Box Select/Lasso Select will not work in the saved file.

4.2.7 Legend

Description: The Legend feature allows users to toggle the visibility of

26

Figure 4.11: Search by PC

markers within the visualization. This functionality is particularly useful
for reducing visual clutter and focusing on specific layers.

How to use: Users can click once on a marker label to toggle its visibility
on or off. Additionally, performing a double click on a marker label hides
all other markers, leaving only the selected one visible. (Figure 4.12)

Where to find it: The “Legend” is located above the figure. (Figure 4.6)

27

Functionalities Description

“Search” Button (Fig-
ure 4.11)

Initiates the search for the specified PC instruction and dis-
plays the instruction indexes accordingly.

“Reset” Button (Fig-
ure 4.11)

Removes the current search and the current highlight.

“Highlight All” Button
(Figure 4.11)

Highlights all the instruction indexes in the current search.

“Highlight Selected”
Button (Figure 4.11)

Highlights only the selected instruction indexes in the cur-
rent search.

“Remove PC Highlight”
Button (Figure 4.11)

Removes the current highlight applied to the traces, and
restores them to their original color.

“Index” Button(s) (Fig-
ure 4.11)

Displays the searched instruction indexes and provides addi-
tional information by being highlighted to indicate the cor-
responding leakage model of the instruction.

Opacity “Index” But-
ton(s) (Figure 4.11)

Those which are selected are darker in color compared to a
faded color of those not selected.

Table 4.3: Buttons and their functionality in the visualization framework.

Figure 4.12: Legend toggle for controlling marker visibility.

4.2.8 Image-Interactive Features

Description: The visualization framework includes a comprehensive suite
of interactive image tools, such as pan, zoom, zoom in, zoom out, zoom
scroll, autoscale, reset axes, and box select. These tools enhance the in-
teractivity and versatility of the visualization, allowing users to explore the
data in detail.

Where to find it: These tools are accessible through the toolbar located
at the top-right corner of the Figure 4.6.

Figure 4.13: Toolbar tools for image manipulation

28

Pan

Description: The “Pan” feature allows users to move the visualization
horizontally or vertically to explore different areas of the data set without
altering the zoom level. This is particularly helpful for examining large
visualizations or data distributed over a wide range.

How to use it: Activate the “Pan” tool from the toolbar Figure 4.13.
Click and hold the left mouse button while dragging the visualization to
move it in the desired direction.

Zoom

Description: The “Zoom” feature enables users to magnify a specific
area of the visualization, making it easier to focus on certain sections of
data points.

How to use it: Select the “Zoom” tool from the toolbar Figure 4.13.
Click and drag to create a rectangular region around the area you wish to
zoom into.

Zoom In

Description: The “Zoom In” feature increases the magnification of the
visualization incrementally, providing a closer view of the data.

How to use it: Click the “Zoom In” button on the toolbar Figure 4.13
repeatedly to increase the magnification step by step.

Zoom Out

Description: The “Zoom Out” feature decreases the magnification of the
visualization incrementally, allowing users to view a broader range of data.

How to use it: Click the “Zoom Out” button on the toolbar Figure 4.13
repeatedly to reduce the magnification step by step.

Zoom Scroll

Description: “Zoom Scroll” provides users with a quick way to zoom in
and out using the scroll wheel on their mouse, offering smooth magnification
control. Works regardless of the selection from the toolbar.

How to use it: Hover your mouse over the visualization and scroll up to
zoom in or scroll down to zoom out.

Autoscale

Description: The “Autoscale” feature automatically adjusts the visual-
ization to fit all data points within the selected range of the index slider,

29

ensuring that no part of the data is left behind by undoing any modifications
made through panning, zooming, scrolling or box select.

How to use it: Click the “Autoscale” button on the toolbar Figure 4.13
to reset the visualization to display all data points in the current selected
range.

Reset Axes

Description: The “Reset Axes” feature restores the axes of the visu-
alization to their original state, undoing any modifications made through
panning, zooming, scrolling or box select. It differs from the autoscale fea-
ture as it restores all data points, regardless of the currently selected range.

How to use it: Click the “Reset Axes” button on the toolbar Figure 4.13
to reset the visualization to its default axes configuration.

Box Select

Description: “Box Select” enables users to select a specific subset of
data points by drawing a rectangular region on the area of interest. Fig-
ure 4.14, 4.15

How to use it: Click the “Box Select” button on the toolbar Figure 4.13.
Click and drag to draw a rectangular region over the desired register(s)
line(s) covering how many data points you want. This feature highlights
the selected data while fading the rest and generates a table below the page
containing various information, such as the index, PC, instruction, operands,
register, and marker (if a marker exists on top of the instruction).

Note: Use the “Copy to Clipboard” button if you want to copy the
current selection shown in the table.

4.3 Interactions between features

The visualization framework offers various features that work collabora-
tively to enhance the clarity and usability of the visualization. Each feature
is designed to assist and complement others, allowing users to perform tar-
geted analyses, improve visualization precision, and emphasize specific data
points.

It is important to note that the “Screenshot” feature operates indepen-
dently of the other features and captures the current state of the visual-
ization regardless of the applied settings or adjustments. This allows users
to preserve and share their insights effectively. Similarly, the Toolbar (Fig-
ure 4.13) provides a set of tools (e.g., zoom, pan, and box select) that en-
hance the interactive experience but remain independent of specific features
in the matrix. Together, these elements ensure flexibility and efficiency in
data exploration.

30

Figure 4.14: Box Select on one register line

Table 4.4 provides a detailed interaction matrix showing how the pri-
mary features of the framework assist and complement each other. Some
combinations of features work as follows: For instance, using the slider for
index range selection followed by a search by index helps narrow the search
space to a relevant subset, improving search efficiency and focus. Another
example is combining index opacity selection with a search by PC, which
enhances visibility by highlighting the selected PC indexes while reducing
the opacity of other indexes. These examples demonstrate how features
complement each other to enhance usability and precision.

