
Verification of Fiasco’s IPC
implementation

Master thesis
Number 560

by

E.G.H. Schierboom
<eschierb@sci.kun.nl>

at

Radboud Universiteit Nijmegen
Computing Science Department

Toernooiveld 1
6525 ED Nijmegen

Holland

supervised by

dr. M.C.J.D. van Eekelen
dr. J.E.W. Smetsers
dr. W. Tews

June 21, 2007

1

Abstract

Software nowadays is often designed with dependability in mind. Our thesis combines two approaches
in creating a more dependable system: using microkernels instead of monolithic kernels and formally
verifying software. We have tried to verify three properties of inter-process communication in the Fiasco
microkernel. As Fiasco has been written in C++, which does not support verification, we converted the
source code to a model in the PVS proof system. To keep the model and proofs compact, we abstracted
away many details of inter-process communication.

Two of the three properties were verified; both dealt with threads possibly waiting forever. The third
property, verification of the assertions in the source code, posed several problems. One problem proved
insurmountable, probably due to the abstractions applied. Another problem led to the finding of a bug
in Fiasco’s IPC implementation. Although finding the bug had clear, practical use, we consider the fact
that our abstract model could find the bug more important. It shows that one does not have to create
a one-on-one model to apply (partial) verification; even our model in which essential components were
abstracted away sufficed to find a bug.

2

3

Preface

To me, computers are fascinating machines in all their aspects. I have always favored software over
hardware though, writing my own software was what got me into studying computer science after all.
Even though computers play a vital role in society nowadays, one must not forget that computer science is
a relatively young field of research1. It is therefore not surprising that there are still many problems with
computers, although progress is being made rapidly (which is another interesting aspect of computer
science). As hardware leaps forward2, the general impression is that the software lags behind. This
impression stems from the fact that most problems with computers are due to the software running on
them.

Lately, one of the most interesting developments in writing software, at least to me, has been the shift in
focus from performance to dependability3. This shift can, for a large part, be attributed to the changing
needs of people. Where one was previously happy that a computer could execute a task, people are now
so accustomed to computers that they expect that task to be executed dependably. Unfortunately, if one
would ask a random person if he or she has had any bad experiences with the dependability of software,
chances are very high that most would answer with a resounding ”yes”. The prime example of software
not being dependable is when it, or the whole system, crashes.

Almost all software on business or private computers runs on top of (and thus depends on) an operating
system, the most well known probably being Microsoft Windows, Unix/Linux and Mac OS. To me,
operating systems are the most interesting pieces of software available because of their vital role and
the very diverse tasks they execute. When one wants to create dependable software (which relies on the
operating system), it makes sense to create a dependable operating system. In an operating system, the
most vital part (or ”heart”) is the kernel, which dependability is therefore absolutely critical.

In line with the desire to create dependable software, verification of software is a rapidly expanding field
of computer science. What can be better to its dependability than to formally verify that a piece of
software does what it is supposed to do? In our thesis, we will combine both our interest in operating
system kernels and software verification. Our research shows how one can verify (a part of) a real kernel.
This is particularly useful as kernels are among the most likely candidates for verification because of their
vital role. We hope that our thesis will kindle your interest in verification of software, as we expect it to
become an integral part of software development in the, hopefully near, future.

1Especially when compared to other exact sciences such as mathematics and physics, which predate it by many centuries.
2Processors are an obvious example, as Moore’s law has successfully been applied to them for the last 30 years.
3Which loosely translates to software behaving like one expects it to.

4

5

Acknowledgements

In writing this thesis, I have received help from a great many people. First and foremost I would like
to thank Marko van Eekelen, Hendrik Tews and Sjaak Smetsers for the great assistance they have given
me. They have helped me with many different aspects of this thesis, from the verification of individual
lemmas to planning the research itself. Secondly, I want to thank René Reusner and Adam Lackorzynski
for never becoming tired of answering all my questions regarding the Fiasco IPC implementation. In
this regard, the L4 hackers mailinglist has also been very helpful; their responses were always fast and
to the point. The structure and contents of this document have been extensively commented upon by
Jens Wagemakers, for which I owe him many thanks. For a more general discussion of my thesis I often
turned to Sietse Overbeek, with whom I had some very useful discussions. When a technical problem
arose, Engelbert Hubbers was always quick to solve it.

Besides the abovementioned people, who were directly involved with the thesis’ contents, I have also
received support from a lot of people that did not involve the contents of this thesis. Most notably,
these include my friends, colleagues and family and of course my girlfriend, Jeltine Jungheim. I want to
specifically mention my dad who has always supported me in whatever I did, but unfortunately passed
away far too young; this thesis is dedicated to him.

I hereby apologize to anyone that has not made it in this list, that does not mean I did not appreciate
your help but merely that my memory has failed me.

6

7

Contents

1 Introduction 16

2 Backgrounds 18
2.1 Improving software dependability . 18

2.1.1 Safe language . 18
2.1.2 Code verification . 19
2.1.3 Minimized kernel . 19
2.1.4 Isolation . 20

2.2 L4 microkernel . 21
2.2.1 Introduction . 21
2.2.2 Design . 21
2.2.3 Implementations . 23

2.3 Fiasco . 24
2.3.1 Introduction . 24
2.3.2 History . 24
2.3.3 Threads . 24
2.3.4 Synchronization . 26
2.3.5 Locks . 26
2.3.6 Timeouts . 27
2.3.7 IPC . 27

2.4 PVS . 32
2.4.1 Introduction . 32
2.4.2 Features . 33
2.4.3 Example proof . 33

2.5 Related work . 35
2.5.1 Verifying memory management in Fiasco . 35
2.5.2 Developing a C++ semantics compiler . 35
2.5.3 Verifying IPC in Fiasco . 35
2.5.4 Improved IPC path . 36
2.5.5 L4.verified . 36

3 Model creation 38
3.1 Modeling approach . 38
3.2 PVS model . 38

3.2.1 Properties . 39
3.2.2 Abstractions . 39
3.2.3 Theory structure . 40
3.2.4 Fiasco types . 41
3.2.5 Fiasco functions . 44
3.2.6 Splitting functions . 48
3.2.7 Preemption points . 49

8

4 Model verification 53
4.1 Verification attempts . 53

4.1.1 Property 1: removal of sender’s thread lock on receiver 53
4.1.2 Property 2: waking up receiver in combined send/receive 55
4.1.3 Property 3: validation of assertions in the code . 56

5 Discussion 67
5.1 General discussion . 67
5.2 Research discussion . 68

6 Conclusions and future work 71
6.1 Conclusions . 71
6.2 Future work . 72

6.2.1 Further verification . 72
6.2.2 Modular proofs . 73
6.2.3 Automation of verification . 73
6.2.4 Improved conversion . 73

Appendix A PVS: fiasco types.pvs 74

Appendix B PVS: fiasco functions.pvs 77

Appendix C PVS: fiasco states.pvs 90

Appendix D PVS: fiasco helpers.pvs 92

Appendix E PVS: fiasco state.pvs 97

Appendix F PVS: fiasco lock.pvs 102

Appendix G PVS: fiasco wakeup.pvs 106

Appendix H PVS: fiasco assert.pvs 107

Appendix I C++: thread-ipc.cpp 110

Appendix J C++: sender.cpp 124

Appendix K C++: receiver.cpp 126

9

List of Figures

2.1 Fiasco IPC roles diagram. 27
2.2 IPC overview. 28
2.3 IPC send part overview. 29
2.4 IPC receive part overview. 29
2.5 Fiasco interrupt transitions. 32

3.1 PVS theories structure. 40

10

11

List of Tables

2.1 Overview of several L4 implementations . 24
2.2 Mapping of L4 IPC calls to Fiasco send and receive parts. 28

3.1 Model: split functions. 48

12

13

List of Sources

2.1 PVS: example of the extensible records mechanism. 33
3.1 PVS: sender list definition. 41
3.2 PVS: thread state definition. 41
3.3 C++: Thread ipc sending mask state definition. 42
3.4 PVS: Thread ipc sending mask state definition. 42
3.5 PVS: context, sender and receiver definitions. 42
3.6 PVS: thread definition. 43
3.7 PVS: thread alternative definition. 43
3.8 PVS: thread pointer definition. 43
3.9 PVS: definition of thread list. 44
3.10 PVS: IPC error codes- and timeout definitions. 44
3.11 PVS: an example of a system state-modifying function. 45
3.12 PVS: incomplete system state, focusing on threads. 45
3.13 PVS: example of accessing this thread. 45
3.14 PVS: definition of special this pointer type. 45
3.15 PVS: incomplete system state, with integrated error field. 46
3.16 PVS: example of error setting and checking. 46
3.17 PVS: basic system state, with integrated timeout field. 46
3.18 PVS: system state initialization in the sys ipc() function. 46
3.19 PVS: sender ok() function without implementation. 47
3.20 PVS: sender ok() function. 47
3.21 C++: sender ok() function. 47
3.22 PVS: calling the split ipc receiver ready() function. 48
3.23 PVS: preemption action type. 49
3.24 PVS: preemption action() function. 50
3.25 PVS: expanded system state, with added seed field. 50
3.26 PVS: preemption point() function. 50
3.27 PVS: preemption point actions() function. 50
3.28 PVS: ipc receiver ready() function. 51
4.1 PVS: lock dirty() function. 54
4.2 PVS: clear dirty() and clear dirty dont switch() functions. 54
4.3 PVS: basic system state, with integrated handshake attempted field. 54
4.4 PVS: setting the handshake field. 54
4.5 PVS: property 1, formal definition. 55
4.6 PVS: in ipc() definition. 56
4.7 PVS: property 2, formal definition. 56
4.8 PVS: basic system state, with added assertions held field. 57
4.9 C++: have receive assertion. 57
4.10 PVS: have receive assertion. 57
4.11 PVS: property 3, formal definition. 57
4.12 PVS: thread polling assertion. 58
4.13 PVS: try handshake receiver no error not polling lemma. 58

14

4.14 PVS: try handshake receiver() problematic lines. 58
4.15 C++: thread polling bit, added assertion. 59
4.16 PVS: unset thread polling() bit invariant. 59
4.17 PVS: unset thread polling() bit invariant. 59
4.18 PVS: do send wait() function, problematic thread polling path. 60
4.19 PVS: the axiom used in the do send wait() function. 60
4.20 PVS: preemption actions()- and related receiver ready() lemma. 61
4.21 PVS: receiver ready()- and dependent preemption actions() lemma. 61
4.22 PVS: the axiom used in the do send wait loop() function. 62
4.23 PVS: property 3, sublemma for the do ipc send part() function. 62

15

Chapter 1

Introduction

“To err is human - and to blame it on a computer is even more so.”

Robert Orben

“I do not fear computers. I fear the lack of them.”

Isaac Asimov

Writing computer programs has changed a lot in the last decennia. The programs written for the first
computers had to keep in mind that its resources (such as processing power and memory) were very
limited and thus efficiency was a key design goal. As computers advanced, its resources became more
abundant so efficiency became less an issue. Instead, as reliance on computers increased, building a more
dependable system became a key design goal. The concept of dependability is defined by the IFIP1

[IFI05] as follows:

“The notion of dependability, defined as the trustworthiness of a computing system which
allows reliance to be justifiably placed on the service it delivers, enables these various concerns
to be subsumed within a single conceptual framework. Dependability thus includes as special
cases such attributes as reliability, availability, safety, security.”

To create a dependable computer system it makes sense to start looking at the foundations of the software
running on a computer, namely the kernel. Critical functions such as memory allocation, scheduling,
process management2 and inter-process communication (IPC) are all handled by the kernel. Errors in
the kernel decrease its dependability and without a dependable kernel we cannot reasonably expect the
whole system to be dependable3. One of the main issues in creating a dependable system is thus: how
to create a dependable kernel?

One approach to create a dependable kernel is to make it a microkernel. The main design motivation
when designing a microkernel is summarized by Jochen Liedtke in [Lie95]:

“[...] a concept is tolerated inside the microkernel only if moving it outside the kernel [...]
would prevent the implementation of the system’s required functionality.”

A microkernel is thus a specific type of kernel in which anything that does not necessarily belong in the
kernel is moved outside the kernel. This results in a smaller and more robust system. A monolithic
kernel however includes, often many, concepts that do not necessarily belong in the kernel. A typical

1The International Federation For Information Processing.
2Such as the creation and stopping of processes. A process is sometimes also referred to as a task.
3Remember that each task relies on the kernel for its core functionality.

16

concept that a monolithic kernel includes but a microkernel does not is the file server (or file system).
The main benefit of including a concept in the kernel is improved performance, as switching between
user- and kernel-mode is quite expensive [HHL+97]. Its main disadvantage is that a crash of the concept
often brings down the entire kernel (and thus the entire system). When a concept resides in user space,
a crash of that concept has a significantly smaller chance of bringing down the entire system as it cannot
directly access the kernel space (in which the kernel resides).

Although a microkernel is more compact than a monolithic kernel, errors are still likely to exist. Each
error in the kernel negatively influences its dependability, the question is therefore: how to minimize
the number of errors in the kernel? One approach is to formally verify the kernel. Formally verifying
software is very similar to creating a mathematical proof4. Just as a mathematical proof lets you say
things with absolute certainty about the proven statement, formal software verification lets you say things
with absolute certainty about the verified software. Being able to guarantee that certain properties hold
when executing software is incredibly helpful in developing a dependable system; one could for example
verify that the system will never be in a certain, erroneous state.

This thesis will report on our attempt to formally verify a part of the Fiasco microkernel, which is
based on Jochen Liedtke’s L4 microkernel specification [Lie96] and has been developed by the Technische
Universität Dresden. We will try to formally verify certain aspects of inter-process communication in
Fiasco. Our research question is as follows:

What properties of inter-process communication on the Fiasco microkernel can be proven?

The verification will be done by creating a model of inter-process communication in Fiasco and then verify
properties of that model. The verification system PVS5 will be used to verify and create the model. We
have chosen specifically for Fiasco because it is the subject of a larger verification project, called VFiasco
[HTS03], in which our research can easily be integrated. PVS has been chosen mainly because it has thus
far been the verification system of choice in the VFiasco project.

After this short introduction into the problem area, we continue at chapter two with the thesis’ back-
grounds. Chapter three discusses how the PVS model was created. The verification of several properties
of the model is detailed in chapter four. A discussion of the obtained results is presented in chapter five
and in the sixth and final chapter conclusions and suggestions for future work are presented.

4Computerized mechanical proofs are often regarded upon with high scepticism by mathematicians though.
5Prototype Verification System.

17

Chapter 2

Backgrounds

“There are two ways of constructing a software design; one way is
to make it so simple that there are obviously no deficiencies, and
the other way is to make it so complicated that there are no
obvious deficiencies. The first method is far more difficult.”

C. A. R. Hoare

“Beware of bugs in the above code; I have only proved it correct,
not tried it.”

Donald Knuth

2.1 Improving software dependability

Dependability (of which security is a special case) has become more and more important of late. The
definition of dependability has been given in the introduction, so we will now focus on how to create
dependable software. There are many approaches on how to create dependable software; we will list
those we consider to be the most important. Please note that the proposed solutions are not mutually
exclusive, in fact some of them have already been combined [HTS03, HLA+05].

2.1.1 Safe language

A lot of software errors are not due to incorrect designs, but due to incorrect programming. The most
well known problem is probably that of a buffer overflow. Two of the most used languages, C and C++,
offer no inherent protection against buffer overflows and are thus vulnerable to this type of memory error.
A solution is to design a language that is memory safe, which means that no buffer overflows can occur.
Examples of these languages are C# and Java. The problem with these languages is that they offer no
fine-grained control over memory (de)allocation, which is needed for common performance optimizations
to be applied.

As maximizing performance is still vital to many programs (such as device drivers, computer games or
kernels), these safe languages are often not an option. The approach taken by Cornell University was
to develop a dialect of C, named Cyclone [JMG+02], which preserves its syntax and semantics, but also
prevents some of the most common errors in the C language (such as the aforementioned buffer overflow)
by using new (albeit very similar) syntax.

Another approach is to define a completely new, safe language. This approach is taken by the John

18

Hopkins University in their Coyotos project [Uni06]. They have developed a safe language, called BitC
[JS06], with fully specified semantics. Their approach is directly related to the next solution for a
dependable system: code verification.

2.1.2 Code verification

One of the most rigorous methods to improve the dependability of software is to verify its correctness.
Verification of code is done by first creating a specification of the code in a verification language and then
use that language’s verification capabilities to verify the required properties1. Examples of verification
languages, which are specifically tailored to constructing proofs, are PVS [Owr], Isabelle/HOL [NPW02],
BoogiePL [DL05] and Abstract Machine Notation [SN01].

The problem with specifying code in a verification language is that often no executable code can be gen-
erated from it. To still be able to prove properties of executable code, there are two options: convert the
verification language to an executable language or vice versa. For both options it is of vital importance
that the conversion retains the exact semantics of the source language, otherwise the proofs would not
necessarily apply to the corresponding source code or the executable code might not do what the source
specification said it would do. The problem with a semantics-retaining conversion is that both languages
need to have a clear and well-defined semantics. Unfortunately, the widely used C++ language lacks in
this area. Although attempts have been made to develop a clear and well-defined semantics for C++
(which will be discussed later in this chapter), the results so far are still lacking in their applicability to
real-world scenarios. The Java language though does have a well-defined semantics; the LOOP compiler
[vdBJ01] proved that it was feasible to automatically convert Java to a higher-order logic. As a demon-
stration of its applicability to real-world code, Huisman et. al. used the LOOP compiler to successfully
verify a non-trivial property of Java’s Vector class [HJvdB99]. Unfortunately, the LOOP compiler is not
yet generally applicable as it currently does not support threads2.

Even if one has verified properties of source code, it is ultimately the machine code that gets executed.
Therefore, it is the machine code that ultimately has to be verified. If one assumes that the conversion
from source code to machine code, which is done by the compiler, retains semantics, verification of the
source code suffices. Curzon described in [Cur92] how a compiler can be verified.

As said, conversion from certain languages (such as C++) to a verification language has proven to be
very hard. An alternative to an automated conversion is to create a model of the source code in the
verification language. This has two clear problems; first of all the conversion needs to be done by-hand
most of the time, which is a far more tedious and error-prone operation than automatic conversion, and
secondly there can be no guarantee that proofs in the verification language apply to the source code (as
the semantics of the model might not match those of the source code).

To assist the prover3 reason about correctness, some languages support the use of source code annotations,
which can be used in the verification language. Annotation systems have been developed for a wide variety
of languages, such as C [EGHT94], Java [LBR99, HHJT98] and a dialect of C# called Spec# [BLS04].

2.1.3 Minimized kernel

The most important part of an operating system (OS) is the kernel, as it handles critical OS parts
such as process communication, scheduling and memory management. There are basically two different
types of kernels: monolithic- and microkernels. A monolithic kernel executes all its code in the same
address space in order to improve performance, whereas a microkernel tries to execute as much of its

1An example of such a property is requiring that the program always terminates.
2This is especially unfortunate considering the latest trend of developing multi-threaded applications, which is due to

multi-processor systems becoming increasingly widespread.
3The program with which proofs are constructed in a verification language.

19

functionality in user space. A microkernel can be seen as a minimized version of a monolithic kernel. The
basic requirements for a microkernel are given in [Lie95].

Currently two types of microkernels are identified: first generation microkernels such as Mach [RJO+89]
and Minix [HBG+06] and second generation microkernels such as QNX [Hil92] and Fiasco [HTS03]. First
generation microkernels still contained code in the kernel which were not strictly necessary for executing
its core tasks, second generation microkernels moved this code outside the kernel. Second generation
microkernels are thus more strict microkernels.

Usually, a microkernel’s tasks are limited to address space management, thread management and IPC.
By restricting its functionality to these core concepts, a microkernel is typically much smaller than a
monolithic kernel and thus less likely to contain bugs. Furthermore, the removal of many concepts from
the kernel results in a system less likely to crash. Take for example the file server, a typical concept that
is included in monolithic kernels (because of its importance on the performance of the kernel), but is not
part of a typical microkernel. In the monolithic kernel, the file server has access to all kernel data; a crash
of the file server can therefore result in a crash of the whole kernel (and thus everything running on the
kernel). However, in the microkernel the file server executes in user space and cannot modify the kernel
data. Therefore, a crash of the file server is not likely to crash the microkernel on which it is running.

2.1.4 Isolation

Another way to create a more dependable system is to contain processes in small, isolated spaces. When
a process is isolated, it cannot do any harm to other (isolated) processes. There are two types of isolated
processes: software isolated processes (SIPs) and hardware isolated processes (HIPs)4. In practice, many
operating systems do not enforce strict process isolation, which results in a system where programs can
modify other programs, with potentially very damaging results (for example a single driver’s failure
crashes the whole system).

Hardware isolation of processes can be done by the OS, which limits a processes’ memory access to
specific pages of physical memory. The OS usually achieves this through standard hardware mechanisms,
for example by running user processes in a less priviledged mode than kernel processes5. The mechanism
an OS typically uses to hardware-isolate processes is virtual memory. Even though virtual memory is
directly supported by most processors, studies show that this form of process isolation is in fact quite
costly [AFH+06, MHH02].

Software isolation depends on the software to isolate processes. The Singularity operating system
[HLA+05] is designed with software isolation in mind and also heavily uses language safety [AFH+06,
FL06, HAB+06]. In short, in Singularity each application runs in its own, private software box, which
ensures that the application can only modify data in its own box.

Another form of software isolation is called virtualization. Normally the OS is the lowest software layer
on a system, but virtualization adds another layer below the OS. Each virtualized OS thinks it has access
to all hardware, but in fact hardware access is controlled by the virtualization layer. The process that
manages the virtualization of hardware is often referred to as the hypervisor6. Now several OSes (and
its processes) can run simultaneously without interfering with each other (although the hypervisor might
allow some limited and controlled communication between OSes), because the hypervisor ensures that
an OS cannot access the hardware issued to another OS.

Traditionally, virtualization of x86 processors is hard as the x86 architecture does not meet the Popek and
4The terms SIP and HIP are taken from [AFH+06].
5On x86 processors, processes running at ring 0 are given full control of the processor and lower rings have limited access.
6This is a reference to the OS sometimes being referred to as a supervisor. Obviously the virtualization layer has more

control than the OS, therefore the term hypervisor as it supersedes supervisor.

20

Goldberg virtualization requirements [PG74]. The main x86 processor manufacturers, AMD and Intel,
acknowledged the problems with virtualization and have recently built extensions in their processors to
support virtualization7. The virtualization layer can now translate the difficult OS calls to alternative,
virtualization suitable calls, resulting in better virtualization performance.

Another way to deal with the difficult system calls is to apply paravirtualization. This means that the OS
is modified to the extent that no difficult calls will be made, therefore no processor-specific virtualization
extensions have to be used. Unfortunately, OS modification is not possible for closed-source systems
without their creators’ explicit consent.

2.2 L4 microkernel

2.2.1 Introduction

A performance analysis of first generation microkernels, such as Mach, revealed that they failed to deliver
a high performance microkernel [HHL+97]. Jochen Liedtke realized that one of the key reasons why Mach
did not perform very well, was its complex IPC implementation. He then set himself to creating a micro-
kernel specification that would offer high performance; this resulted in the L3 microkernel specification
[Met96]. The L3 specification had a small and efficient IPC specification, which indeed offered massive
performance gains when compared to earlier microkernels such as Mach. However, Liedtke noted that
the specification still contained concepts that could (and should) be moved out of the microkernel. The
removal of these concepts resulted in the L4 specification. By definition the L4 microkernel specification
is thus a second generation microkernel8.

The original L4 microkernel specification is the L4.V2 specification [Lie96]. When the L4 specification
is referred to, one usually refers to the L4.V2 specification. However, the L4.V2 specification had some
problems associated with it. One of the biggest problems was with the thread ids. The thread ids as
specified in L4.V2 were found to be rather inflexible and unwieldy. Another problem was that the clans
and chiefs concept9 was too inefficient for most purposes. These problems (and more) were addressed
in the L4.X0 specification [Lie99]. The main goal of this specification was not to solve all problems
of the L4.V2 specification, but to use it as an experimental test-case. The aim of the L4.X2 release
[Lie04] though was to solve the problems in the L4.V2 specification. Some of the more notable differences
between the L4.V2- and L4.X2 specifications are: the separation of task- and thread management, support
for multiprocessing and a clear separation between API10 and ABI11. Lastly, Kauer and Völp from the
Technische Universität Dresden have developed the L4.Sec specification [BK05], which enhances the L4
specification with security features.

2.2.2 Design

Although the L4 kernel is created with minimalism in mind, there are a couple of basic concepts that
have to be in the kernel:

• Address spaces

• Threads

• Inter-process communication
7Respestively called AMD Virtualization [AMD05] and Intel Virtualization Technology [Cor05].
8As mentioned, a second generation microkernel is designed with both minimalism and performance in mind.
9The clans and chiefs concept was designed to enable the implementation of arbitrary security policies.

10Application Programming Interface. The API is the source code interface with which a computer program or library
lets other programs or libraries use its services.

11Application Binary Interface. An ABI allows object code to be run without changes on any system using a compatible
ABI.

21

• Mapping

• Scheduling

Address spaces An address space is a set of mappings from virtual- to physical memory. Address
spaces form the mechanism through which task-isolation12 is achieved. A flexpage is a contigous region
of virtual address space.

Threads A thread is the single unit of execution. Each thread belongs to a single address space, with
a predefined maximum number of threads per address space. An L4 thread is characterized by a set of
registers, with the instruction pointer, stack pointer and state information being required and stored in
the kernel in a structure called the thread control block (TCB13).

Inter-process communication The sole mechanism through which threads can communicate and ex-
change data is inter-process communication, which as a side-effect also increases independence between
system components. IPC in L4 is always synchronous, which means that no data is exchanged unless
both parties agree to. IPC is also unbuffered; the kernel does not temporarily store messages which are to
be sent later. L4 offers two different types of IPC: short- and long IPC. Short IPC does not involve access
of user space memory and thus cannot generate page-faults; long IPC does access user space memory and
thus has to take possible page-faults into account. Short IPC only allows a limited amount of data to be
be sent, messages exceeding the short IPC limit have to be sent using long IPC. When possible, short
IPC is used as it offers significant performance benefits. The IPC mechanism is also used to handle both
hardware- and software- interrupts14 and to map-, grant and unmap flexpages. A timeout can be set to
enable (unsuccessful) IPC operations to be cancelled after a specified time.

Mapping When a page-fault is generated in a thread’s address space, a notification is sent to the thread’s
associated pager (which can be different for each thread); that pager can then insert a memory page to
resolve the page-fault. Threads can map-, grant- and unmap any of its flexpages to another thread.
Mapping flexpages to another thread means that the flexpages will be shared between the mapper and
the mappee. Granting a flexpage to another thread passes the control of that flexpage to the grantee, the
granter afterwards cannot use the granted flexpage. The unmapping of a flexpage is the inverse operation
of mapping a flexpage (it can only be invoked on mapped flexpages, not on granted flexpages). The
mechanism through which this is possible is IPC, where a special IPC message is sent between the two
threads involved in the memory mapping.

Scheduling The scheduling of threads in L4 is priority-based, which means that the ready thread with
the highest priority is always the one to be allocated CPU-time. Each thread has a priority level (of
which there are 256) and time quantum associated with it. Scheduling threads with the same priority
level is done through a round-robin schedule15.

The L4 specification also mentions the concept of a task, but this is essentially equivalent to the concept
of an address space. The main difference between a task and an address space is a conceptual one: the
former focuses on the system’s memory and the latter focuses on the threads running in an address space.
The L4 definition of a task is the set of threads sharing an address space. Creating a new task results in
the creation of an address space with one thread in it.

As one of the L4 design goals was to implement no policies, how memory is allocated is left to the
application(s) running on L4; the kernel only provides the means to allocate memory. The L4 specification

12Task-isolation is the inability of tasks to tamper with the data of other tasks without their consent.
13Not to be confused with Trusted Computing Base.
14An example of a software interrupt in L4 is a timeout.
15Round-robin scheduling lets the first thread of a list of waiting threads use the CPU for a period up to its time quantum.

Should the thread not be finished when it’s time quantum expires, the thread is moved to the end of the list and scheduling
resumes with the first item of the list.

22

specifies though that the initial address space, called σ0, should comprise all available memory (excluding
kernel-reserved memory).

IPC

As said, IPC communication is always synchronous and unbuffered. Each IPC call therefore involves
exactly one sender and one receiver. L4 offers five different IPC calls: send, receive, wait, reply-wait and
call. An invocation of the send call results in the sending of a single message, after which the invoker
continues his work. Invoking the receive call results in the invoker waiting to receive a message from
any sender. The wait call does the same as the receive call, but only accepts messages from a single,
specified sender. The last two calls are basically predefined combinations of the aforementioned calls,
where each combination reflects a common real-world scenario. The call method results in the sending
of a message after which the sender waits for a return message from the receiver it just sent the message
to. The reply-wait operation is one in which a single message is sent after which the invoker waits for a
reply from any source.

A real-world example in which both the call- and reply-wait operations are used is a webserver. The
webserver handles a request from a client, returns the results to the client and is then ready to receive a
request from any client; this is equal to the reply-wait operation. From the perspective of the client, a call
operation is done as the client subsequently requests data from the webserver and waits for a response
from that same webserver.

For performance guarantees, the L4 specification requires that the transitition between the send- and
receive states in a single IPC call requires no time16 (also referred to as an atomic switch). Having
an optimized path for frequently used situations clearly benefits the system’s real-world performance.
Another result of combining the send and receive operations in the call and reply-wait methods is that
it saves system calls (without the call method, both a send- and receive call would have to be made to
achieve the same result). As Liedtke showed in [Lie93], the switching between user- and kernel mode as
the result of a system call is very expensive. In both combined calls a single system call is saved, which
helps to improve IPC performance.

2.2.3 Implementations

The original L4 implementation by Jochen Liedtke, sometimes referred to as L4/x86, was completely
written in assembly language to maximize performance. Writing a program in assembly language has some
obvious disadvantages, of which poor readability- and maintainability are probably the most important
ones. Therefore, and because of licensing issues, the Technische Universität Dresden developed an L4-
based kernel in C++ named Fiasco, which demonstrated that an implementation of the L4 specification
in a higher-level language was feasible. Apart from implementing the L4 specification, Fiasco also offers
hard real-time support (which is not part of the L4 specification). Similarly, Jochen Liedtke and his team
at the University of Karlsruhe developed L4Ka::Hazelnut, once again as proof that an L4 microkernel
could be implemented in a higher level language and still offer high performance.

Up until this point, all L4 implementations were inheritly bound to the underlying architecture [Lie95].
This changed with the advent of the L4.X2 specification. One of the first implementations of the L4.X2
specification was also developed at Karlsruhe and was named L4Ka::Pistacchio. The main aim of Pistac-
chio was on both performance and portability. The new portability demand was clearly met by Pistacchio,
as the supported platforms included Alpha-, ARM-, IA32-, MIPS- and PowerPC architectures. A rel-
atively new specification and implementation originates from the National ICT Australia group. They
have developed an L4 version specifically aimed at embedded systems called NICTA [Aus05].

16This also protects the receiver (server) against Denial Of Service attacks.

23

Implementation Versions Architectures
NICTA::Pistachio-embedded N1, N2 IA-32, ARM, Mips64
L4Ka::Pistacchio X2 IA-32, IA-64, ARM, AMD64, PowerPC-32,

PowerPC-64, Alpha, Mips64
L4Ka::Hazelnut X0 IA-32, ARM
Fiasco V2, X2 IA-32, ARM, AMD64, UX
L4/x86 V2, X0 IA-32

Table 2.1: Overview of several L4 implementations

2.3 Fiasco

2.3.1 Introduction

The Fiasco kernel is based on the aforementioned L4 specification. Fiasco is a second generation mi-
crokernel, which means that it is created with minimalism (nothing exists in the kernel that cannot be
moved out of it) and performance in mind. The effect of minimalism can clearly be seen in the number of
lines of code the kernel comprises: around 20.000 lines of code for Fiasco compared to around 3.2 million
for the Linux kernel. The Fiasco kernel is developed with real-time features in mind, which means that
the system is fully preemptable17.

2.3.2 History

DROPS18 [HBB+98] is a research project which aims to find design techniques to implement a distributed,
real-time operating system where every component can guarantee a certain level-of-service to applications.
The foundation of DROPS is based on the L4 specification. As the original L4/x86 implementation
by Jochen Liedtke had some serious disadvantages (readability, maintainability and licensing issues),
the Technische Universität Dresden decided to create their own implementation of the L4 specification,
called Fiasco, which could be used by DROPS. Besides implementing the L4.V2 and L4.X2 specifications,
Fiasco sets itself apart from other L4 implementations with its real-time features, obviously created with
DROPS’ real-time focus in mind.

Another project related to Fiasco is Fiasco-UX [Sch01], which is a port of the Fiasco microkernel to the
Linux system-call interface. This means that Fiasco-UX can be run as an application on a Linux system
and due to its special design (no need for kernel-level priviliges) it can even be run as a regular user-level
application. One of the main benefits of this approach is its ease of use, particularly when developing
applications for Fiasco. Rebooting the machine due to a (kernel) crash is no longer necessary, a simple
restart of the Fiasco-UX process suffices. Another advantage is that several instances of Fiasco-UX can
run in parallel.

We will now discuss in more detail the features of Fiasco that are relevant to our research.

2.3.3 Threads

Besides implementing the L4 thread specification, Fiasco also implements some additional mechanisms
for performance- and real-time support purposes. Some of the performance optimizations stem from
[Lie93].

17Execution can be interrupted at almost any time, which means the work is temporarily halted in favor of (at that
moment) higher priority work. After the prioritized work has finished, the system continues with the interrupted execution.

18Dresden Real-time OPerating Systems project.

24

Scheduling

As the L4 specification dictates, a thread has properties such as a time quantum and priority associated
with it; these properties of a thread are called its scheduling context and are used in the scheduling of
threads. To support the real-time features of Fiasco, each thread can also have an additional real-time
scheduling context19. An execution context is a runnable, schedulable thread. At all times there is only
one active execution context (or thread), as Fiasco does not support multi-processor execution (it will
only use one of the processors available). A thread’s current state of execution is stored in its thread
control block (TCB), which resides in the kernel. Switching execution of threads can therefore be done
through a simple TCB switch. The scheduler uses the ready-list (containing all threads ready to be run)
to decide what thread to run next. More details on scheduling in Fiasco can be found in [Ste04].

Ready-list

As said, the system keeps a list of all threads ready to be executed: the ready-list. Although it might
seem odd at first, the ready-list can contain threads that are not ready to be executed. If the scheduler
finds such a thread while traversing the ready-list, it is immediately removed from it. The goal of this
lazy-scheduling is improving the performance of IPC. As an example, we look at a call to the call IPC
function, in which a sender sends a message to a receiver and then waits for that receiver to send a message
back. If we were to strictly adhere to the property that the ready-list only contains ready threads, this
IPC call would result in the following modifications to the ready-list:

• After the sender has sent its message, the sender enters a waiting mode and has to be dequeued.

• After the sender has sent its message, the receiver becomes ready and has to be enqueued.

• After the receiver has sent its message, the receiver enters a waiting mode and has to be dequeued.

• After the receiver has sent its message, the sender becomes ready and has to be enqueued.

We see that this common scenario results in four different changes to the ready-list. Obviously, this is
detremental to IPC performance. However, if we allow non-ready threads in the ready-list and exclude the
current executing thread from it (which is ready by definition), all four modifications can be saved. After
the sender has sent its message, the receiver does not need to be enqueued as it has become the current
executing thread. Similarly, once the receiver has sent its message back, the sender does not need to be
enqueued as it will be the currently executing thread. Both dequeue actions can be saved as we allow
threads in the ready-list that are not ready, which is precisely what entering a waiting mode signifies.
To successfully apply this lazy-scheduling, the kernel has to make sure that the current executing thread
will be enqueued in the ready-list if it cannot finish its task within its timeslice. If we would leave out
this clause, the current executing thread is not guaranteed to get scheduled again (remember that it is
not contained in the ready-list while executing), which is necessary in order to finish its task.

To switch execution from sender to receiver (and vice versa) without ready-list scheduling, the system
uses their execution contexts. Say we want to switch execution from thread A (which is the current active
thread) to thread B, but without using the ready-list. To do so, a simple switch of execution context
from A to B suffices, as the current execution context determines what is executed. It is not necessary
to also switch the scheduling context from A to B, in fact it is better not to for the following reason. If
the scheduling context is not changed when the execution context is switched, thread B gets to execute
as if it were A, which means that it can execute for the remainder of A’s timeslice. This optimization
gives B more execution time than it would normally have, thereby allowing it to finish sooner. In our
call example, this means that after the sender has sent its message, an execution switch is made to the
receiver which gets to execute in the sender’s timeslice. Therefore, it is likely that the receiver is able to
send a message back sooner, as the sender’s timeslice remainder would otherwise be wasted by waiting
on the receiver.

19This is not part of the L4 specification.

25

In some situations, it might not be useful to immediately switch to the receiver but instead enqueue the
receiver in the ready-list (which is the normal way in which a thread gets to execute). For this situation
the deceit-bit hack can be used. Originally, the deceit-bit was used in the L4 clans & chiefs concept, but
as this concept proved too inflexible it is almost never implemented. Therefore, the deceit-bit was free
for other purposes and in Fiasco it is used to signal that no lazy-scheduling should be applied.

2.3.4 Synchronization

Having a fully preemptable system requires some form of synchronization for critical parts. Fiasco
supports two different types of synchronization: lock-free- and wait-free synchronization. The main
difference between the two synchronization types is in their intended use: lock-free synchronization should
be used for time-critical synchronization (such as the synchronizing of frequently accessed, global data)
and wait-free synchronization should be used for non time-critical operations (such as the synchronizing
of local data). The two synchronization types are implemented as follows:

• Lock-free synchronization: this is achieved through atomic updating of memory20. It tries to
exchange old data for new data and if this fails it simply retries. In order to prevent the system
from retrying infinitely (which would invalidate the real-time properties of the system), a specific
retry-count can be set. While setting the data, interrupts will be temporarily disabled to prevent
another thread from modifying the data.

• Wait-free synchronization: this is a locking-type of synchronization, in which exclusive access to
resources can be obtained by creating a lock. Fiasco expands on this well-known mechanism by
introducing switch locks (also referred to as helping locks). Suppose thread A has locked a resource
X which thread B also wants to access. Normally, B would just use up all of its execution time
waiting on A to release the lock on X. However, instead of wasting execution time on waiting,
B can also help A release its lock sooner by donating its remaining timeslice to A. Now A has
more execution time available and will likely release the lock on X sooner, which is exactly what B
wants. One might note the similarity of this optimization to the thread switch optimization in the
ready-list description.

A full description of the design philosophy and implementation of these two synchronization mechanisms
can be found in [HH01].

2.3.5 Locks

Wait-free synchronization in Fiasco can be achieved through the use of locks. Basically there are two
types of locks: regular- and switch locks. Of the former there exists just one in Fiasco, namely the CPU
lock, which temporarily disables interrupts. This lock should only be used for very short intervals as it
can negatively influence the real-time features of the system. The other two locks in Fiasco are switch
locks. The first switch lock is the thread lock, which locks access to a thread. The second switch lock
is the helping lock, which is similar to the switch lock save from the fact that it also works when the
scheduling system has not yet been loaded.

Switch locks are designed explicitly with IPC performance in mind; its basic optimization principle
strongly resembles that discussed in the ready-list discussion. The implementation is as follows. When
the current thread tries to acquire a lock on a resource by using a switch lock but detects that the
resource is already locked, the lock count of the current thread is incremented. After incrementing the
lock count, the switch lock keeps on switching to the lock owner (by switching the execution context to
that of the lock owner) until the lock is free and can be acquired. Afterwards, when the lock is released,
the lock count is decremented and the lock checks if it has been helped by another thread (which donated
execution time to the thread holding the lock), if so it switches the execution context to that of the
helper.

20The x86 processor provides the compare-and-swap (CAS) instruction for exactly this purpose.

26

When a thread is locked, it will not be selected by the scheduler. Should a switch be made to a locked
thread, the system will immediately switch to that thread’s lock owner. Although locked threads normally
do not get scheduled, an exception arises when a thread is killed. A thread that is to be killed should
hold no locks at all, therefore the system keeps scheduling such a thread until it has released all its locks.
The thread’s lock count is used to determine if any locks are still present.

2.3.6 Timeouts

Fiasco recognizes three different types of timeouts: IPC-, deadline- and timeslice timeouts. An IPC
timeout is used to restrict an IPC call to a specific maximum time, which can be used to prevent senders
and receivers from waiting endlessly on each other. A deadline timeout is used to set timed deadlines
and a timeslice timeout is used to signal the end of a timeslice.