31

Figure 4.15: Box Select on multiple register lines

32

Features Index Range
Selection

Index Opacity
Selection

Markers
Opacity
Selection

Search by
Index

Search by PC

Index
Range

Selection

- Clearer
visualization
through trace
opacity control

Clearer
visualization

through marker
opacity control

Perform search
precision

Perform display
precision

Index
Opacity
Selection

Clearer
visualization
through trace
opacity control

- Enhances marker
clarity when

overlapping with
a trace and vice

versa

Highlights
searched indexes

for better
visibility and also
by reducing the
trace opacity

Highlights
searched PCs for
better visibility
and also by
reducing the
trace opacity

Markers
Opacity
Selection

Clearer
visualization
through trace
opacity control

Enhances marker
clarity when

overlapping with
trace and vice

versa

- Highlights
searched indexes

for better
visibility and also
by reducing the
marker opacity

Highlights
searched PCs for
better visibility
and also by
reducing the

marker opacity

Search by
Index

Perform search
precision

Highlights
searched indexes

for better
visibility and also
by reducing the
trace opacity

Highlights
searched indexes

for better
visibility and also
by reducing the
marker opacity

- Combines with
PC-based search
to refine results

Search by
PC

Perform display
precision

Highlights
searched PCs for
better visibility
and also by
reducing the
trace opacity

Highlights
searched PCs for
better visibility
and also by
reducing the

marker opacity

Combines with
index-based

search to refine
results

-

Table 4.4: Feature Interaction Matrix showing how features assist and com-
plement each other

33

Chapter 5

Visualization code

This chapter presents an overview of the implementation details of the vi-
sualization framework. The visualization code supports common file formats
such as .csv and .pkl, enabling flexibility in data input and compatibility
with diverse computational scenarios. Extensions to additional formats like
.parquet are possible, although preprocessing steps are required due to the
limitations in modifying such formats. To aid in understanding how the
code operates, a code tree (Figure 5.1) is provided, illustrating the structure
and data flow of the framework.

The framework is implemented in Python3 using the Plotly package and
supports interactive visualizations through Plotly. This chapter discusses
the optimization strategies employed, including upgrading to Python 3.12,
switching to Bokeh, utilizing the pyarrow engine for efficient file handling,
and parallelizing computational tasks to enhance scalability. Despite these
advancements, challenges remain in rendering large-scale visualizations and
addressing performance bottlenecks. These observations highlight the need
for further exploration and development to improve the efficiency and scal-
ability of the visualization framework.

5.1 Supported Files

The supported files are of the .csv and .pkl format with their visualisa-
tions presented in the previous chapter representing a variety of data inputs,
each serving specific purposes in computational and analytical workflows.

The code can be extended to use other types of files for example parquet
but it would require to have all the data modifications done before hand as
you cannot modify anymore as in csv and it requires a close inpection to
the code which handles the visualization part as it differs from pandas and
numpy.

1. Execution trace
A structured log(Figure 5.2) of executed instructions and register val-

34

ues for debugging and analysis.
File: trace reference.csv

Figure 5.2: Trace reference data frame

Used for:

• Visualizing executed assembly instructions.

• Analyzing the values of specific registers (e.g., sp, ra, zero).

• Tracking intermediate data generated during execution.

• Identifying and annotating potential anomalies or inefficiencies in
execution.

Advantages of using the CSV type are:

• Clear tabular structure for efficient analysis and modifications.

• Lightweight and software-independent, ensuring broad compati-
bility.

• Easy to import and process using data analysis tools such as
Python, R, or MATLAB.

• Easily extensible for integrating additional metadata.

Challenges/Limitations:

• Performance issues with very large datasets due to memory lim-
itations.

2. TVLA information for a given cryptographic implementation.
A tabular representation(Figure 5.3) of leakage analysis to assess side-
channel vulnerabilities.
File: TVLA leakage model.csv

35

Figure 5.3: TVLA data frame

Used for:

• Identifying instructions with significant leakage.

• Debugging cryptographic implementations to minimize side-channel
vulnerabilities.

• Visualizing leakage distribution across the instruction set.

• Prioritizing instructions for optimization or mitigation efforts.

Advantages of using this CSV format include:

• Clear tabular structure for efficient analysis and modifications.

• Lightweight and software-independent, ensuring broad compati-
bility.

• Easy to import and process using data analysis tools such as
Python, R, or MATLAB.

• Easily extensible for integrating additional metadata.

Challenges:

• Performance issues with very large datasets due to memory lim-
itations.

3. Intermediate data generated during execution.
A structured mapping (Listing 5.1) of markers to a cryptographic al-
gorithm’s operations for debugging and analysis.
File: Cryptographic algorithm markers.pkl

Listing 5.1: Mapping of markers to cryptographic operations

{

a2: [2662, 2663, 2664, 2665],

a3: [],

a5: [2737, 2738, 2739, 2740],

s2: [2873, 2874, 2875, ..., 2912]

}

36

Used for:

• Mapping marker indexes to specific cryptographic operations(eg.
AES) for debugging and optimization.

• Analyzing register usage during algorithmic encryption(eg. AES)
to ensure efficiency.

• Validating the correctness of instruction sequences in a crypto-
graphic implementations(eg. AES).

• Providing insights into potential areas for performance improve-
ment or side-channel mitigation.

Advantages of using this dataset as a PKL:

• Clear structure for efficient analysis.

• Compatibility with statistical tools for leakage evaluation.

Challenges:

• Requires familiarity with the cryptographic implementation(eg.
AES) details for effective analysis.

• Not easy to access, read and modify compared to the CSV files.

5.2 Support for Various Cryptographic Implemen-
tations

This section describes the adaptability of the visualization framework in
supporting diverse cryptographic implementations. Provided that the files
discussed in Section 5.1 retain the format, the framework can be efficiently
tailored to accommodate different cryptographic algorithms with minimal
modifications.

5.2.1 Configuring Cryptographic Markers

The framework facilitates the specification of the number of crypto-
graphic markers required for different types by adjusting the parameter N

within the build figure() function (Figure 5.1). For example, depending
on the marker type, the number of markers required for visualization can
be configured as follows:

if(condition):

N = 10

else:

N = 16

37

Retrieve dot_color

dot_colors = get_dot_colors(N)

The function get dot colors retrieves the corresponding dot colors based
on the specified value of N, thereby ensuring flexibility in the visual repre-
sentation.