Internally, timeouts are stored in a list that is ordered in ascending timeout order (the head of the list
is the oldest timeout and the first to occur). When the system checks if timeouts occured, the timeout
list can thus be traversed sequentially. Therefore, detecting timeouts is very fast whereas enqueuing or
dequeuing is rather slow. For more details on the implementation of timeouts see [Reu05].

2.3.7 IPC

IPC in Fiasco supports all L4 IPC calls, namely send, receive, wait, reply-wait and call. All these functions
are internally supported through one generic function: sys ipc(), which parameters determine the actual
call made. We will now describe the general setup of IPC in Fiasco.

Sender and receiver roles

IPC in Fiasco is synchronous and thus always involves a single sender- and receiver communicating
(sending messages) with each other. In Fiasco, there are separate definitions for the sender- and receiver
roles. As threads need to both send- and receive messages, they extend (inherit from) both the receiver-
and the sender role. In Fiasco, only threads extend the receiver role, in other words only threads can
receive IPC messages. However, there are two more objects extending the sender role, namely the IRQ
and preemption objects. The first translates hardware interrupts into IPC messages, which demonstrates
the very generic applicability of Fiasco’s receiver/sender setup. The second sends messages dealing with
preemptions. As both the IRQ and preemption objects can only send messages (as they do not extend
the receiver role), they are also known as passive senders.

Figure 2.1: Fiasco IPC roles diagram.

Due to IPC’s synchronous nature, a receiver can only receive a message from a single sender. As it
is possible that a receiver is unable to directly engage in IPC with a sender (for example because it is
already engaged in IPC with another sender), the receiver should be able to queue send requests. This is
achieved in Fiasco by letting the receiver have a sender list, which is a list of senders wanting to send a
message to the receiver. Once a receiver engages in IPC with a sender, that sender is removed from the
sender list (if he was it in).

27

When an IPC call is made, the transferring of a message is handled from the viewpoint of the sender, it is
the sender that determines which actions to do first and how to continue. An exception to this situation
occurs when the sender is a passive sender; in this case the receiver controls IPC.

IPC overview

Although there are five different IPC calls, internally there is only one function that handles IPC: sys ipc().
IPC (and thus the sys ipc() function) can be divided into a send and receive part. Obviously, the send
part handles the sending of an IPC message and the receive part handles the receiving thereof. The table
below lists what IPC parts are involved in the five IPC calls:

IPC call Send part Receive part
send x -
receive - x
wait - x
reply-wait x x
call x x

Table 2.2: Mapping of L4 IPC calls to Fiasco send and receive parts.

The following schema gives an overview of how the send and receive parts are handled in Fiasco:

Figure 2.2: IPC overview.

One might remember that in the reply-wait and call calls, the message sending preceded the receiving of
a message. In Fiasco, the receive part is handled after the send part to allow the aforementioned two
calls to be handled in a single execution of the IPC path (this sequential structure has no influence on
the functionality of the other three IPC calls).

Before a message can be sent in the send part, the sender and receiver have to agree upon engaging in
IPC; this is referred to as the handshake. It is possible that the receiver is not immediately ready to
receive a message from the sender, for example because it is still engaged in IPC with another sender; in
that case the sender is added to the receiver’s sender list and waits for the receiver to become ready. If
an error occured in the handshake, IPC is aborted. However, if the handshake was successful, the sender
can then send its message to the receiver. The following schema displays this set-up:

28

Figure 2.3: IPC send part overview.

As control of IPC is mostly handled by the sender (and thus in the send part), the receive part does
relatively little. What is done in the receive part is that the receiver enters a loop. With each iteration,
it checks if it is ready to receive a message and if there is a sender that wants to send a message (which is
indicated by a non-empty sender list). If there is such a sender, the receiver sends it a signal to indicate
that it is ready to receive a message. That sender is subsequently removed from the sender list by the
receiver. Only when the receiver is not ready to receive a message is the receive part aborted.

Figure 2.4: IPC receive part overview.

29

IPC paths

Because IPC in Fiasco is unbuffered, no messages are temporarily stored by the kernel; instead messages
are transferred directly between sender and receiver. As described in the L4 specification, Fiasco discerns
between three different message types: untyped data (direct strings), memory-buffer references (indirect
strings) and memory mappings (flexpages).

There are two paths in Fiasco through which an IPC message can be transferred: a short- and long IPC
path.

• Short IPC path: this path uses only the system registers for transferring messages. The size of the
data which can be transferred is thus limited to the size of the available registers. The advantages
of only using the system registers for message transfer are that it is very fast and that no page-faults
can occur (as no user-space memory is accessed). As an example of where the short IPC path is
put to good use, when a page-fault IPC message is sent to a pager, that pager should respond with
a flexpage IPC message to resolve the page-fault. Because a single flexpage does not exceed the
size of the registers, it can be sent using the short IPC path allowing for a fast response by the
pager. Secondly, when a direct string is sent, the system puts as much of that direct string into the
registers; if the direct string does nog fit completely into the registers, the rest of the direct string
is transferred using the long IPC path.

• Long IPC path: all message types can be transferred through the long IPC path, that includes
indirect strings. Where the short IPC path limits the sending of flexpages to a single value, the
long IPC path can send several flexpages at once. The transferring of messages is done by creating
an IPC window. The IPC window is a part of the receiver’s address space, which is mapped to the
sender’s address space during the message transfer. The sender can now directly copy the messages
into the address space of the receiver, which prevents the kernel from buffering the messages. The
main disadvantage of long IPC is that it has to invoke user-space memory, which could generate
page-faults. A generated page-fault is sent to the pager of the receiver, as it is the receiver’s address
space that is being written to. Also, the long IPC path is slower than the short IPC path.

IPC shortcut path

Besides the two aforementioned IPC paths, there is also an IPC shortcut path. Basically, the IPC shortcut
is an alternative version of the short IPC path (it thus also transfers messages through the system
registers), but with some further restrictions applied to it (which enable performance optimizations).
One of the restrictions of the shortcut is that it does not support the receive- and wait calls. Another
restriction is that a single flexpage cannot be sent using the shortcut, only direct strings which fit into the
registers are thus eligible for use with the IPC shortcut. Furthermore, the supported timeouts are limited
to zero- (immediate response required) and infinite (no time-out at all) timeouts. The IPC shortcut
completely runs with interrupts disabled.

The reason why the IPC shortcut was developed is simple: most of the system calls are IPC calls and
most of the IPC messages are short IPC messages. Therefore, when the transfer of these short messages is
optimized, the performance of the whole system is likely to improve significantly. There are two different
versions of the shortcut. The normal version is implemented in C++, but there is also an optimized
version of the shortcut, which is written in assembler and has been developed by Michael Peter [Pet02].

IPC states

The state of an IPC operation is stored at the receiver; this state is stored as a bit mask in which
each bit corresponds to a specific state the thread can be in (for example waiting for a receiver or
sending an IPC message). There are several functions to modify the state, which can add-, delete-
or at once add- and delete bits in the state. These functions are respectively state add(), state del()
and state change(). All these functions are atomic operations, which means that they are guaranteed

30

to succeed. The disadvantage of these atomic operations is that they are unnecessarily expensive when
interrupts are already disabled. In this case regular operations would have exactly the same result as they
too are then guaranteed to succeed, but without incurring the performance penalty of atomic operations.
Fiasco therefore offers non-atomic variants of the state modification functions which are suffixed with
” dirty” (leading to the state add dirty(), state del dirty() and state change dirty() functions). Please
note that these dirty functions assume that interrupts are disabled, they do not check this themselves;
it is therefore the responsibility of the caller to make sure interrupts are disabled when calling these
functions.

Priority inversion

One of the classic scheduling problems is priority inversion, where a lower priority task is prioritized over
a higher priority task. This situation occurs when a lower priority task has locked a shared resource that
a higher priority task also wants to access. The higher priority task has no choice but to wait for the
lower priority task to release the lock; the priorities are thus temporarily inversed. In Fiasco’s old IPC
path this problem existed when a combined send- and wait call was made. Let us consider a situation
in which a sender A is engaged in a combined send- and wait operation with receiver B. As soon as A
has sent its message to B, sender A enters a waiting state and an immediate execution context switch is
made to receiver B (this optimization is described in the ready-list section). Because the receiver B gets
to execute in the scheduling context of A, it will temporarily inherit the priority of A. Now suppose just
before the switch to B, a second sender (which we call C) tries to send a message to B. If the priority of C
is less than or equal to the priority of A, there is no problem. However, when C has a higher priority than
B, the switch from B to A (which has B’s priority) violates the priority-based scheduling invariant21.

This problem was fixed in the current IPC implementation; its solution was actually quite simple: before
switching to the receiver, the sender should check if there is a sender with a higher priority than its own
that wants to send a message to the same receiver. Should this be the case, the receiver is added to the
ready-list and the system switches to the higher priority sender. If no other higher priority sender exists,
the immediate switch to the receiver can be done without any problem.

Real-time features

Because IPC is of vital importance to the performance of Fiasco (in fact, it is of vital performance to
any microkernel), improving IPC is thus one of the key performance improving strategies. However, with
Fiasco a constant eye has to kept at the real-time features of the system. Often, there is a trade-off
between performance and real-time support. This can clearly be seen in René Reusner’s attempt to
improve the performance of IPC in Fiasco, which includes clear graphs detailing the trade-off results
[Reu05].

Probably the best example of such a performance versus real-time features trade-off is the decision on
which parts of the IPC path should be non-interruptible. If one makes the IPC path non-interruptible,
this prevents the use of synchronization mechanisms, which are required in an interruptible path and
thus improves performance. The real-time features are invalidated though. The current IPC path is
non-interruptible in the following phases: the setup, rendez-vous and finish phase. Furthermore, when
sending direct strings in the register transfer (short IPC) phase, the system remains non-interruptible.
However, when a flexpage is sent in the register transfer phase or the memory transfer phase is used, the
system is interruptible. An interruptible path has good real-time features, but this comes at the cost of
decreased performance.

Although most phases are non-interruptible, in- and between phases interrupt points and -regions have
been inserted to preserve the real-time features. An interrupt region is created by calling Proc::sti()
(enable interrupts) at the beginning- and Proc::cli() (disable interrupts) at the end of the region. An

21Which states that higher priority threads should always be scheduled before lower priority threads.

31

interrupt point is created by calling the Proc::preemption point() function22. Please note that there also
is a preemption point at the very beginning of an IPC operation, before the sys ipc() function is called.
The disadvantage of using interrupt points and -regions is that additional checks are needed because the
state might have changed while interrupts were allowed.

Figure 2.5: Fiasco interrupt transitions.

2.4 PVS

2.4.1 Introduction

PVS stands for Prototype Verification System and has been developed by SRI International, an inde-
pendent, non-profit research institute [Int06]. The PVS language is a simply typed, higher-order logic
language. The language offers built-in types such as booleans and integers, but also supports custom
defined types. There are several type-constructors available, ranging from functions to enumerations.
PVS also supports (and includes) inductively defined data types such as lists and binary trees. To help
in creating proofs, PVS by default supplies the user with many lemmas that can be used in creating a
proof23.

In PVS, specifications can be written just like in any regular functional language. Specifications are
however not created to generate an executable, but with the goal of proving properties of those specifi-
cations. PVS thus cannot be used directly to create a provably correct program, but it could create a
provably correct program specification [MS95]. Having a provably correct program specification is par-
ticularly useful when designing a life-critical application24 such as the software running a space shuttle.
In fact, NASA has been using PVS for it’s space shuttle program [CV98] and has actively participated
in PVS-related research [Vit03].

The PVS theorem prover lies at the heart of every proof in PVS; it has a predefined collection of inference
procedures which the user can apply interactively within a sequent calculus framework. Examples of
inference procedures are rewriting, simplifying and applying induction. There are also predefined proof
strategies, which are essentially just combinations of the inference procedures. PVS also allows the user
to create his or her own strategies.

For those unfamiliar with sequent calculus, a short description will now follow. The objective of a proof
is to generate a proof tree of sequents in which all leaves are trivially true. Each node of a proof tree

22Internally, this function first enables interrupts by calling Proc::sti(), than executes the nop() instruction (which does
not do anything) twice to give interrupts the chance and then disables interrupts again by calling Proc::cli() after which it
returns.

23An example is the lemma reverse reverse, which states that reversing a list twice results in the original list.
24We define a life-critical application as one where a failure in the application might result in the loss of one or more lives.

32

is such a sequent. A sequent is a combination of antecedents and consequents. Sequents are interpreted
such that the conjuction of the antecedents implies the disjunction of the consequents. Less formally, the
antecedents are what is assumed to be true and the consequents are what one wants to prove to be true.

2.4.2 Features

We will now discuss some of the more noteworthy PVS features which have found their way into our
research.

Theory importing

Every declaration (such as lemmas, functions or types) defined in PVS belongs to a single, named theory.
For ease of use, it is possible to have one theory import other theories (as long as there are no circular
references), which definitions can then be used. This allows one to create modular theories, where general
purpose declarations can be defined once and used more than once.

Extensible records

From PVS version 4.0 and up, the concept of extensible records has been introduced into PVS. This
concept allows one record to extend another record. This means that when a record extends another
record, it automatically contains (or inherits) all fields defined in the record which it extends. This
mechanism can be used to define a simple type of inheritance. The example below shows three record
types: record1 is a regular record type, but record3 inherits from the record2 by using the extensible
records concept. The result of the extension is that the record1 and record3 types are equal (they have
exactly the same fields), although they have used different methods to achieve this.

% record1 does not i n h e r i t any f i e l d s , i t d e f i n e s them a l l i t s e l f .
record1 : TYPE = [# a : type a , b : type b #]

% Have record3 i n h e r i t a l l f i e l d s from record2 , t h i s r e s u l t s in record3 having e x a c t l y
% the same f i e l d s as record1 .
record2 : TYPE = [# a : type a #]
record3 : TYPE = record2 WITH [# b : type b #]

Source 2.1: PVS: example of the extensible records mechanism.

2.4.3 Example proof

As a short example of creating a proof in PVS, we will prove that the square of any odd number is also
an odd number. This corresponds to the following lemma in PVS:

odd square is odd: lemma ∀ (number: int): odd?(number) =⇒ odd?(number× number)

In this lemma, we use odd?, which is only true if the supplied argument is an odd number in PVS (the
definition of odd? can be found in the PVS prelude). When we start proving this lemma, we are initially
presented with the following sequent:

{1} ∀ (number: int): odd?(number) =⇒ odd?(number× number)

As can be seen, we now have one consequent (the formula numbered 1, appearing below the line) that
corresponds to the statement we want to prove. Currently, this consequent deals with any possible
number (referred to as a universal quantifier), but we want to limit it to a single instance (or constant)
for easier proof creation. To replace the universal quantifier with a constant, we issue the (skolem!)
command.

33

{1} odd?(number′) =⇒ odd?(number′ × number′)

The result is now that the universal quantifier has been replaced by a constant. In the rest of our proof,
we will use this constant.

For our proof, we need an antecedent stating that number′ is an odd number. At the moment, this
assumption is still contained in the formula in consequent 1. To remedy this, we apply the (flatten)
command.

{-1} odd?(number′)
{1} odd?(number′ × number′)

The result of the (flatten) command is that the odd number assumption has been removed from consequent
1 and added as antecedent -1.

To be able to continue our proof, we have to look at how odd numbers are defined in PVS. To do so, we
expand the definition of odd? by issuing (expand ”odd?”).

{-1} ∃ j: number′ = 1 + 2× j
{1} ∃ j: number′ × number′ = 1 + 2× j

Once again, quantifiers have been introduced into our proof. As we want to use the constant number′ in
consequent 1, we have to make sure there are no quantifiers in antecent -1 (in which the constant number′

is defined). This is done by issuing the (skolem!) command again.

{-1} number′ = 1 + 2× j′

{1} ∃ j: number′ × number′ = 1 + 2× j

The result is that the number′ constant is now removed of its quantifiers, which means that we can use
it in consequent 1.

At this point, we have to decide how we can use the odd number constant in antecedent -1 to prove
consequent 1. For this, it is best to look at how one would verify this statement mathematically. If we
look at consequent 1, we want to find a number j such that:

number′ ∗ number′ = 1 + 2 ∗ j (2.1)

If we could find such as number j, number′ ∗number′ would conform to the definition of an odd number
(which is what we wanted to prove). We can find this number j by rewriting the definition of number′:

number′ = 1 + 2 ∗ j′

number′ ∗ number′ = (1 + 2 ∗ j′) ∗ (1 + 2 ∗ j′)

= 1 + 4j′ + 4j′2

= 1 + 2 ∗ (2j′ + 2j′2)

(2.2)

This simple rewrite has provided us with the value we can use for j:

j = 2j′ + 2j′2 (2.3)

Returning to our proof, we can use the value of j we found in our proof by instantiating consequent 1.
We can now initialize the quantifier in consequent 1 with the value found: 2× j′ + 2× j′ × j′:

{-1} number′ = 1 + 2× j′

{1} number′ × number′ = 1 + 2× 2× j′ + 2× j′ × j′

34

Everything is now in place to finish the proof, which can be done by applying (assert!).

This completes the proof of odd square is odd.

Q.E.D.

2.5 Related work

Although the Fiasco kernel is in continuous development, there already has been some effort in formally
verifying it. In this respect, Fiasco also serves as a test project to study the feasibility of a verified
microkernel. The attempts to verify the Fiasco kernel belong to the VFiasco project [HTS03]. Besides
describing why they want to verify the Fiasco kernel, Hohmuth and Tews also describe why they decided
to verify the C++ Fiasco source and not re-implement the kernel in a ’safe’ programming language. It
is interesting to see that the approaches taken to verify parts of Fiasco differ on many parts.

2.5.1 Verifying memory management in Fiasco

One of the first attempts to verify the Fiasco kernel focused on Fiasco’s memory management [Tew00].
The approach taken by Tews was to create a co-algebraic model of memory management in Fiasco in
the CCSL language [HHJT98]. After Fiasco’s memory management was modelled in CCSL, this model
was compiled to a PVS specification in which properties of the co-algebraic model were proven. The
approach taken was successful in formally verifying several properties of Fiasco’s memory management.
There were however two problems with the approach taken. First of all, CCSL lacks support for imperative
programming, which lessens its applicability to real-world situations as imperative programming is widely
used. Therefore, creating a model of Fiasco (which was written in an imperative language) was not as
intuitive in CCSL as it could be. The second problem was the creation of the CCSL model from the Fiasco
source, which had to be done by hand. So far, no conversion can be made from C++ to CCSL, which is
mainly due to the complexity of C++. This leaves one no choice but to convert the source code by hand,
which can be a daunting task for large programs. A manual conversion also has the disadvantage that,
strictly speaking, the properties proven only apply to the CCSL model and not to the actual C++ source.
This is because one cannot guarantee that the hand-made C++ to CCSL conversion retains the source
code’s semantics. As said, defining a formal semantics of C++ is extremely hard due to its complexity.
According to the author, this leaves us with two solutions: only verify source code in a language with
well-defined semantics or use a well-behaved subset of C++ with a clear semantics.

2.5.2 Developing a C++ semantics compiler

In line with the conclusions of the work described above, development of a C++ semantics compiler was
attempted by Matthias Daum in [Dau03]. His compiler uses the earlier work by Hohmuth and Tews in
describing the semantics of C++ data types [HT03]. Although the developed C++ compiler partly met
its design goals (such as flexibility and architecture independence), there was still a reasonable number of
unsupported C++ features. The list of unsupported features included function pointers, enumerations,
dynamic casts, recursive functions and access specifiers. The author deemed some of these features
unneccessary because Fiasco didn’t use them (such as function pointers and recursive functions) and
declared others as rare and usually avoidable (for example unions and bit-fields). The proposed testcase
for the compiler was to compile the page-fault handler in Fiasco. Unfortunately, the C++ compiler failed
to compile even the relatively small page-fault handler. The inability to compile the page-fault handler
indicated that the compiler was not yet ready to be used extensively in Fiasco.

2.5.3 Verifying IPC in Fiasco

Memory management in Fiasco has not been the only component which has been subject to formal
verification. The thesis by Endrawaty describes his attempt to formally verify (a part of) inter-process

35

communication in Fiasco using model checking [End05]. His approach is based on creating a model in
the Promela language which could then be verified in SPIN [HPV00]. Promela is a non-deterministic
language derived from Dijkstra’s guarded commands [Dij75]. Verification in SPIN is basically done by
extensively checking the whole state space. To verify a property, the system checks if the property holds in
every possible state. This brute-force25 method has some disadvantages, most notably poor performance
and high memory usage because of the extensive state space.

To simplify the creation of the IPC model (and to combat the aforementioned state space problems), the
author abstracted away a lot of details and focused on the short IPC path only. Some of the features that
were not modelled include page-faults and interrupts. Furthermore, the author assumed that the timeout
was always equal to zero and represented the data copying process with a single boolean value indicating
the success of the data copying itself. Even though the model itself was not that big and abstracted away
a lot of details, state space problems did occur. Unfortunately, the properties proven by Endrawaty do
not exceed that of simple state checks.

Just as in the memory management verification, one of the biggest problems is in translating the C++
source to the language in which the verification will be done (in this case Promela). At first the author
tried to create a model by looking at the functionality IPC offers, but later on he just continued with
translating the C++ source line-by-line to Promela (albeit in an iterative way). The author concludes
by recommending to look into possible optimizations of the model, after which more features could be
added (for example by removing some of the abstractions), though he does not give any indication on
how to the model might be optimized.

2.5.4 Improved IPC path

After signalling that there were several performance problems with IPC in Fiasco, René Reusner set out
to create a new (long) IPC path that solved (several of) these problems [Reu05]. The author chose to
optimize the IPC calls most frequently used, namely the call - and reply-wait calls. As mentioned before,
both calls involve a send- and receive operation and switch atomically between these two modes. In the
old IPC version almost every part of the call- and wait calls was fully preemptable. In the improved IPC
path, most of those parts were not preemptable, which saved synchronization costs and thus improved
performance. To still be able to guarantee real-time response times, interrupt points were inserted at
specific points in which IPC could be interrupted.

The implemented IPC path offered significant improvements over the old IPC path. However, some
future work still remained. For one, when sending an IPC message the priority of the sender is always
used; it would be more correct to use the maximum of the sender- and receiver’s priority. Furthermore,
the problem of priority inversion still existed, although a reference to a possible solution is given.

2.5.5 L4.verified

Although not directly related to Fiasco, the work in the L4.verified is similar enough to include it here.
The goal of the L4.verified project is to provide a mathematical proof of the L4 microkernel specification;
the required formal specification was created using the B method [SN01] and is described in [KK06].
Although this approach was fairly successful, the project still changed directions. Work was continued
on an expanded L4 specification, which was specifically aimed at developing secure embedded systems.
This specification, named seL4 (secure embedded L4), differed from L4 mainly in its use of capabilities,
which are the sole providers of access to kernel services. The goal of the seL4 project was to create a
formally verified implementation of the seL4 microkernel specification.

The development of the seL4 microkernel was based on incrementally developing a prototype in the
Haskell functional language. To test the prototype conventionally, test applications were developed that

25A brute-force method implies that it does not use any intelligence to limit the state space, it just tries all possibilities.

36

ran on the seL4 prototype and simulated regular use thereof. Through these tests and further incremental
improvement, the prototype ended up as a complete kernel implementation. At this point, verification
of the Haskell kernel implementation was attempted. For this purpose, the Haskell specification was
converted to a specification in the Isabelle/HOL proof system [NPW02], which allowed it to be formally
verified. The conversion was done manually, which was considered to be faster than developing an
application for automatic conversion. After verification of the prototype was successful, the Haskell code
was converted to C code for performance purposes. The aim is to also verify this C implementation, for
which a formal model of the C language was developed [TKN07].

Currently, the state of the project is that the seL4 kernel is precisely specified in both Haskell and
Isabelle/HOL. Around 90 percent of this specification has been verified and its implementation in C is
nearing completion. There has not been any large-scale verification attempt of the C implementation,
but confidence exists in its feasibility as a case-study has shown that the L4 kernel memory allocator
could be verified.

37

Chapter 3

Model creation

“Simplicity is prerequisite for reliability.”

Edsger W. Dijkstra

“Fight Features. ...the only way to make software secure, reliable,
and fast is to make it small.”

Andrew S. Tanenbaum

3.1 Modeling approach

Our approach in creating the PVS model from Fiasco’s C++ source code is explained in detail in this
chapter, along with a look at the basics of our PVS model. At the moment, there is no converter
which can completely convert the Fiasco C++ source code to our proof language of choice, PVS. We
are therefore limited to creating a model of the code. When using a model as the basis for proofs, the
obvious disadvantage is that we cannot claim to have proven anything about the code; strictly speaking
those proofs only apply to the model and not to the code being modelled. However, if one trusts the
model to be an accurate representation of the code (albeit probably on a higher level), any proof claims
of the model would also apply to the code.

There are two ways to create a model of source code: create a one-on-one translation or create a higher-
level model (which abstracts away some of the details in the code). The main advantage of the first
method is that it can help increase confidence that the model is an accurate representation of the source
code. This is due to the fact that each line in the source code can be directly linked to a part of the model.
The disadvantage is that such a detailed model can quickly become very large, which makes proofs more
difficult to establish and can also make the creation of the model a tedious process. The second method
looks at the source code at a higher level, focusing more on what the source code does than how. The
disadvantage here is that one has to have a good understanding of what the system does, which can be
more difficult than it sounds. One of its advantages is that the model can choose to focus on a specific
part of the source code, leaving out uninteresting or irrelevant parts. Therefore, the model will be more
compact, making it easier to comprehend and proofs probably smaller.

3.2 PVS model

We will now discuss how the PVS model looks like, from the datatypes used to the abstractions applied.
Furthermore, we will show how the original C++ source code was converted to PVS and what problems

38

occured. Where possible, we will use excerpts of the model to help clarify the text. While discussing our
model, it is important that one keeps in mind that our verification attempts only look at IPC from the
perspective of the current thread.

3.2.1 Properties

As our model has been created with the properties we wanted to prove in mind, we will first discuss those
properties. We have looked at three different properties, each of which we will now discuss in more detail.

Property 1: removal of sender’s thread lock on receiver

Before a sender can send a message to a receiver, they both have to agree upon engaging in IPC (referred
to as the handshake). The message can only be sent if the handshake is successful. When sending a
message, the sender has to make sure that the receiver thread is not locked by another thread. If it is,
the sender will acquire a thread lock on the receiver before sending the message. After the sending has
finished, any acquired thread lock on the receiver should be released as otherwise no other threads can
access the receiver subsequently.

Property 2: waking up receiver in combined send/receive

As explained earlier, it is possible to make a combined send- and receive IPC call. This means that after
having sent its message to the receiver, the sender then waits for the receiver to send a message back.
Essentially this means that after the first message is sent, the sender- and receiver roles are swapped.
At the moment where the receiver assumes the sender role, it should be ready to be scheduled (in other
words, the receiver is awoken). If the receiver is not ready to be scheduled when the roles are swapped,
it might never be scheduled again, which might result in the sender waiting forever to receive a message
back.

Property 3: validation of assertions in the code

In the Fiasco C++ source code, there are several calls to the assert() function. Basically, a call to assert()
is meant to ensure that the system is in a correct state. The assert() function takes a boolean expression
as its parameter, which it evaluates. If the expression evaluates to true, execution is continued normally.
However, if the expression evaluates to false, execution of the program is aborted. Assertions should thus
only be used when a specific condition has to hold. As we have included the assertions in our model,
we tried to verify that all assert calls evaluate to true. If we could verify this, that would give us some
confidence in the correctness of our model.

3.2.2 Abstractions

To prevent the model and proofs from becoming too complex, we abstracted away many parts of Fiasco
IPC. The abstractions depend in part on the above-mentioned properties, but also on the complexity of
some parts of IPC. We will now list the most important abstractions:

• Implementation of functions: in some cases we kept the model simple by hiding the implemen-
tation of specific functions. In these cases we were only interested in what the effect of a function
was, not on how it was achieved.

• Different senders: of the three possible IPC message senders, we have only modelled one: threads.
The preemption- and interrupt IPC message senders have been abstracted away as inclusion would
have required two additional send paths to be added to the model.

• Scheduling: we are not interested in how and which threads are scheduled, our only concern is
with the effect this scheduling has on IPC. Anything related to scheduling, such as the execution-
and scheduling context concepts, is thus not included in our model.

39

• Receive part: the properties we looked at mostly concerned the send part of IPC, which resulted
in the abstraction of the receive part. The receive part does appear in a slightly modified form in
our preemption point implementation.

• Long IPC: in contrast to the short IPC path, the long IPC path is fully interruptible. This greatly
increases the complexity, as the system can interrupt ongoing IPC at any time. Furthermore, in
long IPC page-faults can occur which require special handling. The long IPC path is thus far more
complex than the short IPC path, which would lead to a more complex model and (much) harder
proofs, and has therefore been abstracted away.

• IPC shortcut: as the IPC shortcut path has a fairly simple implementation, it was not likely to
be an interesting subject for formal verification. Furthermore, the shortcut completely runs with
interrupts disabled, which is precisely one of the features we were interested in modeling.

• Short flexpage: the transfer of a single, short flexpage is done by using the system registers.
However, it is handled differently from other short IPC messages that are also transferred through
the system registers. Furthermore, when memory is being mapped, interrupts have to be enabled
which makes the model and proof harder to create. We have therefore omitted the mapping of a
single, short flexpage.

3.2.3 Theory structure

As we tried to create a modular structure for our model and proofs, we split our PVS sources into various
theories. The figure below shows the theories and their dependencies:

Figure 3.1: PVS theories structure.

The basis is formed by the <fiasco types> theory, in which the Fiasco-related datatypes (such as threads
and timeouts) are defined. These types are used by the <fiasco functions>- and <fiasco states> theories,
where the IPC-related functions and predefined thread states are defined respectively. Having setup the
system this way prevents the different theories from redefining these essential IPC components (thus
creating a single point of definition). Besides the three theories for our proof properties (<fiasco assert>,
<fiasco lock> and <fiasco wakeup>), there are two theories which define lemmas that are required to
verify the properties, but that are not directly related to these properties. The first of these theories is
the <fiasco helpers> theory in which general purpose lemmas are declared. The second assisting theory,
<fiasco state>, defines more specific helping lemmas that only involve the state a thread can be in.

40

3.2.4 Fiasco types

To model the IPC path we have to model the types involved. Because not all details of the types defined
in Fiasco are relevant to the properties we want to prove, we do not have to create a one-on-one model.
In short, we will only model those types that are directly relevant to the properties we want to prove and
on a level sufficiently high enough to be suitable for a proof properties. This means that many Fiasco
types will have quite abstract definitions in our models. We will now discuss the types in our PVS model.

Sender list

When a sender attempts to send a message to a receiver that is currently busy, that sender is added to
the receiver’s sender list (which contains all senders wanting to send a message to the receiver). Once the
receiver has finished IPC with the current sender, it pops the first sender off the sender list and engages
in IPC with that sender (if that sender is still willing to do so).

When modeling the sender list, one should note that we abstracted away the receive part as we focused
on the send part. Therefore, we were only interested in the sender list from the viewpoint of the sender.
Assuming this viewpoint, the status of a receiver’s sender list can be one the following options:

• The sender is the first item in the sender list and will thus be the next sender with whom the
receiver will engage in IPC.

• The sender is in the receiver’s sender list but not as the first item; that means it will have to wait
for the receiver to finish IPC with the preceding senders before IPC can be engaged upon.

• The sender is not enqueued in the sender list at all, which means that it is either currently engaged
in IPC with the receiver or not interested in sending a message to the receiver.

These options make it clear that the original list-like implementation of the sender list is slightly more
complex than it has to be, therefore we modelled the sender list as the following, simple enumeration:

S e n d e r l i s t : TYPE = {
Fir s t , % <t h i s > i s the f i r s t sender in the l i s t .
Enqueued , % <t h i s > i s enqueued but not the f i r s t item .
Dequeued % <t h i s > i s not in the non−empty l i s t .

}

Source 3.1: PVS: sender list definition.

In our model thus every receiver’s sender list is specifically targeted to the current active thread.

Thread state

Because IPC in Fiasco is very dependent on the states the sender- and receiver are in, the thread state
enumeration is one of the key datatypes in our model. In Fiasco, the thread state is stored as a bit mask1

of all possible states a thread can be in (such as ready or dead). In PVS we modelled the thread state
as a record of boolean values, each one representing a specific state bit being set or not. We could have
modelled the bit mask as a PVS bitvector [BMS+97], which would represent the actual implementation
more faithfully, but this would have needlessly complicated the model and proof. As we are only interested
in which states a thread is in, our simple record of boolean values suffices.

Thread state : TYPE = [# thread ready : bool ,
t h r ead canc e l : bool ,
thread dead : bool ,
thread busy : bool ,
t h r e ad i nva l i d : bool ,
t h r e ad po l l i n g : bool ,
t h r e ad r e c e i v i n g : bool ,

1A bit mask is an integer where individual bits are used to store data in.

41

t h r e a d i p c i n p r o g r e s s : bool ,
t h r e ad s end i n p r o g r e s s : bool ,
t h r e a d t r a n s f e r i n p r o g r e s s : bool #]

Source 3.2: PVS: thread state definition.

When one compares the definition above with that in the Fiasco source code, one may note that there
are some state bits missing in our definition. This is due to the properties we tried to verify, our set of
state bits forms the minimal subset of states necessary to create a model in which our properties could
be verified. For example, the thread polling long bit is not included in our definition, as it is only used
in long IPC which we have not modelled. The thread polling bit is an example of the importance of the
thread state in IPC, as it indicates if a sender is waiting for a receiver to become ready.

In Fiasco IPC, there are several predefined states that have specific bits toggled on or off. The main
function of these states is to prevent the same states from being redefined each time they are used. An
example of such a predefined state is the Thread ipc sending mask state, which indicates the state a
sender is in when it waits for a receiver to become ready; this state is defined as follows:

#define Thread ipc sending mask (Thread send in prog r e s s | \
Thread po l l ing | \
Thread po l l i ng l ong)

Source 3.3: C++: Thread ipc sending mask state definition.

It is important to note that in the definition above only the three specified bits are sets, the rest is unset.
To easily achieve the same effect in our model, we created a basic state, TS empty, which has all bits
unset. Extending this empty state allowed us to easily create predefined states such as the one defined
above. Our definition of the Thread ipc sending mask state is the following:

TS ipc sending mask : Thread state = TS empty WITH [
t h r e ad s end i n p r o g r e s s := true ,
t h r e ad po l l i n g := true

]

Source 3.4: PVS: Thread ipc sending mask state definition.

We have used a slightly different naming convention, where the TS -prefix indicates a thread state defi-
nition, for brevity purposes. The thread polling long bit is not included in our predefined state, because
it is not part of our model (as explained in more detail earlier).

Sender and receiver

When modeling threads, we note that a thread can act as both a sender and a receiver. As threads,
senders and receivers are objects containing fields, we naturally defined them as records in our model.
For threads to act as a receiver, in Fiasco a thread is an extension of a receiver (it inherits from it). For
extension (or inheritance) of records, we used the extensible records mechanism.

In Fiasco, a receiver extends a context, which contains many scheduling-related fields (such as the schedul-
ing context). However, as we have abstracted away scheduling, these fields have not made it in our model.
The state field is not removed from the context though, as is is integral to IPC in Fiasco. A receiver
extends a context with two fields of its own. The first of these fields is the partner field, which indicates
the partner (or sender) thread the receiver is engaged in IPC with. The second field, named sender list,
contains the receiver’s sender list, which was discussed earlier.

% The con tex t conta ins the thread s ta t e , here a l o t o f d e t a i l s have been
% abs t r a c t ed away which most ly concern schedu l ing .
Context : TYPE = [# s t a t e : Thread state #]

% The r e c e i v e r r o l e i n h e r i t s from <Context> and adds two f i e l d s : <partner> and
% <s e n d e r l i s t >. The f i r s t r e f l e c t s the f a c t t ha t a r e c e i v e r always has a
% partner a s soc i a t ed with i t and the second r e f l e c t s the threads t ha t want to

42

% engage in IPC with the r e c e i v e r .
Rece iver : TYPE = Context WITH [# partner : Thread pointer ,

s e n d e r l i s t : S e n d e r l i s t #]

% The sender r o l e in our model does not have any r ea l funct ion , but we have
% inc luded i t f o r use in p o s s i b l e l a t e r ex t ens ions o f our model .
Sender : TYPE = [# #]

Source 3.5: PVS: context, sender and receiver definitions.

Although it might seem odd to include a definition of an empty sender record type, we have included it
for use in possible later extensions of our model.

Thread

Having modelled the two roles which form the basis of threads, we are now ready to define the threads
themselves. Besides the fields from the sender and receiver roles, threads have one additional field, named
thread lock. The function of this field is to model thread locks. This means that every thread can be
locked by exactly one other thread. As long as a thread is locked, only the thread owning the lock can
access the locked thread. The thread lock itself is defined in Fiasco as a pointer to the thread holding
the lock; in our model we have followed this design.

% The ac tua l d e f i n i t i o n o f the thread type , which i n h e r i t s from both the sender
% and the r e c e i v e r types .
Thread : TYPE = Sender WITH Rece iver WITH [# th r ead l o ck : Thread pointer #]

Source 3.6: PVS: thread definition.

To clarify what the result is of using extensible records, we have created an alternative definition of the
thread type below, which does not rely on extensible records. The alternative definition results in the
same record being created, as both have exactly the same fields.

% This a l t e r n a t i v e thread type d e f i n i t i o n inc l ude s the sender ’ s and rece i ve r ’ s
% f i e l d s d i r e c t l y in the d e f i n i t i o n , i t does not use the e x t e n s i b l e records
% mechanism , but s t i l l has the exac t same f i e l d s .
Thread : TYPE = [# s t a t e : Thread state ,

partner : Thread pointer ,
s e n d e r l i s t : S e nd e r l i s t ,
t h r ead l o ck : Thread pointer #]

Source 3.7: PVS: thread alternative definition.

For the thread pointer type, we have followed the C++ implementation where pointers are just integers
(referring to objects). As explained, the thread lock was modelled as a pointer to the thread owning the
lock. However, it is also possible that there is no thread lock on a thread. In Fiasco, this is implemented
by having the thread lock being equal to the NULL-pointer. We modelled the NULL-pointer as a
thread pointer instance without a specific value. One might expect the zero thread to have the value
zero (corresponding to the C++ implementation), but then changing the type of a thread pointer to a
positive number would also require the definition of the zero thread to be changed (which would not be
necessary with our definition).

% A poin te r to a thread i s j u s t an in teger , t h i s r e f l e c t s a C++ po in te r a l s o
% being an in t e g e r .
Thread pointer : TYPE = in t

% Define the zero thread pointer , which rep re s en t s the C++ NULL po in te r .
Zero thread : Thread pointer

Source 3.8: PVS: thread pointer definition.

43

Threads

In Fiasco, at any single time there can (and probably will be) more than one created thread. For each
created thread, there exists a pointer to access that thread. There is also a subset of threads, called the
ready-list, which contains all threads ready to be scheduled (with some exceptions, see the backgrounds
on Fiasco). However, as scheduling has not been incorporated in our model, the ready-list has also been
abstracted away. The only thing for us to model is thus the list of created threads, which we have defined
as a function from thread pointers to threads.
% The thread l i s t i s a func t i on which t r a n s l a t e s thread po in t e r s to threads ;
% t h i s r e f l e c t s the C++ concept o f po in t e r s to o b j e c t s (in t h i s case po in t e r s
% to threads) .
Thr ead l i s t : TYPE = [Thread pointer −> Thread]

Source 3.9: PVS: definition of thread list.

Other types

Many functions involved in the IPC path return an IPC error code. Although there are many possible
error codes that can be returned, the source code only checks if an error occured and is not interested in
the actual error code itself2. We have therefore chosen to model the error codes as a boolean value which
indicates whether an error occured or not. A similar reasoning can be applied to IPC timeouts. We are
only interested if a timeout occured and not how. Timeouts are thus also a defined as a boolean value.
% Most func t i on s in Fiasco re turn an error code , o f which there are many .
% However , we are only i n t e r e s t e d in whether an error occured and thus the
% error code i s model led as a boolean va lue .
I p c e r r : TYPE = bool

% Ind i ca t e s i f a t imeout occured , a dd i t i ona l d e t a i l s o f t imeouts such as
% the exac t time at which they exp i r e are not o f i n t e r e s t to us .
L4 timeout : TYPE = bool

Source 3.10: PVS: IPC error codes- and timeout definitions.

3.2.5 Fiasco functions

Converting from sequential- to functional code

One of the key design issues was how to model the execution of imperative C++ source code in the
functional language used by PVS. Because our model should represent the Fiasco C++ source, we have
tried to remain very close to the source code in our conversion to PVS. This resulted in our PVS model
quite often directly reflecting the C++ source, which allows anyone familiar with the Fiasco sources to
quickly grasp the inner workings of our model. Another benefit of this strict adherence to the source
code, is an added confidence in our model as one can easily check if the model accurately reflects the
source code. To create this fairly direct conversion, we often used the LET construction, which can be
used to update data without transferring control to another function. Conveniently, most flow-control
structures (such as if -statements) could be directly translated to PVS.