5.2.2 Defining Color Configurations

The function get dot colors(N) generates a list of colors from a pre-
defined set, as illustrated below:

def get_dot_colors(N):

base_colors = [’#afde40’, ’#38b000’, ’#008f00’, ’#005f00’,

’#f6c5af’, ’#d36060’, ’#A8488F’, ’#70305F’,

’#79BAEC’, ’#38ACEC’, ’#2B65EC’, ’#0F227E’,

’#F7F016’, ’#fcc419’, ’#f59f00’, ’#F88017’]

dot_colors = []

for i in range(N):

dot_colors.append(base_colors[i])

return dot_colors

This implementation allows users to customize the color scheme accord-
ing to the number of markers required, ensuring a visually coherent repre-
sentation.

5.2.3 Customizing Marker Symbols

The framework also provides the capability to modify marker symbols
to align with various cryptographic implementations. Marker symbols are
defined within the dictionary marker symbol dict, as shown below for AES-
128:

marker_symbol_dict = {

’SB’: ’circle’, (SBox bytes)

’K’: ’x-thin’, (Keys Bytes)

’PT’: ’cross-thin’, (Plaintext Bytes)

’RK’: ’diamond’, (Round Keys Bytes)

’MO’: ’square’, (Mix Column Out Bytes)

Uncomment the two lines below for a masked AES version

’MI’: ’triangle-up’, (Mix Column In Bytes)

’M’: ’star’ (Mask Bytes)

}

38

By updating the entries in this dictionary, users can seamlessly adapt
the framework to accommodate different cryptographic algorithms, such as
ASCON and AES, which are supported by the Archer, specifically targeting
RISC-V architectures.

5.2.4 Automating the Configuration of Cryptographic Mark-
ers and Color Configurations

To enhance the robustness and scalability of the visualization frame-
work, the process of configuring cryptographic markers and defining color
configurations can be automated. This automation eliminates the need for
manual intervention in specifying the number of markers and ensures seam-
less adaptation to varying cryptographic implementations.

5.2.4.1 Dynamic Marker Configuration

The automated process dynamically determines the number of cryp-
tographic markers by analyzing the dataset files provided. A function,
get highest N from files(), retrieves the maximum number of markers
required by parsing filenames in the target directory, as shown below:

def get_highest_N_from_files(path_marker, implementation, opt_level):

"""

Determines the highest possible number of markers in a folder.

"""

pattern = re.compile(rf"specify file pattern.pkl")

highest_n = 0

Scan through all files in the folder

for filename in os.listdir(path_marker):

match = pattern.match(filename)

if match:

Extract the number from the filename

num = int(match.group(1))

highest_n = max(highest_n, num)

Since index is 0-based, add 1 to get the count

return highest_n + 1

This function automatically determines the highest marker count based
on the available files, eliminating the need for manual configuration. The
retrieved value of N is then used to configure the cryptographic markers,
ensuring flexibility across diverse implementations.

39

5.2.4.2 Dynamic Color Generation

To ensure that the visualization framework remains robust even when
the number of markers exceeds a predefined limit, the process of defining
color configurations can also be optimized. Instead of relying on a fixed
list of colors, the function get dot colors(N) now generates an arbitrary
number of visually distinct colors using the HSL color space:

import colorsys

def get_dot_colors(N):

"""

Generates N visually distinct colors using the HSL color space.

"""

dot_colors = []

for i in range(N):

hue = i / N # Distribute hues evenly

High saturation and brightness

rgb = colorsys.hsv_to_rgb(hue, 1, 0.9)

hex_color = "#{:02x}{:02x}{:02x}".format(

int(rgb[0] * 255), int(rgb[1] * 255), int(rgb[2] * 255)

)

dot_colors.append(hex_color.upper())

return dot_colors

This implementation guarantees that the system can generate a suffi-
cient number of distinct colors to accommodate any required number of
markers. However, certain markers next to each other may appear visually
similar to the naked eye. Despite this, the approach significantly enhances
the framework’s adaptability and ensures a coherent and consistent visual
representation.

5.2.4.3 Automated Workflow Integration

The entire automated process is integrated into the workflow as follows:

Retrieve the highest value of N from the dataset

N = get_highest_N_from_files(path_marker, implementation, opt_level)

Generate dynamic colors for the markers

dot_colors = get_dot_colors(N)

This automated approach allows users to simply provide the necessary
files, without the need for manual adjustments to marker counts or color

40

configurations. The system elegantly adapts to the files, ensuring robust
operation across diverse cryptographic implementations, including ASCON
and AES for RISC-V architectures.

5.3 Support for different implementations

In this section, we describe the modifications required to adapt the
framework to other interactive visualization packages.

5.3.1 Switching to Plotly Express (PX)

The framework currently utilizes Plotly’s go.Figure with Scattergl,
which is a high-performance rendering mode optimized for large datasets. At
its core, Plotly Express (PX) also employs Scattergl for rendering scatter
plots, and thus, it is possible to seamlessly switch between these approaches.
For example:

Using Plotly Express (PX)

Create a dummy DataFrame to initialize an empty PX figure

empty_df = pd.DataFrame({’x’: [], ’y’: []})

fig = px.scatter(empty_df, x=’x’, y=’y’)

fig.add_scatter()

Using Plotly Graph Objects (GO)

fig = go.Figure()

fig.add_trace(go.Scattergl())

While both approaches support the creation of interactive figures with Scattergl,
it is important to note the following differences and considerations:

• Interactive Features: When switching from go.Figure to px.scatter,
the code managing interactive features may require modification. This
is because while it is permissible to pass a PX figure into a GO workflow,
the reverse—passing a GO figure into a PX workflow—is not supported.

• Performance: Based on observations, no significant performance dif-
ferences were noted between go.Figure and px.scatter when render-
ing figures of similar complexity and size. Both approaches load figures
at comparable speeds, as they utilize the same underlying rendering
engine (Scattergl).