Functions defined in C++ can have side-effects, which means that functions can modify some global
state besides modifying their return values. We therefore introduced the concept of a system state in
our model, which each function should be able to access and modify. This is achieved by having each
function take the system state as one of its input parameters and also have it return the system state.
An example of this method is shown below, where the sys thread ex regs() function takes a parameter of
the type System state (which definition will be discussed shortly) and returns the original system state,
but with the thread cancel bit of the thread pointed to by tp set to true.

2The reason why there are still many different error codes is that the caller of IPC might be interested in what went
wrong.

44

s y s t h r e ad e x r e g s (tp : Thread pointer , s t a t e o l d : System state) : System state =
s t a t e o l d WITH [(threads) (tp) ‘ s ta te ‘ t h r ead canc e l := true]

Source 3.11: PVS: an example of a system state-modifying function.

System state

Now that we have a way to simulate the updating of the system state, we have to look at what fields the
system state should contain. As the list of created threads should be accessible at all times, it has to be
included into the system state. Furthermore, in our proofs we will be looking at IPC from the viewpoint
of a single thread, in our case the active, running thread3, which we will refer to as the this thread
(with a clear analogy to the corresponding C++ term). A better name for the this field would have
been this pointer, but we favored the shorter version for brevity purposes. This leads to the following,
preliminary system state:

System state : TYPE =
[#

th i s : Thread pointer , % Pointer to a c t i v e thread .
threads : Th r e ad l i s t % Li s t o f a l l t hreads .

#]

Source 3.12: PVS: incomplete system state, focusing on threads.

It is now possible to access the this thread by providing it as a parameter to the threads field (which
is actually a function from thread pointers to threads). In our model, most proofs will involve the this
thread as that is the thread from which viewpoint we look at IPC.

% Return the t h i s thread , which the <t h i s > f i e l d o f the system s t a t e po in t s to .
g e t t h i s t h r e a d (s t a t e : System state) : Thread =

state ‘ threads (s ta te ‘ t h i s)

Source 3.13: PVS: example of accessing this thread.

There is a problem with the current system state definition though. As it is defined now, it is possible
that the current, running thread is the zero thread (pointed to by the NULL-pointer), which is obviously
incorrect. To correct this flaw, the type of the this field was changed to the This thread pointer type,
which is defined as the subset of thread pointers not equal to the zero thread:

% The po in t e r to the current a c t i v e thread (the <t h i s > thread) must never be
% the <Zero thread> (as i t po in t s to nothing) and thus we have de f ined
% a s p e c i a l type o f thread po in t e r f o r the <t h i s > thread which exc lude s the
% thread po in t e r be ing equa l to the <Zero thread >.
Th i s th r ead po in t e r : TYPE = { tp : Thread pointer | NOT tp = Zero thread }

Source 3.14: PVS: definition of special this pointer type.

Errors and timeouts

One of the problems we encountered when converting from C++ to our model, were the varying return
values of the functions involved in IPC. Each IPC-related function in Fiasco had one of the following
three return types: void4, bool or Ipc err. A closer inspection revealed that all bool-returning functions
did not have any side-effects (with one exception discussed later), whereas the other functions did. As
we explained earlier, a state-modifying function (one with side-effects) must at least return the updated
system state. As the functions returning an Ipc err value also modified the system state, those functions
should return the updated system state, but they also had to return the error value. One option was
to have each function return a tuple of a system state and an error value. However, as there are only

3In Fiasco there can only be one thread running at any single moment in time, support for multi-processor systems
has not yet been integrated into the kernel. Consequently, in a multi-processor system, Fiasco will only use one of those
processors.

4Which indicates no value is returned.

45

a couple of functions modifying the error value, we opted for another solution: integration of the error
code into the system state:
System state : TYPE =

[#
th i s : Th i s th r ead po in t e r , % Pointer to a c t i v e thread .
threads : Thread l i s t , % Li s t o f a l l t hreads .
e r r o r : I p c e r r % Ind i ca t e s i f error occurred .

#]

Source 3.15: PVS: incomplete system state, with integrated error field.

The initial system state has the error field set to false, which makes sense as no error can have occured
before IPC has even been started. While engaged in IPC, this field can be set by functions to indicate
if an error occured; this value can subsequently be checked by the caller of the function to see if an
error was returned. Most often it was not necessary for the caller of the error-returning function to reset
the error field to false after an error was returned, as an error often resulted in IPC being prematurely
aborted. An example of this is shown in the code excerpt below, where the do ipc send part() function
calls try handshake receiver(). The latter sets the error field to true when the partner is invalid and then
immediately returns; the do ipc send part() function then checks if the error field has been set to true
and acts accordingly (by immediately returning from the function):
% Try to have the sender and r e c e i v e r agree upon engaging in IPC .
t r y handshake r e c e i v e r (partner : Thread pointer ,

s t a t e o l d : System state) : System state =
% Immediately re turn with an error i f the partner i s i n v a l i d .
IF partner = Zero thread OR [. . .] THEN

s t a t e o l d WITH [e r r o r := true]
ELSE

[. . .]
ENDIF

% Handle the send part in the do ipc () func t i on .
do ip c s end pa r t (partner : Thread pointer , hav e r e c e i v e : bool ,

s t a t e o l d : System state) : System state =
% Star t with a handshake and immediate ly re turn i f an error occured .
LET s tate temp = t ry hand shake r e c e i v e r (partner , s t a t e o l d) IN
IF state temp ‘ e r r o r THEN

s tate temp
ELSE

[. . .]
ENDIF

Source 3.16: PVS: example of error setting and checking.

Following a similar line of reasoning, we integrated a timeout field into the system state, which indicates
if a timeout has occured. Once again, this field is initially set to false and only becomes true when a
timeout occured. Our basic system state is thus defined as follows:
System state : TYPE =

[#
th i s : Th i s th r ead po in t e r , % Pointer to a c t i v e thread .
threads : Thread l i s t , % Li s t o f a l l t hreads .
e r r o r : I p c e r r , % Ind i ca t e s i f error occurred .
t imeout : L4 timeout % Ind i ca t e s i f t imeout occurred .

#]

Source 3.17: PVS: basic system state, with integrated timeout field.

To ensure that initially the error - and timeout fields are set to false, both fields are explicitly unset at
the start of the IPC path (which is the sys ipc() function). Where possible though, we have not made
any assumptions about the initial values of fields or parameters to keep the model as generic as possible:
s y s i p c (have send : bool , partner : Thread pointer ,

have r e c e i v e : bool , sender : Thread pointer ,
s t a t e o l d : System state) : System state =

46

LET s tate temp = s t a t e o l d WITH [(e r r o r) := f a l s e ,
(t imeout) := f a l s e]

IN
% Make sure there i s e i t h e r a send− or r e c e i v e part , i f so s t a r t IPC .
IF have send OR have r e c e i v e THEN

do ipc (have send , partner , have r ece ive , sender , s tate temp)
ELSE

s tate temp WITH [(e r r o r) := true]
ENDIF

Source 3.18: PVS: system state initialization in the sys ipc() function.

One can cleary see that IPC is only started when there is a send and/or receive part (which makes sense
as otherwise there is nothing to do).

Increment model development

As said, we have developed our model incrementally. We will illustrate this with an example. Initially,
we defined the sender ok() function as follows:
% Ind i ca t e s i f a partner i s ready fo r a sender .
sender ok (sender : Thread pointer , r e c e i v e r : Thread pointer ,

s t a t e o l d : System state) : bool

Source 3.19: PVS: sender ok() function without implementation.

This function is defined without an implementation, which means that PVS cannot determine the value
returned by the function when it is called; any use of this function in a proof therefore requires all possible
return values (in this case only two: true or false) to be checked. Using unimplemented functions, we
were able to rapidly develop a very crude model. After we were satisfied with the general structure of
the model, we added implementations to the unimplemented functions to have them better reflect the
source code. The definition of the sender ok() function with implementation is listed below.
% Ind i ca t e s i f a partner i s ready fo r a sender .
sender ok (sender : Thread pointer , r e c e i v e r : Thread pointer ,

s t a t e o l d : System state) : bool =
% The r e c e i v e r shou ld at l e a s t be in a r e c e i v i n g IPC s t a t e .
IF NOT s t a t e o l d ‘ threads (r e c e i v e r) ‘ s ta te ‘ t h r e ad r e c e i v i n g OR

NOT s t a t e o l d ‘ threads (r e c e i v e r) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s
THEN

f a l s e
% Open wait : no partner shou ld be s p e c i f i e d and the sender shou ld be the
% f i r s t in the rece i ve r ’ s sender l i s t .
ELSIF s t a t e o l d ‘ threads (r e c e i v e r) ‘ partner = Zero thread AND

s t a t e o l d ‘ threads (r e c e i v e r) ‘ s e n d e r l i s t = F i r s t THEN
t rue

% Closed wait : check i f the sender i s the same as the partner s p e c i f i e d .
ELSIF sender = s t a t e o l d ‘ threads (r e c e i v e r) ‘ partner THEN

t rue
ELSE

f a l s e
ENDIF

Source 3.20: PVS: sender ok() function.

We have already discussed shortly how we converted from the Fiasco C++ source to PVS. To show an
example of such a conversion, we have included the sender ok() function as defined in Fiasco, which can
be compared to our PVS definition listed above.
bool Rece iver : : s ender ok (const Sender ∗ sender) const
{

unsigned i p c s t a t e = s t a t e () & (Thread rece iv ing |
// Thread send in progress |
Thread ip c i n p r og r e s s) ;

// I f Thread send in progress i s s t i l l se t , we ’ re s t i l l in the send phase

47

i f (EXPECT FALSE (i p c s t a t e != (Thread rece iv ing | Thread ip c i n p r og r e s s)))
return fa l se ;

// Check open wait ; t e s t i f t h i s sender i s r e a l l y the f i r s t in queue
i f (EXPECT TRUE(! partner ()

&& (! s e n d e r f i r s t | | sender == s e n d e r f i r s t)))
return true ;

// Check c l o s ed wait ; t e s t i f t h i s sender i s r e a l l y who we s p e c i f i e d
i f (EXPECT TRUE (sender == partner ()))

return true ;

return fa l se ;
}

Source 3.21: C++: sender ok() function.

3.2.6 Splitting functions

Three of Fiasco’s functions have been split into several functions in our PVS model, namely the do ipc(),
do send wait() and ipc receiver ready() functions. Although the splitting is not in accordance with our
aim to create a (mostly) one-on-one conversion of the source code, for each split there is a good reason.
The reason why the do ipc() function was split in two parts was to separate the send part from the receive
part. This enabled us to do proofs for only one of the two parts, thus creating more compact and modular
proofs (a change in the receive part would not affect proofs of the send part5). The main incentive to
split the do send wait() function was its considerable size. Splitting once again resulted in more modular
and compact proofs. The last function, ipc receiver ready(), was split for a totally different reason. In our
model, we differentiate between functions that modify the system state and those that do not. The former
always return the system state, whereas the latter return anything but the system state (for example
boolean values). The problem with the ipc receiver ready() function was that it had to both modify the
system state and return a boolean value. Therefore, the function was split into a state-modifying part
(the ipc receiver ready change() function) and a boolean-returning part (ipc receiver ready()). The state-
modification only occurs when the ipc receiver ready() function returns true, so in our model a return
value of true results in calling the ipc receiver ready change().

% Check i f the sender i s ready fo r the r e c e i v e r .
IF i p c r e c e i v e r r e a d y (sender , r e c e i v e r , s t a t e o l d)
THEN

% Apply the changes caused by the s ide−e f f e c t s o f the
% i p c r e c e i v e r r e a d y () func t i on .
i p c r e c e i v e r r e ady chang e (sender , r e c e i v e r , s t a t e o l d)

ELSE
s t a t e o l d

ENDIF

Source 3.22: PVS: calling the split ipc receiver ready() function.

An overview of the functions split and the functions into which they were split is listed below:

Original function Split into
do ipc() do ipc send part(), do ipc receive part()
do send wait() do send wait(), do send wait loop(), do send wait finish()
ipc receiver ready() ipc receiver ready(), ipc receiver ready change()

Table 3.1: Model: split functions.

5This is due to the fact that the receive part is always executed after the send part and thus cannot influence it. The
reverse does not automatically hold, as the receive part can be preceded by a send part which could influence its begin
state.

48

3.2.7 Preemption points

As explained in detail earlier, in Fiasco a preemption point is a function that temporarily allows other
threads to be scheduled and executed in favor of the current executing thread. When another thread
indeed gets scheduled, its execution might change the system state. In our model a preemption point is
thus a state-modifying function. Because we have abstracted away scheduling, we have to simulate the
result of the scheduling on the system state. Our focus is thus on what the result of a preemption point
on the system state is, not on how this result is achieved. In our model, we discern between five different
actions that can occur in a preemption point:

• Nothing happens.

• The partner thread is killed (through the kill() function).

• An IPC timeout occurs.

• The ongoing IPC is cancelled (through the sys thread ex regs() function).

• The receiver becomes ready to receive a message from the sender.

These five actions are not complete though, one of the most striking omissions is a concurrent sender
wanting to send a message to the same receiver. We have modelled only the five actions listed above to
keep the model compact, more actions would further complicate the model and proofs..

Even though the first of the five actions is the most likely to occur, we will model the actions as if they all
have the same probability. This simplified version of the real situation does not have any negative effect
on the validity of the model, all possible actions have to be examined in a proof anyway. The possible
preemption actions are defined as the enumeration type Preemption action. Although the enumeration
might suggest otherwise, a single preemption point might in fact execute several of its possible actions.
Therefore, we have also created the Preemption actions type, which is just a list of preemption actions.

% Enumeration o f the p o s s i b l e preemption ac t i ons .
Preempt ion act ion : TYPE = {

Nothing , % Nothing happens .
Ki l l , % The partner i s k i l l e d .
Timeout , % A timeout occurs .
Sys th r ead ex r eg s , % IPC i s cance l l e d .
Rece ive r r eady % The r e c e i v e r becomes ready .

}

Preempt ion act ions : TYPE = l i s t [Preempt ion act ion]

Source 3.23: PVS: preemption action type.

Randomness

When executing a preemption point, one never knows beforehand what actions it will execute, its be-
haviour appears to be random. One of our main problems was how to model this randomness. Although
PVS has the choose() function, which randomly chooses an element from a set, we could not use it in
our model. The problem with this function is due to the very definition of a function: equal input results
in equal output. In our case, its input would always be equal to the set of possible combinations of
preemption actions (its powerset). Because there are several calls to the preemption point function, each
of which has to use the same choose() function call, the returned actions would in each case be the same.
To circumvent this, we created an uninterpreted function, named preemption action(), which returns a
list of preemption actions. As the function contains no implementation, the output is essentially ran-
dom. To prevent the problem with equal inputs, the preemption action() function accepts a single input
parameter, which we make sure is different with each call.

49

% Return a (random) preemption ac t ion .
preempt ion act ion (n : nat) : Preempt ion act ions

Source 3.24: PVS: preemption action() function.

To allow the seed input parameter6 to be different with each call, a seed field was added to the system
state:

% Modif ied system s t a t e with added <seed> f i e l d .
System state : TYPE =

[#
th i s : Th i s th r ead po in t e r , % Pointer to a c t i v e thread .
threads : Thread l i s t , % Li s t o f a l l t hreads .
e r r o r : I p c e r r , % Ind i ca t e s i f error occurred .
t imeout : L4 timeout , % Ind i ca t e s i f t imeout occurred .
seed : nat % Seed used fo r randomness .

#]

Source 3.25: PVS: expanded system state, with added seed field.

Before each call to the preemption action() function, the seed is incremented to ensure its uniqueness.
After a list of preemption actions has been retrieved, what remains is to execute those actions. Precisely
that is the function of the preemption point actions() function, it executes each action and updates the
system state correspondingly. The preemption point() function is defined as follows:

preempt ion po int (partner : Thread pointer , a l l ow t imeout : bool ,
s t a t e o l d : System state) : System state =

LET
% Increment the seed and use i t to ge t a random l i s t o f preemption
% ac t i ons .
s t a t e o l d = s t a t e o l d WITH [seed := s t a t e o l d ‘ seed + 1] ,
a c t i on s = preempt ion act ion (s t a t e o l d ‘ seed)

IN
% Execute the preemption ac t i ons .
pre empt i on po in t ac t i on s (ac t ions , partner , a l low t imeout , s t a t e o l d)

Source 3.26: PVS: preemption point() function.

We see that the preemption point() function not only takes the system state as one of its parameters,
but also a boolean value named allow timeout. The function of this value is to indicate if a timeout can
occur in the preemption point, which is not always so because timeouts are only used in some functions
(such as the do send wait() function).

Preemption actions

For execution of the randomly chosen preemption actions, the preemption point actions() function is used.
The definition of this function is very simple. It takes the same parameters as the preemption point()
function calling it, but with one additional parameter that specifies the preemption actions to be ex-
ecuted. As a reminder, the Preemption actions type is actually a list of Preemption action instances.
The preemption point actions() function first checks if the action list is empty, if so the system state is
returned unmodified. If the list is not empty, the system checks which action it should execute and then
updates the system state accordingly. It then continues executing the remaining actions until there are
no actions left; the function is therefore (defined as) a recursive function7.

% Execute a l i s t o f preemption po in t ac t i ons .
pre empt i on po in t ac t i on s (a c t i on s : Preempt ion act ions , partner : Thread pointer ,

a l l ow t imeout : bool ,
s t a t e o l d : System state) : RECURSIVE System state =

CASES ac t i on s OF
nu l l : s t a t e o l d ,
cons (act ion , r ema in ing ac t i on s) :

6A value which only function is to randomize behaviour is often referred to as a seed value.
7A recursive function calls itself.

50

LET s tate temp =
% Check i f a c a l l was made to s y s t h r e a d e x r e g s () .
IF ac t i on = Sys th r e ad ex r e g s THEN

s y s t h r e ad e x r e g s (s t a t e o l d ‘ th i s , s t a t e o l d)
% Only a l l ow a timeout to occur when sp e c i f i e d , most o f the time a
% timeout cannot occur .
ELSIF ac t i on = Timeout AND a l l ow t imeout THEN

t imeout (s t a t e o l d ‘ th i s , s t a t e o l d)
% Check i f the partner i s k i l l e d .
ELSIF ac t i on = K i l l THEN

k i l l (partner , s t a t e o l d)
% A rec e i v e r can only become ready when i t i s not equa l to the sender ,
% i f so i t would be wa i t ing f o r e v e r .
ELSIF ac t i on = Rece ive r r eady THEN

r e c e i v e r r e ady (s t a t e o l d ‘ th i s , partner , s t a t e o l d)
ELSE

s t a t e o l d
ENDIF

IN
% Execute the remaining ac t i ons .
pre empt i on po in t ac t i on s (r ema in ing ac t i ons , partner , a l low t imeout , s tate temp)

ENDCASES
MEASURE length (a c t i on s)

Source 3.27: PVS: preemption point actions() function.

Most of these functions have very simple definitions, with the notable exception of the receiver ready()
function. As detailed earlier, the receiver ready() function models a receiver becoming ready to receive a
message from the sender; we are in fact modeling that the receiver is executing the receive part of IPC. A
receiver becomes ready for a sender in its receiving loop, which is preceded by the necessary initialization.
To prevent this initialization from occuring several times, we created a slightly modified version of the
receive part in our receiver ready() function, which uses a newly added receiver initialized system state
field; initially this field is set to false to guarantee that the receiver will always be initialized.