• Convenience: PX offers a higher-level abstraction, simplifying the
creation of common chart types with minimal code. However, for
advanced customization and control over individual traces or layout
properties, GO provides greater flexibility.

41

Ultimately, the choice between PX and GO depends on the specific require-
ments of the project. For workflows that prioritize simplicity and rapid
prototyping, PX may be more suitable. On the other hand, for scenarios
that demand extensive customization or integration with existing GO-based
components, retaining the use of go.Figure is recommended.

5.3.2 Switching to Bokeh

Transitioning from Plotly [10] to Bokeh [14] represents a more complex
and challenging task compared to making adjustments within the Plotly
ecosystem, such as switching from go.Figure to px.scatter. While Plotly
and Bokeh both provide powerful tools for creating interactive visualizations,
their underlying architectures, data handling mechanisms, and APIs differ
significantly. As a result, the migration process involves more than simply
modifying a few lines of code.

5.3.2.1 Differences Between Plotly and Bokeh

The complexity of transitioning to Bokeh arises from the following key
differences:

• Data Handling: Plotly integrates seamlessly with pandasDataFrames,
allowing for straightforward data manipulation and visualization with
minimal configuration. Bokeh, on the other hand, relies on its own
ColumnDataSource object to manage and pass data to plots. This
means that data prepared for Plotly must be converted into the for-
mat required by Bokeh, often requiring additional preprocessing steps.

• Rendering Models: Plotly is a client-side rendering library, where
interactive features are handled directly in the browser using JavaScript.
Bokeh, while also supporting client-side rendering, excels in server-side
rendering for building dashboards and applications. This difference
may necessitate rethinking the application architecture if server-side
interactivity is desired.

• APIs and Syntax: Plotly provides a high-level API with expressive
and declarative commands, making it simple to create complex visu-
alizations. Bokeh, in contrast, offers a more programmatic approach,
requiring users to explicitly define plot elements such as axes, grids,
and legends. This makes Bokeh highly customizable but introduces
additional complexity.

5.3.2.2 Challenges in Migration

The migration process from Plotly to Bokeh involves several steps that
increase its complexity:

42

• Refactoring Code: The direct substitution of Plotly functions with
their Bokeh equivalents is not feasible due to the differences in API
design. For example, creating a scatter plot in Plotly typically involves
one line of code with px.scatter, whereas in Bokeh, users must de-
fine a Figure object, configure the ColumnDataSource, and explicitly
specify plot elements.

• Interactive Features: Interactive capabilities, such as tooltips, zoom-
ing, and panning, are implemented differently in Bokeh. While Plotly
provides these features out of the box, Bokeh requires explicit config-
uration of tools and callbacks, often involving more lines of code.

• Customization and Layout: Plotly simplifies the customization
of layouts, annotations, and subplot configurations. In Bokeh, layout
customization often involves defining multiple components (e.g., plots,
widgets, and tabs) and combining them into layouts using functions
like gridplot() or row().

5.3.2.3 Recommendations

While switching to Bokeh may offer benefits such as advanced server-
side interactivity and better integration with Python-based dashboards (e.g.,
using Panel or Flask), careful consideration should be given to whether
these advantages justify the additional effort. For projects with existing
Plotly-based visualizations, the following steps can help mitigate migration
challenges:

1. Evaluate Project Requirements: Assess whether Bokeh’s features
align with the project’s needs, especially in terms of interactivity, scal-
ability, and integration with other tools.

2. Incremental Migration: Begin by recreating simpler visualizations
in Bokeh to familiarize with its workflow and gradually transition more
complex plots such as the ones in the previous chapter.

3. Prepare Data Appropriately: Convert data to Bokeh’s ColumnDataSource
format early in the process to simplify plot creation and reduce errors.

While the migration from Plotly to Bokeh is undoubtedly more complex
than switching between Plotly modules, a structured and well-planned ap-
proach can help streamline the process and leverage the strengths of Bokeh
effectively.

5.3.3 Deploying the Application to a Server

To enhance accessibility and reduce dependency on local execution en-
vironments, the entire codebase and associated files can be deployed to a

43

dedicated server such as Render[15] using DashTools[16]. This server would
handle the execution of the code and store all necessary resources required
for the application. By hosting the visualization component on the server,
including all interactive elements such as buttons and functionalities, an
HTML link can be generated and shared with users all over the world.

This approach enables users to access the visualization directly through
their web browsers without requiring the code to run locally. Addition-
ally, centralizing the application on a server ensures consistency, facilitates
updates, and improves scalability, as multiple users can access the hosted
application concurrently. Such a deployment paradigm is particularly ben-
eficial for collaborative projects, educational purposes, or cases where com-
putational resources may be limited on user devices.

5.3.4 Common Issues

In this section, we identify commonly encountered issues related to a
specific context and analyze their causes and impacts. Alongside each issue,
we present alternative solutions, evaluating their feasibility and effectiveness
in addressing the challenges.

No Data Points Displayed When Loading

A common issue encountered during data visualization, particularly on
systems utilizing Apple Silicon (e.g., Mac M1), is the failure to render data
points correctly when handling a large number of traces. In this specific
case, an attempt to load 40,000 traces resulted in only the registration lines
being plotted, with no accompanying traces.

This issue appears to stem from the system’s inability to efficiently han-
dle the graphical processing requirements associated with rendering a high
volume of ‘Scattergl‘ traces, a Plotly module optimized for WebGL. WebGL
is generally favored for its performance with large datasets; however, cer-
tain hardware or driver configurations, as exemplified by the Mac M1, can
introduce compatibility challenges if it runs locally.

To address this problem, the user can either choose to render fewer traces
or the rendering mode can be switched from ‘Scattergl’ to ‘Scatter’, as shown
below:

fig.add_trace(go.Scattergl())

is replaced with:

fig.add_trace(go.Scatter())

The ‘Scatter‘ mode does not leverage WebGL, but its use significantly im-
proves compatibility in environments with constrained WebGL performance.