Another problem with the receiver ready() lies in it calling ipc receiver ready(), which is a boolean-
returning function with side-effects; the solution to this problem has been discussed earlier. We will now
list the definition of the receiver ready() function:
% This preemption ac t ion s i g n i f i e s a r e c e i v e r becoming ready to r e c e i v e a
% message from a sender .
r e c e i v e r r e ady (sender : Thread pointer , r e c e i v e r : Thread pointer ,

s t a t e o l d : System state) : System state =
LET

s t a t e o l d =
% Check i f the r e c e i v e r has been i n i t i a l i z e d .
IF NOT s t a t e o l d ‘ r e c e i v e r i n i t i a l i z e d THEN

% Prepare the r e c e i v e r us ing a ’ random ’ partner .
p r e p a r e r e c e i v e d i r t y (Rece ive r pa r tne r th r ead , r e c e i v e r , s t a t e o l d)

WITH [(r e c e i v e r i n i t i a l i z e d) := true]
ELSE

s t a t e o l d
ENDIF

IN
% Make sure the r e c e i v e r i s in the r i g h t s t a t e to r e c e i v e from a sender .
IF s t a t e o l d ‘ threads (r e c e i v e r) ‘ s ta te ‘ t h r e ad r e c e i v i n g AND

s t a t e o l d ‘ threads (r e c e i v e r) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s AND NOT
s t a t e o l d ‘ threads (r e c e i v e r) ‘ s ta te ‘ t h r ead canc e l

THEN
% Closed wait : check i f the sender i s the same as the partner s p e c i f i e d .
IF sender = s t a t e o l d ‘ threads (r e c e i v e r) ‘ partner THEN

% Check i f the sender meets the cond i t i ons o f the r e c e i v e r
IF i n s e n d e r l i s t (r e c e i v e r , s t a t e o l d) AND

i p c r e c e i v e r r e a d y (sender , r e c e i v e r , s t a t e o l d)
THEN

% Apply the changes caused by the s ide−e f f e c t s o f the

51

% ipc r e c e i v e r r e a d y () func t i on .
i p c r e c e i v e r r e ady chang e (sender , r e c e i v e r , s t a t e o l d)

ELSE
s t a t e o l d

ENDIF
% Open wait : no partner shou ld be s p e c i f i e d and the sender shou ld be
% the f i r s t item .
ELSE

% Check i f the sender i s not ready in which case i t shou ld be removed
% from the sender l i s t .
IF NOT i p c r e c e i v e r r e a d y (sender , r e c e i v e r , s t a t e o l d) THEN

sender dequeue head (r e c e i v e r , s t a t e o l d)
ELSE

% Apply the changes caused by the s ide−e f f e c t s o f the
% i p c r e c e i v e r r e a d y () func t i on .
i p c r e c e i v e r r e ady chang e (sender , r e c e i v e r , s t a t e o l d)

ENDIF
ENDIF

ELSE
s t a t e o l d

ENDIF

Source 3.28: PVS: ipc receiver ready() function.

52

Chapter 4

Model verification

“Program testing can be used to show the presence of bugs, but
never to show their absence!”

Edsger W. Dijkstra

“The problem with wrong proofs to correct statements is that it is
hard to give a counterexample.”

Hendrik W. Lenstra

4.1 Verification attempts

In this chapter we will discuss our verification attempts. Earlier, we listed the properties we attempted
to prove. Here we will give the formal definition of each property we tried to prove. As the model and
the properties were directly tied to each other, most properties required alterations to the model. These
will be discussed along with the problems encountered during the verification.

4.1.1 Property 1: removal of sender’s thread lock on receiver

Definition

When a sender wants to send a message to a receiver, they first have to agree upon engaging in IPC;
this is referred to as the handshake. If the handshake has been successful, the sender will try to send the
message to the receiver. During the message sending, it is vital that the receiver thread is not locked by
another thread, as otherwise the message could not be transferred. Therefore, when the receiver is locked
by another thread, the sender acquires that lock before sending the message. After the message has been
sent, there should not be any thread lock remaining on the receiver, as it then becomes unavailable to
other threads until the lock is released.

Model details

In Fiasco, acquiring a thread lock is done by calling lock dirty(), wherein the lock owner of the target
thread is set to the current thread (which, in our model, corresponds to the sender thread pointed to
by the this field in the system state). The lock dirty() function in our model is a typical example of an
abstracted function. In Fiasco, when the lock dirty() function sees that the targeted thread is already
locked by another thread, it enters a loop from which it only breaks if the lock has been released1. The

1To help the lock be released as soon as possible, the waiting thread donates its execution time to the lock owner; this
mechanism is described in more detail in the Fiasco backgrounds section.

53

end result of the function is that the targeted thread is locked by the current thread. In our model, we
only modelled this result and did not model the loop at all. We consider this a safe abstraction, as we
are only interested in the result of the function, which is always the same.

% Set the thread l o c k o f the partner thread to the <t h i s > thread .
l o c k d i r t y (partner : Thread pointer , s t a t e o l d : System state) : System state =

s t a t e o l d WITH [(threads) (partner) ‘ t h r ead l o ck := s t a t e o l d ‘ t h i s]

Source 4.1: PVS: lock dirty() function.

For the release of a thread lock, there are two similar functions, which only differ slightly in their function-
ality. The main difference is that in the first function, clear dirty(), the release of the lock can involve a
switch of execution context. However, as this was undesirable in some cases, the clear dirty dont switch()
function was created. As we have not modelled scheduling (which includes execution context switches),
both functions are functionally equal in our model. As the implementation details have once again largely
been abstracted (just as in the lock dirty() function), the two functions have exactly the same definition
in our model. We have still included both functions as it allows for a better reflection of the source code
and it allows for an easier transition should we later decide to model scheduling.

% Remove the thread l o c k on the partner thread by s e t t i n g the thread l o c k
% owner to the zero thread .
c l e a r d i r t y (partner : Thread pointer , s t a t e o l d : System state) : System state =

s t a t e o l d WITH [(threads) (partner) ‘ t h r ead l o ck := Zero thread]

% Remove the thread l o c k on the partner thread by s e t t i n g the thread l o c k
% owner to the zero thread .
c l e a r d i r t y d on t sw i t c h (partner : Thread pointer ,

s t a t e o l d : System state) : System state =
s t a t e o l d WITH [(threads) (partner) ‘ t h r ead l o ck := Zero thread]

Source 4.2: PVS: clear dirty() and clear dirty dont switch() functions.

As we had already modelled thread locks, the only required alteration to our model (we consider the
function mentioned above as additions, not alterations) was to incorporate the notion of a handshake,
which takes place in the try handshake receiver() function. However, we needed to check the success of
a handshake after the send part had finished (which is represented by the do send part() function) and
therefore a field named handshake attempted was added to the system state:

System state : TYPE =
[#

th i s : Th i s th r ead po in t e r , % Pointer to a c t i v e thread .
threads : Thread l i s t , % Li s t o f a l l t hreads .
e r r o r : I p c e r r , % Ind i ca t e s i f error occurred .
t imeout : L4 timeout , % Ind i ca t e s i f t imeout occurred .
seed : nat , % Seed used fo r randomness .
handshake attempted : bool % Ind i ca t e s i f handshake attempted .

#]

Source 4.3: PVS: basic system state, with integrated handshake attempted field.

We can now set the handshake attempted field in the try handshake receiver() function; initially its value
is set to false (in the sys ipc() function), which reflects the fact that initially no handshake has been
attempted.

t r y handshake r e c e i v e r (partner : Thread pointer ,
s t a t e o l d : System state) : System state =

% Immediately re turn with an error i f the partner i s the Zero− or Ni l thread
% or the partner i s an i n v a l i d thread .
IF partner = Zero thread OR

s t a t e o l d ‘ threads (partner) ‘ s ta te ‘ t h r e ad i nva l i d OR
partner = Ni l th r ead

THEN
s t a t e o l d WITH [e r r o r := true]

ELSE
LET

54

% Set the <handshake attempted> f i e l d to t rue because the r e c e i v e r i s
% va l i d .
s tate temp = s t a t e o l d WITH [handshake attempted := true]

IN
[. . .]

ENDIF

Source 4.4: PVS: setting the handshake field.

Verification and problems

We are now ready to give the formal definition of our property in PVS:

% I f a handshake has been attempted , t ha t shou ld imply t ha t a f t e r f i n i s h i n g
% the send part , t he re shou ld be no thread l o c k on the partner .
do ip c s end pa r t handshake a t t empted l o ck f r e e : LEMMA

FORALL (partner : Thread pointer , have r e c e i v e : bool , s t a t e o l d : System state) :
LET s tate new = do ip c s end pa r t (partner , have r ece ive , s t a t e o l d) IN

NOT s t a t e o l d ‘ handshake attempted AND
NOT s t a t e o l d ‘ e r r o r AND
state new ‘ handshake attempted IMPLIES

state new ‘ threads (partner) ‘ t h r ead l o ck = Zero thread

Source 4.5: PVS: property 1, formal definition.

The lemma states that if a handshake has been attempted in the send part, the receiver (named partner
for similarity to the Fiasco source code) has no thread locking it after handling the send part. Although
the definition is pretty self-explanatory, there remains one odd requirement in the lemma: initially the
error field of the system state must not be set. This requirement can be explained quite easily when we
remember its semantics, which are that it signifies if an error occurred. When do ipc send part() is called,
the error field should be set to false as no error can have occurred at that time. This holds in our model
as no error-returning functions are called before do ipc send part(); combined with the initialization to
false by sys ipc(), this results in the error field being false before do ipc send part() is called.

One of the problems we encountered was that, due to an initial lack of modularity, we only defined
the lemma listed above and thus small changes in the model often required (almost) the whole lemma
to be redone. To circumvent this, we split the proof into parts, where each function received its own
lock-related lemma. In this situation, lemmas became dependent upon other lemmas, essentially creating
a sort of hierarchy with the formal property lemma at the top. This modular approach was much more
resistant against changes in the model, most often a change in the model only required a single proof to
be redone. Therefore, this approach has also been taken in the verification of the other properties (where
applicable).

4.1.2 Property 2: waking up receiver in combined send/receive

Definition

When a combined send- and receive IPC call is made, the sender and receiver both assume the sender-
and receiver role. First, the sender tries to send a message to the receiver. Once that has been successful,
the sender enters a state in which it waits for the receiver to send a message back. It is at this point
that the roles are swapped: the sender becomes the receiver and vice versa. When the receiver assumes
the sender role, it should be in a state where it is ready to be scheduled. Should this not be the case, it
might never be scheduled, which in turn would result in the sender forever waiting for a message from
the receiver. It is therefore imperative that when the receiver assumes the sender role, it is in a state
ready to be scheduled.

55

Model details

Whether a thread is ready to be scheduled depends on a single state bit being set: the thread ready bit.
As we have already modelled threads and their states (including the thread ready bit), we are only left
with determining if the receiver will be assigned the sender role during IPC. For this purpose, we can
use a function of Fiasco IPC which determines if a sender and receiver are engaged in IPC: in ipc(). The
definition of this function is listed below:

% Ind i ca t e s i f the r e c e i v e r i s engaged in IPC with the sender .
i n i p c (sender : Thread pointer , r e c e i v e r : Thread pointer ,

s t a t e o l d : System state) : bool =
s t a t e o l d ‘ threads (r e c e i v e r) ‘ s ta te ‘ t h r e a d t r a n s f e r i n p r o g r e s s AND
s t a t e o l d ‘ threads (r e c e i v e r) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s AND NOT
s t a t e o l d ‘ threads (r e c e i v e r) ‘ s ta te ‘ t h r ead canc e l AND
s t a t e o l d ‘ threads (r e c e i v e r) ‘ partner = sender

Source 4.6: PVS: in ipc() definition.

At any single moment it is thus possible to determine if a sender and receiver are engaged in IPC with
each other. We can use this in our property to determine, after the send part, if the sender and receiver
are still engaged in IPC, as this implies that the sender expects a message back from the receiver, which
thus will assume the sender role.

Verification and problems

The formal definition in PVS of our wakeup property is as follows:

% When the sender− and r e c e i v e r are s t i l l engaged in IPC a f t e r the send part
% has f i n i s hed , the r e c e i v e r shou ld be in a s t a t e ready to be scheduled , which
% means tha t the <thread ready> b i t o f the r e c e i v e r shou ld be s e t .
do i p c s e nd pa r t i n i p c r e c e i v e r awok en : LEMMA

FORALL (partner : Thread pointer , have r e c e i v e : bool , s t a t e o l d : System state) :
LET s tate new = do ip c s end pa r t (partner , have r ece ive , s t a t e o l d) IN

NOT state new ‘ e r r o r AND i n i p c (state new ‘ th i s , partner , s tate new) IMPLIES
state new ‘ threads (partner) ‘ s ta te ‘ thread ready

Source 4.7: PVS: property 2, formal definition.

This lemma clearly states that if the sender (pointed to by state new‘this) and the receiver (pointed to
by partner) are still engaged in IPC after finishing the send part, the thread ready bit of the receiver
should be set. Once again we require that the error field is unset before calling do ipc send part(), the
reasoning follows the one laid down in the previous property.

4.1.3 Property 3: validation of assertions in the code

Definition

As in many C++ programs, Fiasco (and its IPC path) contains many calls to the assert() function.
When a call is made to the assert() function, one wants to test if a critical condition holds at that
moment; the condition is an expression evaluating to a boolean value. If the expression evaluates to true,
execution is continued as if nothing happened. However, if the expression evaluates to false, execution of
the program is aborted completely. A call to assert should thus only be made when one wants to test a
critical condition. For the correct functioning of the program, all assertions should evaluate to true.

Ensuring that not a single assertion fails is precisely the property we attempted to verify. As assertions
should only evaluate critical conditions, our model should be able to prove these. If, however, our model
fails to do so, we have either found a bug in the code or in our model. Being able to verify all assertions
thus would also increase the confidence we have in the correctness of our model.

56

Model details

As the assertions are spread over many functions, we needed to modify the system state. For this purpose,
we added the assertions held field to the system state:

System state : TYPE =
[#

th i s : Th i s th r ead po in t e r , % Pointer to a c t i v e thread .
threads : Thread l i s t , % Li s t o f a l l t hreads .
e r r o r : I p c e r r , % Ind i ca t e s i f error occurred .
t imeout : L4 timeout , % Ind i ca t e s i f t imeout occurred .
seed : nat , % Seed used fo r randomness .
handshake attempted : bool , % Ind i ca t e s i f handshake attempted .
a s s e r t i o n s h e l d : bool % Ind i ca t e s i f a s s e r t i on s he ld .

#]

Source 4.8: PVS: basic system state, with added assertions held field.

The semantics of this field are that it signifies if all assertions have held, the failure of a single assertion
will result in assertions held being unset for the remainder of IPC. To achieve this, the status of the
assertions held field is always updated by combining the assertions with the previous status of the as-
sertions held field using the and operator. By assuring that assertions held is initially set to true (as no
assertions can possibly have failed at that time), the assertions held field will only be true after handling
IPC if all assertions held.

Consider the following, simple assertion, which is made at the beginning of the receive part:

a s s e r t (have r e c e i v e) ;

Source 4.9: C++: have receive assertion.

Translated to our model, this statement results in the following definition:

% Assert t ha t at t h i s po in t the <have rece i ve> parameter i s t rue .
s t a t e o l d WITH [(a s s e r t i o n s h e l d) :=

s t a t e o l d ‘ a s s e r t i o n s h e l d AND
have r e c e i v e]

Source 4.10: PVS: have receive assertion.

We should note though that not all assertions have been integrated into our model, most notably we
have excluded assertions in the ipc receiver ready() function and in the receive part. The first omissions
were due to us not modeling the receiver field and the second were due to the abstractions applied to the
receive part (one assertion in the receive part remained though, namely the one listed above).

Verification and problems

The lemma corresponding to our property is defined as follows::

% The var ious a s s e r t i on s in the code shou ld ho ld a f t e r engaging in IPC .
a s s e r t i o n s h e l d : LEMMA

FORALL (have send : bool , partner : Thread pointer , have r e c e i v e : bool ,
sender : Thread pointer , s t a t e o l d : System state) :

% Engage in IPC with the supp l i e d parameters .
LET s tate new = sy s i p c (have send , partner ,

have r ece ive , sender , s t a t e o l d) IN
NOT s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g IMPLIES

state new ‘ a s s e r t i o n s h e l d

Source 4.11: PVS: property 3, formal definition.

Contrary to the previous two properties, this lemma does not require that the error field is initially not
set. This is due to the fact that this lemma uses the sys ipc() function, which already initializes the error
field to false. However, we do make another assumption, namely that initially the thread polling bit is
not set. The reason why we added this assumption will now be expanded upon.

57

Problem 1: thread polling bit unset

Our first problem occured when we tried to verify the lemma above without the thread polling assumption.
The problem popped up when we tried to verify the following assertion in the do ipc send part() function:

% Star t with a handshake and immediate ly re turn i f an error occured .
LET s tate temp = t ry handshake r e c e i v e r (partner , s t a t e o l d) IN
IF state temp ‘ e r r o r THEN

s tate temp
ELSE
LET

% Assert t ha t a f t e r a s u c c e s s f u l handshake the sender thread i s no
% longer p o l l i n g .
s tate temp = state temp WITH [(a s s e r t i o n s h e l d) :=

state temp ‘ a s s e r t i o n s h e l d AND
NOT state temp ‘ threads (state temp ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g] ,

[. . .]
IN

[. . .]
ENDIF

Source 4.12: PVS: thread polling assertion.

More verbosely, the above assertion tries to verify that after a successful handshake, the thread polling
bit of the this thread, which is the sender, is not set. The semantics of the thread polling bit are that
it is only set (on the sender) when the sender has to wait for the receiver to become ready; essentially
the sender polls the receiver (hence the bit’s name) at intervals to see if it has become ready. Once the
receiver has become ready (the handshake has been successful), the thread polling bit should be unset as
the sender is no longer waiting. To verify this assertion, we created the following lemma:

% I f no error has occured when c a l l i n g t r y handshake r e c e i v e r () , the
% <t h r e ad po l l i n g > o f the <t h i s > thread w i l l a lways be unset .
t r y h and s h a k e r e c e i v e r n o e r r o r n o t p o l l i n g : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = t ry hand shake r e c e i v e r (partner , s t a t e o l d) IN

NOT s t a t e o l d ‘ e r r o r AND
NOT state new ‘ e r r o r IMPLIES

NOT state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g

Source 4.13: PVS: try handshake receiver no error not polling lemma.

If we were able to verify this lemma, we would have verified the thread polling assertion. However, when
trying to verify this lemma, we found that one specific path in the try handshake receiver() function
rendered the lemma unprovable. We will list the lines involved in this path (where less relevant parts
have been replaced by [...] for brevity purposes):

% Try to have the sender and r e c e i v e r agree upon engaging in IPC .
t r y handshake r e c e i v e r (partner : Thread pointer ,

s t a t e o l d : System state) : System state =
% Immediately re turn with an error i f the partner i s the Zero− or Ni l thread
% or the partner i s an i n v a l i d thread .
IF partner = Zero thread OR [. . .] THEN

s t a t e o l d WITH [e r r o r := true]
ELSE
LET

[. . .]
IN

% IPC has not been cance l l ed , now check i f the r e c e i v e r i s ready fo r
% the sender . I f not , wai t f o r the r e c e i v e r to become ready .
IF NOT sender ok (state temp ‘ th i s , partner , s tate temp) THEN
LET

s tate temp = do send wai t (partner , s tate temp)
IN

[. . .]
ELSE

s tate temp WITH [e r r o r := f a l s e]

58

ENDIF
ENDIF

Source 4.14: PVS: try handshake receiver() problematic lines.

The problematic path arises when the partner is valid and the sender ok() function returns true, which
results in a return from the function with the error field set to false. As, in our model, the functions
before the call to sender ok() do not modify the thread polling bit, the assertion only succeeds if the
thread polling bit is not set before try handshake receiver() is called.

Unfortunately, this assumption cannot be found anywhere in the source code. To test this assumption,
we modified the Fiasco source code and added our assumption as an assertion:

a s s e r t (! (s t a t e () & Thread po l l ing)) ; // !

i f (EXPECT TRUE(have send part | | hav e r e c e i v e pa r t))
r e t = do ipc (have send part , partner ,

have r e c e i v e pa r t , sender ,
t , r eg s) ;

Source 4.15: C++: thread polling bit, added assertion.

As can be seen, we assert that the thread polling bit is not set before do ipc() is called. After recompiling
Fiasco (including our added assertion), we ran an IPC test application to check if the assertion failed.
To make sure the system reached the assertion at all, we first tested a version where our assertion was
preceded by an assertion guaranteed to fail2. After we verified that our assertion was indeed evaluated,
we ran the test application again (with the obviously failing assertion removed of course) to see if the
assertion would fail, which it did not. We now had some confidence that our assumption was correct,
however the quotation at the beginning of the chapter by Lenstra can be applied to this situation: our
assertion test can only prove its incorrectness, not its correctness. This is due to the fact that the IPC
tester might not examine all possible states, a state might be missed in which the assertion would fail.