44

While this adjustment circumvents the immediate issue, it is worth noting
that the ‘Scatter‘ rendering mode may exhibit decreased performance for
extremely large datasets compared to ‘Scattergl‘.

Future work could investigate optimizations for rendering high-density
datasets on systems with Apple Silicon, such as batching trace additions or
leveraging more specialized WebGL configurations to mitigate compatibility
issues.

Rendering Performance

Image lagging during data visualization occurs when rendering large
datasets, leading to slow interactions and delayed responsiveness. The choice
between Plotly’s Scattergl (WebGL-based) and Scatter (CPU-based) modes
is crucial in managing performance trade-offs.

The Scattergl mode, leveraging GPU acceleration, is ideal for large
datasets due to its speed and efficiency. However, it may cause lag on sys-
tems with limited GPU capabilities, such as Apple Silicon, or when browser
support for WebGL is suboptimal. In contrast, the Scatter mode, which
processes graphics on the CPU, provides better compatibility and stability
but may slow down with very large datasets.

5.4 Optimizations

Optimizations done correctly can significantly enhance the performance
of the code, particularly in areas involving data processing and computa-
tionally intensive operations. For instance, transitioning from Python 3.9 to
Python 3.12 can result in a reduction of code runtime by an average of 25%
at least as we can see in Table 5.1 where 90% of the time shown is used for
handling the figure(create the frame,fill the frame and then pass it) and the
rest for parsing the data. However, this improvement is contingent upon the
compatibility of the project’s libraries, features, and implementations with
the newer Python version. It is important to note that this transition does
not lead to faster image rendering.

Python Version Optimization Level Time

3.9 -O0 (40 000 traces) avg. 5.4s

3.9 -Os (10 000 traces) avg. 1.3s

3.12 -O0 (40 000 traces) avg. 4s

3.12 -Os (10 000 traces) avg. 0.9s

Table 5.1: Average Run Time per Process on MAC M1

One such optimization is the use of the ‘pyarrow‘ engine in conjunction

45

with ‘pandas‘ for reading files more efficiently.
By replacing the standard file reading method:

df = pd.read_csv(execution_trace_file)

with the optimized method:

df = pd.read_csv(execution_trace_file, engine="pyarrow")

Substantial improvements in execution time can be achieved. It is im-
portant to note that the ‘pyarrow‘ engine is recommended exclusively due to
compatibility with other backends and works well with parquet files if you
choose to utilize those instead of the standard csv files. The performance
improvements observed in Table 5.2 are as follows:

Python Version Optimization Level Standard Method(s) Optimized Method(s) nTimes

3.9 -O0(40 000 traces) 0.0625554425 0.0089676454 5-7

3.9 -Os(10 000 traces) 0.0210622650 0.0047182962 5-7

3.12 -O0(40 000 traces) 0.0598298221 0.0082747142 5-7

3.12 -Os(10 000 traces) 0.0199393375 0.0046910308 5-7

Table 5.2: Performance Comparison of File Reading Methods on MAC M1

Another area for optimization involves parallelizing computationally in-
tensive sections of the code. For example, instead of processing each trace
in a figure sequentially, traces can be grouped into batches and processed
in parallel. This approach reduces the overhead associated with managing
a large number of threads or processes, thereby improving efficiency.
The traces are divided into batches, with each batch containing multiple
traces. These batches are then distributed across threads or processes using
parallel processing libraries such as Python’s concurrent.futures. Each
thread or process processes a single batch of traces concurrently, as shown
below:

from concurrent.futures import ThreadPoolExecutor

import numpy as np # For batching

Define the worker function

def process_batch(batch):

for trace in batch:

if (

hasattr(trace, "mode")

and hasattr(trace, "x")

and len(trace.x) > 0

and trace.customdata is not None

):

46

.

.

.

Divide traces into batches

batch_size = 100 # Adjust batch size as needed

batches = np.array_split(fig.data, len(fig.data) // batch_size)

Process batches in parallel

with ThreadPoolExecutor() as executor:

executor.map(process_batch, batches)

By processing batches of traces concurrently, the computational work-
load is distributed more effectively, resulting in significant reductions in
execution time for figures with a large number of traces(not to be confused
with rendering time, which stays the same regardless). This optimization
not only enhances performance but also improves the scalability of the tool
for handling complex and large-scale visualizations.

5.5 Limitations of the Tool

One notable limitation of the tool lies in its computational efficiency.
While certain optimizations can enable faster execution of computations,
the overall performance largely depends on the specific objectives and use
cases for which the tool is employed.

A significant bottleneck arises from the overhead associated with passing
figures between processes or components, which accounts for more than 90%
of the total execution time. Additionally, when using tools such as Plotly
to render figures containing a large number of traces (e.g., 10,000 traces),
the rendering process itself introduces significant delays in showing the fig-
ure. Plotly’s architecture, which involves transferring data and rendering
instructions between the back end and the front end, struggles to handle
such complex visualizations efficiently. This is particularly problematic in
scenarios requiring interactive plotting with a lot of traces or frequent up-
dates.

Efforts were made to address this bottleneck, including approaches such
as processing figures in batches—e.g., dividing the workload into 10 batches
of 1,000 figures each (for figures with 10,000 traces). However, this strategy
has not demonstrated any substantial performance improvements. Similarly,
attempts to partition the figure into smaller subsets for more granular pro-
cessing have not yielded meaningful gains in efficiency rather than in code
complexity.

With these observations, we want to highlight the need for further re-
search into alternative methods or architectural solutions that could mitigate

47

the performance costs associated with figure handling and data transfer be-
tween the back-end and the front-end. Such advancements are essential for
improving the overall scalability and effectiveness of the tool.

48

Figure 5.1: Code Structure of the Visualization Framework with required
inputs and file types

49

Chapter 6

Conclusions

The thesis proposes a novel architecture-level interactive visualization
framework for systematically analyzing side-channel vulnerabilities in RISC-
V processors. The framework incorporates several user-friendly features that
enable security evaluators and developers to evaluate cryptographic imple-
mentations and identify architectural vulnerabilities introduced by unin-
tended data interactions. Features such as ”Zoom”, ”Search by PC”, and
”Search by Index” equip developers to explore the entire execution efficiently
and pinpoint the exact assembly instructions causing the leakage, thereby
enabling the leakage analysis of large cryptographic implementations.

We demonstrate the working of the framework using a C implementation
of AES-128 [17]. However, the tool can be readily used for any cryptographic
implementation, given the input file structure remains intact, therefore al-
lowing enhanced scalability and ease in portability. This framework can be
integrated with the data-flow analysis component of ARCHER [1], forming
an integral component in leakage root-cause analysis.

The use of Python-based tools, particularly Plotly, facilitates interactive
and visually insightful representations, making the process more intuitive
and informative. While Bokeh was considered during development, its re-
finement requirements made Plotly a more suitable choice for this frame-
work. By offering an adaptable and extensible platform, the framework
serves as a valuable resource for developing secure cryptographic implemen-
tations and also as a fundamental building block for automated visualization
tools.

50

Bibliography

[1] A. Adhikary, A. J. B. Becerra, L. Batina, I. Buhan, D. Chatterjee,
S. V. Hoek, and E. S. Gonzalez, “Archer: Architecture-level simulator
for side-channel analysis in risc-v processors,” Cryptology ePrint
Archive, 2024. [Online]. Available: https://eprint.iacr.org/2024/1866

[2] F. E. Potestad-Ordóñez, E. Tena-Sánchez, A. J. Acosta-Jiménez,
C. J. Jiménez-Fernández, and R. Chaves, “Hardware countermeasures
benchmarking against fault attacks,” Applied Sciences, vol. 12, no. 5, p.
2443, 2022. [Online]. Available: https://doi.org/10.3390/app12052443

[3] J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Ad-
vanced Encryption Standard, ser. Information Security and Cryptogra-
phy. Springer, 2002.

[4] E. Borin, An Introduction to Assembly Programming with RISC-
V, 2021. [Online]. Available: https://riscv-programming.org/book/
riscv-book.html

[5] F.-X. Standaert, “Introduction to side-channel attacks,” in Secure In-
tegrated Circuits and Systems. Springer, 2010.

[6] E. O. Stefan Mangard and T. Popp, Power Analysis Attacks: Revealing
the Secrets of Smart Cards. Springer, 2007.

[7] B. Gilbert Goodwill, J. Jaffe, P. Rohatgi et al., “A testing
methodology for side-channel resistance validation,” in NIST Non-
Invasive Attack Testing Workshop, vol. 7, 2011, pp. 115–136. [Online].
Available: https://www.rambus.com/wp-content/uploads/2015/08/
a-testing-methodology-for-side-channel-resistance-validation.pdf

[8] O. Embarak, Data Analysis and Visualization Using Python: Analyze
Data to Create Visualizations for BI Systems. Apress, 2018.

[9] A. Lavanya, S. Sindhuja, L. Gaurav, and W. Ali, “A comprehensive
review of data visualization tools: Features, strengths, and
weaknesses,” International Journal of Computer Engineering in

51

https://eprint.iacr.org/2024/1866
https://doi.org/10.3390/app12052443
https://riscv-programming.org/book/riscv-book.html
https://riscv-programming.org/book/riscv-book.html
https://www.rambus.com/wp-content/uploads/2015/08/a-testing-methodology-for-side-channel-resistance-validation.pdf
https://www.rambus.com/wp-content/uploads/2015/08/a-testing-methodology-for-side-channel-resistance-validation.pdf

Research Trends, vol. 10, no. 1, pp. 10–20, 2023. [Online]. Available:
https://www.ijcert.org/index.php/ijcert/article/view/825/736

[10] P. T. Inc. Plotly: Collaborative data science. [Online]. Available:
https://plot.ly

[11] ——. Dash layout. [Online]. Available: https://dash.plotly.com/

[12] Kaggle. [Online]. Available: https://www.kaggle.com/

[13] YosysHQ, “Picorv32 - a size-optimized risc-v cpu,” url-
https://github.com/YosysHQ/picorv32.

[14] Bokeh. [Online]. Available: https://bokeh.org/

[15] Render. [Online]. Available: https://render.com/

[16] A. Hossack. Dashtools. [Online]. Available: https://github.com/
andrew-hossack/dash-tools

[17] kokke, “tiny-aes-c,” https://github.com/kokke/tiny-AES-c.

52

https://www.ijcert.org/index.php/ijcert/article/view/825/736
https://plot.ly
https://dash.plotly.com/
https://www.kaggle.com/
https://bokeh.org/
https://render.com/
https://github.com/andrew-hossack/dash-tools
https://github.com/andrew-hossack/dash-tools

Appendix A

Appendix

In this section, we present in more technical detail about some concepts
we used throughout the thesis which can help with the data flow analysis.

A.1 Binary to RISC-V Instruction Transition Ex-
ample

In this section, we provide a detailed breakdown of how RISC-V assembly
instructions are translated into their corresponding binary representations.
The RISC-V ISA follows a fixed encoding format, where each instruction
is represented by a 32-bit(RV32I) binary value, divided into specific fields
that denote the operation type, source and destination registers, and other
control parameters.

Each instruction format—such as R-type, I-type, S-type, B-type, U-
type, and J-type—follows a specific bit allocation pattern that allows the
processor to decode and execute operations efficiently. Understanding these
formats is crucial for analyzing low-level program execution, debugging, and
optimizing performance.

The following subsections demonstrate the binary encoding of various
RISC-V instruction types, breaking them down field by field to provide
a clear understanding of how the instruction’s components map to their
respective binary values.