As an alternative way to increase confidence that our assumption holds, we tried to verify that the
thread polling bit being unset is an invariant of the Fiasco IPC path. Here we also have to assume that
the thread polling is not set initially, as otherwise we would have the exact same problem as before. The
invariant corresponds to the following lemma:

% I f we assume tha t i n i t i a l l y , the <t h i s > thread ’ s <t h r e ad po l l i n g > b i t i s
% not se t , i t w i l l s t i l l be unset a f t e r c a l l i n g s y s i p c () .
s y s i p c n o t p o l l i n g : LEMMA

FORALL (have send : bool , partner : Thread pointer , have r e c e i v e : bool ,
sender : Thread pointer , s t a t e o l d : System state) :

% Engage in IPC with the supp l i e d parameters .
LET s tate new = sy s i p c (have send , partner ,

have r ece ive , sender , s t a t e o l d) IN
NOT s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g IMPLIES

NOT state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g

Source 4.16: PVS: unset thread polling() bit invariant.

Unfortunately, we failed to prove both this lemma and the lemma mentioned earlier which was required
for proving our property. Both lemmas depended on the thread polling bit always being unset after calling
do send wait(). The semantics of this function are that the sender waits for the receiver to become ready
and only returns when the sender is ready or an error occured. In both cases, the thread polling bit should
have been unset as the sender is no longer waiting. Therefore, we had to prove the following lemma to
finish the proofs of both lemmas:

% After c a l l i n g do send wai t () , the <t h i s > thread ’ s <t h r e ad po l l i n g > b i t w i l l
% always be unset .
do s end wa i t n o t po l l i n g : LEMMA

2We used the simplest solution possible: assert(false);

59

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = do send wai t (partner , s t a t e o l d) IN

NOT state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g

Source 4.17: PVS: unset thread polling() bit invariant.

At the start of this function, the thread polling bit is set to indicate that the sender is waiting for the
receiver to become ready. When we tried to prove this lemma, we found a path in which the thread polling
bit was not unset at the return of the function.

% Create a thread s t a t e which b i t s to add to the <t h i s > thread .
LET

[. . .]
add b i t s = TS empty WITH [t h r e ad po l l i n g := true ,

t h r e ad s end i n p r o g r e s s := true ,
t h r e a d i p c i n p r o g r e s s := true] ,

s tate temp = s t a t e add d i r t y (state temp ‘ th i s , add bi t s , s tate temp) ,
[. . .]

IN
[. . .]

% Return i f the r e c e i v e r i s ready to r e c e i v e a message from the <t h i s >
% thread . I f not enter the wai t ing loop .
IF sender ok (state temp ‘ th i s , partner , s tate temp) THEN

s tate temp WITH [e r r o r := f a l s e]
ELSE

% Enter the wai t ing loop .
[. . .]

ENDIF
[. . .]

Source 4.18: PVS: do send wait() function, problematic thread polling path.

The erroneous situation occured, once again, when the sender ok() function is called. All functions after
state add dirty() and before sender ok() do not modify the thread polling bit. When sender ok() returns
true, the do send wait() function immediately returns and execution is continued in the do ipc send part()
function. As at this point the thread polling bit will be set to true (due to the state add dirty() function
call), the thread polling assertion will fail. This time, there was no additional assumption which would
solve our problem. Our only option was to define an axiom:

% The <t h r e ad po l l i n g > b i t i s not s e t when sender ok () re turns t rue .
s e nd e r o k no t p o l l i n g : AXIOM

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
s ender ok (s t a t e o l d ‘ th i s , partner , s t a t e o l d) IMPLIES

NOT s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g

Source 4.19: PVS: the axiom used in the do send wait() function.

With this axiom, our problem was solved, however it indicated that either our model was incorrect or
the source code. After careful consideration of our model, we contacted the author of the Fiasco IPC
path, who confirmed that we had indeed found a bug in the source code. This bug could be fixed by
unsetting the thread polling bit after the sender ok() function has returned true and before returning
from the function. In our model, we resolved this problem by using our axiom, we could also have fixed
the bug in our model but chose not to in order to keep the model consistent with the code.

Problem 2: sender not equal to receiver

At certain points in our proofs, we needed the assurance that certain bits remained unchanged after calling
a specific function. For most functions this posed no problem, with the exception of the preemption point()
function. This function relied on the preemption point actions() function, which updates the system state
according to, randomly generated, preemption actions. As the receiver ready preemption action was quite
complex, for each preemption point actions() lemma we created a corresponding lemma focusing only on
that action, of which an example is shown below:

60

% The <t h r e ad i p c i n p ro g r e s s > b i t o f the <t h i s > thread w i l l not be changed
% a f t e r r e c e i v e r r eady () was c a l l e d .
r e c e i v e r r e ady i p c i n p r o g r e s s un chang ed : LEMMA
FORALL(sender : Thread pointer , r e c e i v e r : Thread pointer , s t a t e o l d : System state) :

LET s tate new = r e c e i v e r r e ady (s t a t e o l d ‘ th i s , r e c e i v e r , s t a t e o l d) IN
s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s =

state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s

% When no t imeouts are al lowed , the <t h r e ad i p c i n p ro g r e s s > b i t o f the
% <t h i s > thread w i l l not be changed a f t e r c a l l i n g preempt ion po in t ac t i ons () .
pr e empt i on po in t a c t i on s no t imeou t i p c i n p rog r e s s unchanged : LEMMA

FORALL (a c t i on s : Preempt ion act ions , partner : Thread pointer ,
s t a t e o l d : System state) :

LET s tate new = preempt i on po in t ac t i on s (ac t ions , partner , f a l s e , s t a t e o l d) IN
s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s =

state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s

Source 4.20: PVS: preemption actions()- and related receiver ready() lemma.

Verifying the preemption point actions() lemma was very straightforward, as most preemption actions did
not involve the thread ipc in progress bit. However, verifying the corresponding receiver ready() lemma
proved troublesome. The problem occured when the sender was equal to the receiver and the receiver
was to have its state initialized; this initialization modified the state in a way that prevented us from
proving the lemma.

In essence, the problem originates in a situation that cannot occur in Fiasco, namely when a sender
wants to send a message to itself. This would result in the sender having to wait forever for the re-
ceiver (itself) to become ready (at least with our modeling of timeouts). Although this exception is
not handled in the Fiasco source code, we modified the model to reflect that a receiver cannot become
ready for a sender when both are equal. We felt this was the right decision as it might not reflect the
actual source code, but it did reflect its behaviour. The preemption point actions() function and the
receiver ready ipc in progress unchanged lemma were thus modified and the proof could be completed.
% Execute a l i s t o f preemption po in t ac t i ons .
pre empt i on po in t ac t i on s (a c t i on s : Preempt ion act ions , partner : Thread pointer ,

a l l ow t imeout : bool ,
s t a t e o l d : System state) : RECURSIVE System state =

CASES ac t i on s OF
[. . .]

% A rec e i v e r can only become ready when i t i s not equa l to the sender ,
% i f so i t would be wa i t ing f o r e v e r .
ELSIF ac t i on = Rece ive r r eady AND NOT s t a t e o l d ‘ t h i s = partner THEN

r e c e i v e r r e ady (s t a t e o l d ‘ th i s , partner , s t a t e o l d)
[. . .]

ENDCASES
MEASURE length (a c t i on s)

% The <t h r e ad i p c i n p ro g r e s s > b i t o f the <t h i s > thread w i l l not be changed
% a f t e r r e c e i v e r r eady () was c a l l e d and the sender (the <t h i s > thread) was
% not equa l to the r e c e i v e r .
r e c e i v e r r e ady i p c i n p r o g r e s s un chang ed : LEMMA
FORALL(sender : Thread pointer , r e c e i v e r : Thread pointer , s t a t e o l d : System state) :

LET s tate new = r e c e i v e r r e ady (s t a t e o l d ‘ th i s , r e c e i v e r , s t a t e o l d) IN
NOT s t a t e o l d ‘ t h i s = r e c e i v e r IMPLIES

s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s =
state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s

Source 4.21: PVS: receiver ready()- and dependent preemption actions() lemma.

Problem 3: not engaged in IPC assertion

In the do send wait loop() function, an assertion is made that the in ipc() function should evaluate to
false when the thread cancel and thread transfer in progress bits are not set. To put it another way:

61

only when the sender and receiver are engaged in IPC will the thread transfer in progress bit be set.
Unfortunately, we were unable to prove this assertion, which we expect is due to our simplified preemption
point definition and lack of scheduling, as they result in the receiver state being less accurately modelled
(which is precisely what is needed in the in ipc() function). For our proof we thus had to resort to the
following axiom:

% When the <t h r e ad t r an s f e r i n p r o g r e s s > b i t o f the <t h i s > thread i s not se t ,
% tha t imp l i e s t ha t the partner and the <t h i s > thread are not engaged in IPC .
n o t t r a n s f e r i n p r o g r e s s n o t i n i p c : AXIOM

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
NOT s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e a d t r a n s f e r i n p r o g r e s s
IMPLIES

NOT i n i p c (s t a t e o l d ‘ th i s , partner , s t a t e o l d)

Source 4.22: PVS: the axiom used in the do send wait loop() function.

Example proof

To conclude our discussion of our verification attempts, we will list an example of a typical proof of our
model. We will look at the assertions held lemma, which was the lemma corresponding to the property
which verification attempt we just discussed. The proof will also show the modular structure of our
proofs; one might expect the proof to be very large, but due to the use of the following sublemma it is
actually very small (and therefore suitable for demonstration purposes).

% The var ious a s s e r t i on s in the code shou ld ho ld a f t e r hand l ing the send part
% when i n i t i a l l y no error or t imeout occurred .
do i p c s e n d p a r t a s s e r t i o n s h e l d : LEMMA

FORALL (partner : Thread pointer , have r e c e i v e : bool , s t a t e o l d : System state) :
LET s tate new = do ip c s end pa r t (partner , have r ece ive , s t a t e o l d) IN

NOT s t a t e o l d ‘ e r r o r AND
NOT s t a t e o l d ‘ t imeout AND
NOT s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g AND
s t a t e o l d ‘ a s s e r t i o n s h e l d
IMPLIES

state new ‘ a s s e r t i o n s h e l d

Source 4.23: PVS: property 3, sublemma for the do ipc send part() function.

We are now ready to proceed with the proof itself.

The proof of the assertions held lemma starts with the formula as we have defined it earlier. As
a precondition, it requires that initially the thread polling bit of the this thread is not set. If this
precondition is met, all assertions should hold (indicated by requiring the assertions held field to be true)
after calling sys ipc():

{1} ∀ (have send: bool, partner: Thread pointer, have receive: bool, sender: Thread pointer,
state old: System state):

let state new = sys ipc(have send, partner, have receive, sender, state old) in
¬ state old‘threads(state old‘this)‘state‘thread polling =⇒ state new‘assertions held

After some initializing commands (namely (skolem!)3, (ground) and (flatten)), we end up with a basic
version of the formula we want to prove:

{1} state old′‘threads(state old′‘this)‘state‘thread polling
{2} sys ipc(have send′, partner′, have receive′, sender′, state old′)‘assertions held

3When applying automatic skolemization, the ′ character is appended to universal quantifiers to indicate the constants
they are replaced with. Unfortunately, the ′ character is very similar to the ‘ character that is used to access fields in a record.
As an example of the possible confusion, accessing the this field of the state old′ constant translates to: state old′‘this.

62

We can see that the thread polling requirement appears as consequent 1, which means that we can assume
that it does not hold. If we could prove that it does hold, our proof would be completed. In our case, we
will use consequent 1 to prove consequent 2. We now expand sys ipc() to see its definition, where we see
that it calls do ipc() with the initialized system state as one of its parameters:

{1} state old′‘threads(state old′‘this)‘state‘thread polling
{2} if have send′ ∨ have receive′

then do ipc(have send′, partner′, have receive′, sender′,

state old′

with
[
(error) := false,
(timeout) := false,
(handshake attempted) := false,
(assertions held) := true,
(receiver initialized) := false

]
)‘assertions held

else true
endif

To prevent the same, initialized state from being displayed several times, we issue a (name-replace)
command. In our proof, this results in all occurences of the initialized state being replaced with the
name state old initialized :
{-1} state old′

with
[
(error) := false,
(timeout) := false,
(handshake attempted) := false,
(assertions held) := true,
(receiver initialized) := false

]
= state old initialized

{1} state old′‘threads(state old′‘this)‘state‘thread polling
{2} if have send′ ∨ have receive′

then do ipc(have send′, partner′, have receive′, sender′,

state old initialized)‘assertions held
else true
endif

Of course, the replaced state itself should still be known, so antecedent -1 is added to reflect the equality
introduced by (name-replace). The result of the replace action itself can be seen in consequent 2. Please
note that this command serves only cosmetic purposes, it does not change the state by any means.
Although at this point the replace is only introducing overhead, our later sequents will benefit from it.

63

Once again, we have to expand a function to continue, in this case we expand do ipc:

{-1} state old′

with
[
(error) := false,
(timeout) := false,
(handshake attempted) := false,
(assertions held) := true,
(receiver initialized) := false

]
= state old initialized

{1} state old′‘threads(state old′‘this)‘state‘thread polling
{2} if have send′ ∨ have receive′

then if have receive′ ∧
¬ if have send′

then do ipc send part(partner′, have receive′, state old initialized)‘error
else state old initialized‘error
endif

then do ipc receive part(sender′, true,
if have send′

then do ipc send part(partner′,

true,
state old initialized)

else state old initialized
endif)‘assertions held

else if have send′

then do ipc send part(partner′, have receive′,

state old initialized)‘assertions held
else state old initialized‘assertions held
endif

endif
else true
endif

The benefit of the (name-replace) command can now clearly be seen, had not we not issued this command
there would have been six (identical) initialized states being displayed. When one looks at how many
lines the initialized state definition occupies, the replacement is a big improvement in readability.

64

At this point, one might expect that we would begin to instantiate the have send or have receive con-
stants, which would introduce branching into our proof. Although this is possible, we first expand
do ipc receive part(), as by definition it does not change the assertions held field. It thus has no influence
on consequent 2, which leads to a simplified version of the consequent. This will prove beneficial later in
the proof:

{-1} state old′

with
[
(error) := false,
(timeout) := false,
(handshake attempted) := false,
(assertions held) := true,
(receiver initialized) := false

]
= state old initialized

{1} state old′‘threads(state old′‘this)‘state‘thread polling
{2} if have send′ ∨ have receive′

then if have receive′ ∧
¬ if have send′

then do ipc send part(partner′, have receive′, state old initialized)‘error
else state old initialized‘error
endif

then if have send′

then do ipc send part(partner′, true, state old initialized)‘assertions held
else state old initialized‘assertions held
endif

else if have send′

then do ipc send part(partner′, have receive′,

state old initialized)‘assertions held
else state old initialized‘assertions held
endif

endif
else true
endif

65

Once again, one might expect us to introduce branching in our proof at this point. However, as we
are only left with the do ipc send part() function, we can use the do ipc send part assertions held lemma
listed earlier. This lemma states that calling do ipc send part() results in the assertions held field being
true, which is precisely what we want to prove. If we add the lemma to our proof (with the (lemma)
command) and automatically instantiate it (using the (inst?) command), we get the following result:

{-1} let state new = do ipc send part(partner′, have receive′, state old initialized) in
¬ state old initialized‘error ∧
¬ state old initialized‘timeout ∧
¬ state old initialized‘threads(state old initialized‘this)‘state‘thread polling ∧
state old initialized‘assertions held

=⇒ state new‘assertions held
{-2} state old′

with
[
(error) := false,
(timeout) := false,
(handshake attempted) := false,
(assertions held) := true,
(receiver initialized) := false

]
= state old initialized

{1} state old′‘threads(state old′‘this)‘state‘thread polling
{2} if have send′ ∨ have receive′

then if have receive′ ∧
¬ if have send′

then do ipc send part(partner′, have receive′, state old initialized)‘error
else state old initialized‘error
endif

then if have send′

then do ipc send part(partner′, true, state old initialized)‘assertions held
else state old initialized‘assertions held
endif

else if have send′

then do ipc send part(partner′, have receive′,

state old initialized)‘assertions held
else state old initialized‘assertions held
endif

endif
else true
endif

We see that the do ipc send part assertions held lemma has been added as antecent -1, with filled in
values due to the automatic instantiation. A closer look at those values reveals that they correspond to
the values in consequent 2, which is precisely what we want as we want to prove that consequent 2 holds.
However, there are some additional requirements that have to be met before antecent -1 can be said to
hold. Among these requirements we find that the thread polling bit should initially not be set, which
is precisely what consequent 1 states. The other requirements correspond directly to the initialization
done by sys ipc(), and can therefore be directly found in antecedent -2. We thus have all requirements
to prove antecent -1, which allows us to prove that consequent 2 holds. Please note that by expanding
do ipc receive part() and using the do ipc send part assertions held lemma, we did not have to introduce
any branching in our proof. Most often though, this will not be possible.

To finish the proof, two calls to (assert) suffice; the first is necessary for antecent -1 to be removed of its
LET construction and the second completes the proof:

This completes the proof of assertions held.

Q.E.D.

66

Chapter 5

Discussion

“The important thing in science is not so much to obtain new facts
as to discover new ways of thinking about them.”

Sir William Bragg

5.1 General discussion

When one wants to attempt verification of a program, that program has to be specified in a language
that supports theorem proving. As most programs are written in languages that do not support theorem
proving (such as Java and C++), a verification of such a program requires a conversion to a theorem
prover (such as PVS). This conversion has to retain the exact semantics of the program, otherwise proofs
in the theorem prover do not necessarily apply to the source code.

If the semantics of both the program’s language and the theorem prover are known, an automatic conver-
sion between these two becomes possible. For larger programs this is an absolute must, as a full, manual
conversion would take a huge amount of time. Even small programs can benefit from an automatic
conversion as it is not unlikely that an error is introduced in the manual conversion. Unfortunately, for
many languages a fully functional conversion is not yet available; most notably this list of languages in-
cludes the widely used C++ language. In practice therefore, automatic conversion is not doable for many
programs. Even if an automatic conversion would be possible, full verification of programs is (currently)
not a realistic option because of the involved complexity.

If no automated- or full, manual conversion is possible, the situation is not hopeless though. An alternative
solution is to create a model of the program and apply verification to that model. The disadvantage of
this method is that it involves a manual conversion and that the proofs cannot be said to directly apply
to the program, they are only guaranteed to apply to the model. The proofs are therefore only useful
insofar as one trusts the model to be an accurate representation of the source code. However, such a
model can lead to the detection of flaws in the program design, which we will discuss later. A model also
allows for abstraction, which can help to focus on a specific property of the program and usually also
lessens the amount of time spent on creating the model and proofs. This approach also opens up the
possibility for larger programs to undergo verification, albeit only partial.

Even if one manages to formally verify source code, there is often still one vulnerable step remaining:
compilation of the source code to machine code. This conversion has to retain the source code’s semantics,
as otherwise the verified properties of the source code do not necessarily apply to the compiled application.

67

5.2 Research discussion

Because we worked on C++ code, our options were (at the time) limited to creating a model of the
code. However, even if a fully functional C++ to PVS converter had been available, we would probably
still have opted for creating a model of the code because of the complexity of the IPC subsystem, which
would probably have resulted in very large and complex proofs. This complexity arises because the
IPC subsystem is not an isolated subsystem, it has in fact many interdependencies with other parts
of the kernel (such as the scheduling subsystem). Therefore, creation of the model was quite tedious,
even though the code was fairly well-documented and there was a thesis by René Reusner describing the
general IPC outline. However, one should take into account though that we had no prior knowledge of
the system; had the model been created by someone (intimately) familiar with the source code it would
probably have sped up the creation significantly. As creating the model required us to gain a lot of
insight in the code, the conversion itself greatly helped in increasing our understanding of the system.
We consider this to be an advantage of model creation over automatic conversion, which requires no
understanding at all.

While creating the model, we experimented with an approach in which we defined a very basic model that
could be used and overridden in other theories. Should properties (which are defined in separate theories)
require a more detailed model, they could override parts of the basic model and replace them with more
detailed versions. The main benefit of this approach is that it results in very minimalistic models: a
theory would only expand those parts relevant to its property. This approach would likely have resulted
in more compact proofs. Although this approach worked fairly well, there were some disadvantages. As
we wanted our model to be a faithful representation of the code, a single, detailed model, which was used
in all properties, better reflected the real situation. Another disadvantage was that there was no single
point of definition; it was possible to have two theories override parts in conflicting ways. The obvious
downside of a single, detailed model was that the proofs became more involved, but the benefit of having
a more faithful representation of the code outweighed this disadvantage in our opinion.