ARITHMETIC Instruction

Example: add x3, x1, x2

What it means: x3 = x1 + x2.
Binary Representation: 0000000 00010 00001 000 00011 0110011

The RISC-V R-type instruction format is structured as follows:

[funct7][rs2][rs1][funct3][rd][opcode]

53

Index of Bits Field Name Field Value Number of Bits Meaning

31-25 funct7 0000 000 7 Operation variant for ARITHMETIC

24-20 rs2 0 0010 5 Second source register

19-15 rs1 0000 1 5 First source register

14-12 funct3 000 3 Operation type

11-7 rd 0001 1 5 Destination register

6-0 opcode 011 0011 7 ARITHMETIC instruction

Table A.1: Binary Breakdown of the RISC-V ARITHMETIC Instruction

LOAD Instruction

Example: lw x3, 0(x1)

What it means: x3 = MEM[x1 + 0]
Binary Representation: 000000000000 00001 010 00011 0000011

The RISC-V I-type instruction format is structured as follows:

[imm[11:0]][rs1][funct3][rd][opcode]

Index of Bits Field Name Field Value Number of Bits Meaning

31-20 imm[11:0] 0000 0000 0000 12 Immediate value

19-15 rs1 0000 1 5 Base register

14-12 funct3 010 3 LOAD type

11-7 rd 0001 1 5 Destination register

6-0 opcode 000 0011 7 LOAD instruction

Table A.2: Binary Breakdown of the RISC-V LOAD Instruction

STORE Instruction

Example: sw x3, 0(x1)

What it means: MEM[x1 + 0] = x3
Binary Representation: 0000000 00011 00001 010 00000 0100011

The RISC-V S-type instruction format is structured as follows:

[imm[11:5]][rs2][rs1][funct3][imm[4:0]][opcode]

Index of Bits Field Name Field Value Number of Bits Meaning

31-25 imm[11:5] 0000 000 7 Immediate upper bits

24-20 rs2 0 0011 5 Source register

19-15 rs1 0000 1 5 Base register

14-12 funct3 010 3 STORE type

11-7 imm[4:0] 0000 0 5 Immediate lower bits

6-0 opcode 010 0011 7 STORE instruction

Table A.3: Binary Breakdown of the RISC-V STORE Instruction

54

SHIFT Instruction

Example: sll x3, x1, x2

What it means: x3 = x1 << x2 (bits in x1 are shifted to the left by
x2)

Binary Representation: 0000000 00010 00001 001 00011 0110011

The RISC-V R-type instruction format is structured as follows:

[funct7][rs2][rs1][funct3][rd][opcode]

Index of Bits Field Name Field Value Number of Bits Meaning

31-25 funct7 0000 000 7 SHIFT type

24-20 rs2 0 0010 5 SHIFT amount register

19-15 rs1 0000 1 5 Base register

14-12 funct3 001 3 SHIFT left logical

11-7 rd 0001 1 5 Destination register

6-0 opcode 011 0011 7 SHIFT instruction

Table A.4: Binary Breakdown of the RISC-V SHIFT Instruction

BRANCH Instruction

Example: beq x1, x2, 8

What it means: BRANCH to PC + 8 if x1 == x2
Binary Representation: 0001000 00010 00001 000 01000 1100011

The RISC-V B-type instruction format is structured as follows:

[imm[12—10:5]][rs2][rs1][funct3][imm[4:1—11]][opcode]

Index of Bits Field Name Field Value Number of Bits Meaning

31-25 imm[12—10:5] 0001 000 7 Immediate value upper bits

24-20 rs2 0 0010 5 Second register

19-15 rs1 0000 1 5 First register

14-12 funct3 000 3 BRANCH condition

11-7 imm[4:1—11] 0100 0 5 Immediate value lower bits

6-0 opcode 110 0011 7 BRANCH instruction

Table A.5: Binary Breakdown of the RISC-V BRANCH Instruction

UNBRANCH Instruction

Example: jal x3, 16

What it means: Jump to PC + 16 and store return address in x3
Binary Representation: 00000000000000010000 00011 1101111

55

The RISC-V J-type instruction format is structured as follows:

[imm[20—10:1—11—19:12]][rd][opcode]

Index of Bits Field Name Field Value Number of Bits Meaning

31-12 imm[20—10:1—11—19:12] 0000 0000 0000 0001 0000 20 Immediate value for jump

11-7 rd 0001 1 5 Destination register

6-0 opcode 110 1111 7 Unconditional BRANCH (JAL)

Table A.6: Binary Breakdown of the RISC-V UNBRANCH Instruction

A.2 Decoding RISC-V Instructions

In this section, we illustrate how to decode some of the RISC-V binary in-
structions by breaking them down into their respective fields. Each example
provides an insight into how different instruction formats can be interpreted
from their binary representation.

Decoding example of an I-type Instruction

Example: lw x3, 0(x1)

What it means: x3 = MEM[x1 + 0]
Binary Representation:

0000 0000 0000︸ ︷︷ ︸
imm[11:0]

0000 1︸ ︷︷ ︸
rs1

010︸︷︷︸
funct3

0001 1︸ ︷︷ ︸
rd

000 0011︸ ︷︷ ︸
opcode

Immediate Breakdown:

000000000000︸ ︷︷ ︸
imm[11:0]

Field name imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

Bit Position 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Binary Representation a b c d e f g h i j k l

Rearranged Immediate a b c d e f g h i j k l

Size 20 bits 12 bits

Table A.7: I-type Immediate Field Breakdown

The Table A.8 demonstrates how an I-type instruction is decoded and
how each bit contributes to forming the final instruction. Similar techniques
can be applied to other RISC-V instruction formats.

56

Decoding example of an S-type Instruction

Example: sw x3, 0(x1)

What it means: MEM[x1 + 0] = x3
Binary Representation:

0000 000︸ ︷︷ ︸
imm[11:5]

0 0011︸ ︷︷ ︸
rs2

0000 1︸ ︷︷ ︸
rs1

010︸︷︷︸
funct3

0000 0︸ ︷︷ ︸
imm[4:0]

010 0011︸ ︷︷ ︸
opcode

Immediate Breakdown:

0000000︸ ︷︷ ︸
imm[11:5]

00000︸ ︷︷ ︸
imm[4:0]

Field name imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

Bit Position 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Binary Representation a b c d e f g u v w x y

Rearranged Immediate a b c d e f g u v w x y

Size 20 bits 7 bits 5 bits

Table A.8: S-type Immediate Field Breakdown

The Table A.8 demonstrates how an S-type instruction is decoded and
how each bit contributes to forming the final instruction. Similar techniques
can be applied to other RISC-V instruction formats.

Decoding example of a B-type Instruction

Example: beq x1, x2, 8

What it means: BRANCH to PC + 8 if x1 == x2
Binary Representation:

0001 000︸ ︷︷ ︸
imm[12—10:5]

0 0010︸ ︷︷ ︸
rs2

0000 1︸ ︷︷ ︸
rs1

000︸︷︷︸
funct3

0100 0︸ ︷︷ ︸
imm[4:1—11]

110 0011︸ ︷︷ ︸
opcode

Immediate Breakdown:

0︸︷︷︸
imm[12]

001000︸ ︷︷ ︸
imm[10:5]

0001︸︷︷︸
imm[4:1]

0︸︷︷︸
imm[11]

0︸︷︷︸
fixed end

Field name imm[12—10:5] rs2 rs1 funct3 imm[4:1—11] opcode

Bit Position 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Binary Representation a b c d e f g u v w x y

Rearranged Immediate a y b c d e f g u v w x 0

Size 19 bits 1 bit 1 bit 6 bits 4 bits 1 bit

Table A.9: B-type Immediate Field Breakdown

The Table A.9 demonstrates how a B-type instruction is decoded and
how each bit contributes to forming the final instruction. Similar techniques
can be applied to other RISC-V instruction formats.

57

Decoding example of a J-type Instruction

Example: jal x3, 16

What it means: Jump to PC + 16 and store return address in x3
Binary Representation:

0000 0000 0000 0001 0000︸ ︷︷ ︸
imm[20—10:1—11—19:12]

0001 1︸ ︷︷ ︸
rd

110 1111︸ ︷︷ ︸
opcode

Immediate Breakdown:

0︸︷︷︸
imm[20]

0000000100︸ ︷︷ ︸
imm[10:1]

0︸︷︷︸
imm[11]

00000000︸ ︷︷ ︸
imm[19:12]

0︸︷︷︸
fixed end

Field name imm[20—10:1—11—19:12] rd opcode

Bit Position 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Binary Representation a b c d e f g h i j k l m n o p q r s t

Rearranged Immediate a a a a a a a a a a a a m n o p q r s t l b c d e f g h i j k 0

Size 11 bits 1 bit 8 bits 1 bit 10 bits 1 bit

Table A.10: J-type Immediate Field Breakdown

The Table A.10 demonstrates how a J-type instruction is decoded and
how each bit contributes to forming the final instruction. Similar techniques
can be applied to other RISC-V instruction formats.

A.3 Transformation Between RISC-V Instructions
and Hexadecimal Representation

The transformation between RISC-V assembly instructions and their
hexadecimal representation involves encoding and decoding processes based
on the RISC-V instruction set architecture (ISA). RISC-V employs a fixed-
length instruction format, typically 32 bits(RV32I), which simplifies the con-
version process. Understanding this transformation is crucial for low-level
debugging, compiler design, and embedded system development using the
RISC-V ISA.

Encoding RISC-V Instructions to Hexadecimal

The process of converting RISC-V assembly instructions to hexadecimal
can be structured in the following steps:

1. Identify the type and format of the instruction (R-type, I-type, S-type,
etc.).

2. Find the binary representation of the command by determining the
values of opcode, registers, immediate values, and function codes.

58

3. Section the binary representation into groups of 4 bits.

4. Calculate the hexadecimal value of each group.

5. Combine the hexadecimal values to form the final hexadecimal repre-
sentation.

Example: “add x5, x6, x7“ (an R-type instruction):
Format: [funct7][rs2][rs1][funct3][rd][opcode]

- Opcode: 0110011

- Funct3: 000

- Funct7: 0000000

- Destination register (rd): x5 = 00101

- Source register 1 (rs1): x6 = 00110

- Source register 2 (rs2): x7 = 00111

The assembled binary instruction:
0000000 00111 00110 000 00101 0110011 = 0x007302B3
The conversion follows this breakdown:

Binary Value: 0000000 00111 00110 000 00101 0110011

Grouped: 0000 | 0000 | 0111 | 0011 | 0000 | 0010 | 1011 | 0011

Hexadecimal: 0 | 0 | 7 | 3 | 0 | 2 | B | 3

Final Hex: 0x007302B3

Decoding Hexadecimal to RISC-V Instructions

The reverse process involves translating a hexadecimal value back into a
human-readable RISC-V instruction by following these steps:

1. Section the binary string into one character for each section.

2. Decode each section to determine its binary value(4 digits).

3. Identify the instruction format based on the opcode.

4. Map the binary values to assembly components (registers, operation
codes, etc.).

59

	Introduction
	Abbreviations
	Background
	Advanced Encryption Standard (AES)
	RISC-V
	Side-Channel Attacks
	Architecture Level Simulator for RISC-V
	Archer Key Features
	Motivation for Interactive Visualizations

	Python Graphing Libraries: Plotly and Dash

	Related Work
	Interactive Visualizations
	Files needed for visualizations
	Trace Reference/Execution Trace
	TVLA Leakage Analysis
	AES Implementation Markers

	Supported Operations and Features
	Index Range Selection
	Indexes Opacity Selection
	Markers Opacity Selection
	Search by Index
	Search by PC
	Screenshot
	Legend
	Image-Interactive Features

	Interactions between features

	Visualization code
	Supported Files
	Support for Various Cryptographic Implementations
	Configuring Cryptographic Markers
	Defining Color Configurations
	Customizing Marker Symbols
	Automating the Configuration of Cryptographic Markers and Color Configurations
	Dynamic Marker Configuration
	Dynamic Color Generation
	Automated Workflow Integration

	Support for different implementations
	Switching to Plotly Express (PX)
	Switching to Bokeh
	Differences Between Plotly and Bokeh
	Challenges in Migration
	Recommendations

	Deploying the Application to a Server
	Common Issues

	Optimizations
	Limitations of the Tool

	Conclusions
	Appendix
	Binary to RISC-V Instruction Transition Example
	Decoding RISC-V Instructions
	Transformation Between RISC-V Instructions and Hexadecimal Representation