Creating the model itself was an iterative process, one in which we frequently revisited our design because
of slight discrepancies to the code and gained insights into the inner workings of the system. To prevent a
single change resulting in a single, large proof having to be redone, we opted for a very modular structure
in which lemmas were broken down into smaller lemmas. To better enable the breakdown of lemmas into
smaller lemmas, some of the larger functions were split into smaller functions. The original lemmas for
the larger functions could now be broken into smaller lemmas specifically targeting the smaller functions.
It is important to note that the semantics of the original function needed to be retained when it was
split, however this posed no real problems. Through this modular approach we created proofs that were
much more resistant to model changes, although some parts of the proof (particularly automatic lemma
instantiation) still rendered proofs quite vulnerable to changes.

One of the main issues when creating the model was how to model the interruptible nature of Fiasco’s IPC
implementation. Our solution made use of the fact that the IPC path was only interruptible at specific
points in the code (referred to as preemption points). After each preemption point, several actions might
have influenced the ongoing IPC (of which we were trying to prove a property). We therefore modelled
a preemption point as a function which randomly executed a list of actions that could influence IPC
(which included an action where nothing happens). Although this was of great use in our model, it was
also a quite risky solution. The main problem is that you have to known all actions that can occur in a
preemption point along with their effects on IPC. Besides using the source code, we also used the thesis
by René Reusner [Reu05] as a reference, but there is no guarantee that we did not miss any subtle actions
(which is not unlikely given the concurrent structure of Fiasco). The obvious solution is to actually model
the concurrency, but that would have greatly increased the complexity of the model and the proofs and
has therefore been abstracted away.

Two of the three lemmas we tried to verify could be proven without resorting to additional assumptions.

68

Although the two verified properties might seem simple, they were both important to the functioning
of the system in (very) specific situations. In both cases, we verified that specific threads would not be
waiting endlessly in a specific situation, an important property for a real-time kernel. The third property,
verification of the assertions in the code, was mainly used to increase confidence in the correctness of our
model. It is with this property that we encountered several problems. One problem was the result of our
simplified modeling of preemption points, more specifically the modeling of a receiver becoming ready for
a sender. When the sender was equal to the receiver, it could become ready for itself which is not possible
in the Fiasco IPC implementation we modelled (which included a simplified timeout representation). This
however, was not directly stated in the source code but was inferred from it.

The second problem we encountered was verifying that at a certain point the sender and receiver were not
engaged in IPC. Unfortunately, our verification attempts failed and to continue verification we created a
(hopefully temporary) axiom dealing with this assertion. We believe our inability to verify this assumption
is in large part due to our simplified model of preemption points, as the assertion mostly deals with the
receiver becoming ready which is modelled in the preemption point.

The most important problem we found dealt with the thread polling state bit assertion. In our attempts
to verify this specific assertion, we found that we had to assume that initially (before IPC was started)
the thread polling bit was not set. We tried to verify this through adding the assumption as an assertion
in the Fiasco source code, which was then recompiled and an IPC test suite was run on it. Unfortunately,
this method cannot verify our assumption as we are not sure that it tests the assertion in all possible
states. It could however provide a counter-proof to our assumption if the assertion had failed, but it did
not fail. As an alternative to this method, we tried to verify that the thread polling bit being unset was
an invariant of IPC; this verification also required the assumption that the thread polling bit is initially
not set. Unfortunately, we failed to verify both the invariant and the original assertion for the exact same
reason. The problem was with the do send wait() function, which ought to unset the thread polling bit
before returning. We found that there was a path though in which this was not done. To rule out the most
obvious cause of this problem, we checked if the model did not correctly reflect the source code. However,
we failed to see any discrepancies between our model and the source code. Not even our simplified
preemption point could have been the cause, as the source code made it clear that the thread polling bit
was only changed at very specific functions, all of which were not involved in a preemption point. Our
next step was to check with the designer and implementer of the IPC path, René Reusner, who verified
that we had indeed found a bug in the source code (which could be easily fixed). Only when we assumed
this bug fixed and used our initial thread polling state assumption were we able to prove the assertion.

We consider the finding of an actual bug in Fiasco’s IPC path an important finding. Should the bug
occur, it would crash the whole kernel (and thus everything running on top of it). Removal of even one
such bug can therefore be considered quite important. It is not odd that the bug had not been found
earlier, as it is highly unlikely to occur1. Although one bug might not seem like much, this can be due to
several reasons. One option is that the properties chosen were too simple, they were perhaps not likely
to contain any errors at all. Another option is that our model is too abstract or simply incorrect, which
might lead to some (lower-level) errors not being found. The last option is that there simply were not
many errors in the modelled part of the code. We consider this a very plausible option, as the version of
Fiasco we modelled had been extensively tested over a long period of time.

Even more important besides finding the bug is the fact that our abstract model was able to find it. This
shows that it is not necessary to have a full, one-on-one model in order to find bugs. Please note once
again that we have applied a lot of abstractions to our model, an essential component as scheduling has
even been completely left out. For larger pieces of software, (partial) verification can thus be a feasible
solution when one uses an abstract model. Verification by creating an abstract model can also benefit
smaller programs as a more compact model is likely to result in easier, smaller proofs, which can save

1Due to the very short time in which the receiver has time to become ready.

69

valuable time. As an abstract model by definition is not completely equal to the source code, there may
be subtle errors that are missed though.

The choice of abstractions is of the utmost importance as a wrongly chosen abstraction might simplify
the model too much and a wrongly defined abstraction can easily lead to incorrect proofs. Defining the
abstractions should thus preferrably be done by someone very familiar with the inner workings of the
source code. Although the abstractions require a lot of thought, we suggest that the rest of the model
is created by keeping the conversion as close to the source code as possible. The main advantage of this
method, having a model very faithful to the source code, is increased confidence in the model accurately
reflecting the source code. This is important for a model as it inheritly does not directly reflect the
source code and thus any proofs of the model are only valid insofar as one trusts the model to be a good
reflection of the source code.

70

Chapter 6

Conclusions and future work

“If you don’t fail at least 90 percent of the time, you’re not aiming
high enough.”

Alan Kay

6.1 Conclusions

For extremely critical programs (such as the software of the space shuttle), relatively small programs or
algorithms (such as an encryption algorithm), the effort to apply full verification might be worthwhile.
Unfortunately, for most other programs full verification is not a valid option because it requires too much
effort. One of the reasons why full verification often requires so much time is the inability to automatically
convert from source code to the proof system’s language. This conversion is often necessary as most
programs are written in languages that do not support proof creation. The only alternative to automated
conversion is manual conversion, which requires (far) more effort than automated conversion. A manual
conversion has the advantage though that it actively involves the converter in the conversion process,
which is likely to lead to a better understanding of the system.

An alternative to full verification is partial verification, in which only certain parts of the code are verified.
The main benefit of this approach is that it can use a more compact model. In order to create a compact
model, one abstracts away parts that are not relevant to the properties one wants to prove. The danger
of applying abstractions is that the model might not accurately reflect the source code, parts may have
been abstracted away incorrectly. Another possible pitfall is that the model has become too abstract,
which might prevent lower-level bugs from being found. Besides all these disadvantages, this approach
also has its benefits. Its main benefit is its use of a more compact model, which likely results in smaller
and simpler proofs. Furthermore, one does not need to know all the implementation details of parts that
have been abstracted away, a functional description of these parts often suffices.

In our research, we created a model of a subsystem of the Fiasco microkernel, namely IPC. Even though
the subsystem is relatively small, it was still quite complex due to its many inter-relations with other
parts of the kernel. We therefore decided to create an abstract model of Fiasco IPC. Of all abstractions
made, the most important were the preemption points, which are the points in the IPC path where
execution might be (temporarily) switched to another thread. Using our abstract model, we tried to
verify three different properties. The first property ensured that after sending an IPC message, there
should not be any thread lock on the receiver. Our second property ensured that in a combined send
and receive IPC call, the receiver is ready to send a message back to the sender when it is required to
do so. These two properties were verified without requiring any additional assumptions. Both verified

71

properties ensured that in certain situations, threads would not be waiting infinitely, which is obviously
important to a real-time system. The third property, in which we verified the various assertions in the
IPC path, proved more troublesome. In the end, for one assertion we had to resort to using an axiom. We
believe our inability to verify this property was due to our simplified modeling of preemption points. Our
second problem was with another assertion, which required an additional assumption about the initial
state. Even with this assumption we failed to verify the assertion, which turned out to be due to an error
in the source code.

We were thus able to find a bug in the Fiasco IPC implementation, even with our greatly abstracted
model. The bug we found was not likely to occur, but when it did it would have crashed the whole kernel
and therefore everything running on top of it. The bug finding thus had a direct, practical use in that
the Fiasco kernel had one bug removed from its code. Although useful, we consider the fact that our
abstract model was able to find the bug more important. It shows that it is not necessary to create a
strict, one-on-one conversion of the source code to find bugs. This opens up the possiblity for verification
on larger programs, where one only focuses on those aspects of particular interest for verification and
abstracts away the rest.

When one attempts to create an abstract model, choosing those abstractions wisely is a key step that
requires a lot of insight into the inner workings of the system. We recommend that everything that is not
abstracted away is converted as faithful to the code as possible, as this greatly increases the confidence
one has in the correctness of the model. This is important as proofs of a model are only useful insofar
one trusts the model to be a correct representation of the source code.

6.2 Future work

As has become clear in this thesis, there are still many open problems and points of improvement. In
this section we will discuss the most important.

6.2.1 Further verification

As we have only verified three properties of IPC in Fiasco, there are many other properties open for
verification. It might be more interesting though to verify our three properties in an expanded version of
our model to see if they can still be proven. Every abstraction applied is a candidate for expansion, how-
ever we consider preemption points the most interesting candidate for expanding upon for the following
reason. As preemption points form an integral part of IPC, they should preferrably be modelled as faith-
ful to the source code as possible. Conversely, in our model preemption points are the most abstracted
component. As preemption points themselves depend on other abstractions, such as the complete abstrac-
tion of scheduling and the abstraction of the receive part (corresponding to a receiver becoming ready).
Therefore an expansion of preemption points in the model would most likely also include integration
respectively expansion of these abstractions into the model.

Not only is inclusion of scheduling a required condition for more accurate preemption point modeling, it
is also a very important aspect of Fiasco (IPC) itself. Modeling scheduling is therefore not only necessary
for a better preemption point model, but it also opens up several other possible verification properties
and improves the model’s similarity to the source code. An interesting scheduling-related property would
be verifying the absence of priority inversion in IPC.

If scheduling gets included into the model and preemption points get a more faithful representation, it
makes sense to move the receive part functionality from the preemption points back to its original location.
A receiver becoming ready can now be modelled by actually scheduling the receiver and following its IPC
path. Having done this, it would be interesting to check if the sender being equal to the receiver once
again leads to problematic proofs.

72

Another important aspect of Fiasco IPC that has been abstracted is the long IPC path. Not only does
inclusion of the long IPC path make the path itself longer, and thus proofs larger, it also greatly increases
the complexity of proofs dealing with the IPC path. This is in most part due to the full preemptability
of the long IPC path. In the short IPC path, there are only specific points in which execution could
be interrupted (namely the preemption points), but execution in the long IPC path can be interrupted
after every instruction. For proofs, this leads to an enormous increase in the state space needed to be
examined, as after every executed statement a number of branches is introduced that is equal to all
possible actions a preemption might result in (of which there are many). The main problem is thus how
to deal with this preemptability (and resulting state space explosion) efficiently in proofs.

As we have seen, there are many abstractions that can be expanded upon in future work. However,
there is one open issue with the current proofs that certainly deserves looking into: our inability to verify
the assertion stating that, at a certain point, the sender and receiver must not be engaged in IPC with
each other. We believe that this property could not be proven due to our simplified version of a receiver
becoming ready and possibly some additional assumptions might be necessary. If this simplified version
is expanded upon, as we just discussed, it is interesting to see if our suspicions were correct or if there is
a flaw in our model.

6.2.2 Modular proofs

Currently, one of the problems with proofs is their fragility: a small modification in the model often
requires whole proofs to be redone. A possible solution to this problem is to create a more modular
model, where a small modification results in only some or parts of the proof having to be redone. In our
research, we successfully created a very modular model where small changes only required small changes
in the proofs. To create a more modular model, we split some large functions into smaller functions,
whilst retaining the original semantics. Although more modular proofs can thus in part be achieved in
the current situation, certain aspects of the proof (particularly instantiations of lemmas) are often still
bound to a specific model and are thus still susceptive to small changes in that model. For proofs to
become less fragile, it is important that these fragile aspects of proofs can be handled better.

6.2.3 Automation of verification

Often even relatively basic proofs need some form of user-guidance. When a larger proof is being con-
structed, the amount of work involved becomes very high. For verification to become more successful
it is therefore essential that as much as possible of the proof construction can be automated. This is
particularly important for larger programs to be verified, but it is also important for quick verification of
smaller programs or models.

6.2.4 Improved conversion

As said, the conversion from program to theorem prover is currently of vital importance to the verification
of programs. To be able to apply full verification to larger programs, the conversion to a theorem prover
should be done (almost) fully automated, as manual conversion can be very time-intensive. Although
there are some converters available at the moment, most only support a subset of the features of the
source language. For (much) wider applicability to real-life applications, it is important that all features
of a language are supported. As an example, the LOOP tool [vdBJ01] (which converts Java to PVS or
Isabelle) currently does not support the concept of threads. This is a clear limitation, especially when
one considers that future applications will focus more and more on multi-threading because of the advent
of multi-processor systems.

73

Appendix A

PVS: fiasco types.pvs

% −−
% The data types in Fiasco tha t we use in our model are de f ined here , examples
% of those da ta types inc lude threads , t imeouts and thread s t a t e s .
% −−
f i a s c o t y p e s : THEORY
EXPORTING ALL WITH ALL
BEGIN

% A poin te r to a thread i s j u s t an in teger , t h i s r e f l e c t s a C++ po in te r a l s o
% being an in t e g e r .
Thread pointer : TYPE = in t

% Define the zero thread pointer , which rep re s en t s the C++ NULL po in te r .
Zero thread : Thread pointer

% The n i l thread po in t e r po in t s to a s p e c i a l thread (the n i l thread) t ha t
% execu te s when no other threads are be ing executed .
Ni l th r ead : Thread pointer

% This w i l l be the thread used by the r e c e i v e r as i t s partner , i t i s de f ined
% as an un in t e rpre t ed constant .
Rece i v e r pa r tne r th r ead : Thread pointer

% The po in t e r to the current a c t i v e thread (the <t h i s > thread) must never be
% the <Zero thread> (as i t po in t s to nothing) and thus we have de f ined
% a s p e c i a l type o f thread po in t e r f o r the <t h i s > thread which exc lude s the
% thread po in t e r be ing equa l to the <Zero thread >.
Th i s th r ead po in t e r : TYPE = { tp : Thread pointer | NOT tp = Zero thread }

% Most func t i on s in Fiasco re turn an error code , o f which there are many .
% However , we are only i n t e r e s t e d in whether an error occured and thus the
% error code i s model led as a boolean va lue .
I p c e r r : TYPE = bool

% Ind i ca t e s i f a t imeout occured , a dd i t i ona l d e t a i l s o f t imeouts such as
% the exac t time at which they exp i r e are not o f i n t e r e s t to us .
L4 timeout : TYPE = bool

% Enumeration o f the p o s s i b l e preemption ac t i ons . Normally , a preemption
% poin t might r e s u l t in a thread swi tch which can then in f l u enc e the ongoing
% IPC we are modeling . However , we have ab s t r a c t ed away thread schedu l ing
% (and thus the thread swi tch) and are thus only i n t e r e s t e d in the r e s u l t
% such a thread swi tch might have on the ongoing IPC . In our model , t he re
% are f i v e d i f f e r e n t e f f e c t s a preemption po in t can have ; t he se ac t i ons
% are de f ined (and desc r i b ed b r i e f l y) in the enumeration below .
%
% NOTE: the se ac t i ons are by no means complete , one o f the ac t i ons we have
% not model led i s a concurrent sender which a l s o t r i e s to send a message to

74

% the r e c e i v e r .
Preempt ion act ion : TYPE = {

Nothing , % Nothing happens .
Ki l l , % The partner i s k i l l e d .
Timeout , % A timeout occurs .
Sys th r ead ex r eg s , % IPC i s cance l l e d .
Rece ive r r eady % The r e c e i v e r becomes ready .

}

% When a preemption po in t i s ca l l e d , i t can have f i v e p o s s i b l e e f f e c t s on the
% ongoing IPC (as de sc r i b ed in the <Preemption action> enumeration) . However ,
% i t i s not sa id t ha t only a s i n g l e <Preemption action> occurs in a preemption
% point , i t i s p o s s i b l e t ha t combinations o f preemption ac t i ons take p lace .
% Therefore when a preemption po in t i s ca l l e d , i t e xecu te s a (random) l i s t o f
% preemption ac t i ons which we de f ine here .
Preempt ion act ions : TYPE = l i s t [Preempt ion act ion]

% Enumeration o f the s t a t u s the rece i ve r ’ s sender l i s t can be in . We are not
% in t e r e s t e d in the ac tua l implementation o f the sender l i s t but only in the
% s t a t u s i t r e s u l t s in .
S e n d e r l i s t : TYPE = {

Fir s t , % <t h i s > i s the f i r s t sender in the l i s t .
Enqueued , % <t h i s > i s enqueued but not the f i r s t item .
Dequeued % <t h i s > i s not in the non−empty l i s t .

}

% Enumeration o f the s t a t e s a sender l i s t can be in , which i s e i t h e r an empty
% or non−empty s t a t e .
S e n d e r l i s t s t a t u s : TYPE = {

Empty ,
Non empty

}

% In Fiasco the thread s t a t e i s de f ined as a b i t mask , but f o r c l a r i t y and
% s imp l i c i t y we have chosen to model i t as a record o f boolean va lue s
% where a f i e l d ’ s boolean va lue r e f l e c t s the corresponding b i t be ing s e t .
%
% NOTE: our thread s t a t e does not contain a l l s t a t e b i t s t ha t are de f ined
% in Fiasco , they form the minimal sub s e t o f s t a t e b i t s t ha t i s necessary
% for the p r op e r t i e s we have model led . One example o f a s t a t e b i t t ha t we
% have not inc luded i s the <t h r e a d po l l i n g l o n g > b i t , as i t i s only used in
% long IPC and we have not model led long IPC .
Thread state : TYPE = [# thread ready : bool ,

t h r ead canc e l : bool ,
thread dead : bool ,
thread busy : bool ,
t h r e ad i nva l i d : bool ,
t h r e ad po l l i n g : bool ,
t h r e ad r e c e i v i n g : bool ,
t h r e a d i p c i n p r o g r e s s : bool ,
t h r e ad s end i n p r o g r e s s : bool ,
t h r e a d t r a n s f e r i n p r o g r e s s : bool #]

% The con tex t conta ins the thread s ta t e , here a l o t o f d e t a i l s have been
% abs t r a c t ed away which most ly concern schedu l ing .
Context : TYPE = [# s t a t e : Thread state #]

% The r e c e i v e r r o l e i n h e r i t s from <Context> and adds two f i e l d s : <partner> and
% <s e n d e r l i s t >. The f i r s t r e f l e c t s the f a c t t ha t a r e c e i v e r always has a
% partner a s soc i a t ed with i t and the second r e f l e c t s the threads t ha t want to
% engage in IPC with the r e c e i v e r .
Rece iver : TYPE = Context WITH [# partner : Thread pointer ,

s e n d e r l i s t : S e n d e r l i s t #]

% The sender r o l e in our model does not have any r ea l funct ion , but we have
% inc luded i t f o r use in p o s s i b l e l a t e r ex t ens ions o f our model .

75

Sender : TYPE = [# #]

% A Fiasco thread extends both the <Receiver>− and <Sender> t ypes . The thread
% a l so has a f i e l d <t h r ead l ock >, which po in t s to the l o c k i n g thread . I f a
% thread i s not locked , the <t h r ead l ock > f i e l d i s equa l to the <Zero thread >.
Thread : TYPE = Sender WITH Rece iver WITH [# th r ead l o ck : Thread pointer #]

% The thread l i s t i s a func t i on which t r a n s l a t e s thread po in t e r s to threads ;
% t h i s r e f l e c t s the C++ concept o f po in t e r s to o b j e c t s (in t h i s case po in t e r s
% to threads) .
Thr ead l i s t : TYPE = [Thread pointer −> Thread]

% The system s t a t e r ep re s en t s the g l o b a l s t a t e o f the system . We had to
% introduce a g l o b a l s t a t e as C++ func t i ons can have s ide−e f f e c t s , which i s not
% supported by the the f unc t i ona l language PVS uses . Therefore , we had to
% dev i s e a s o l u t i on which enab led the g l o b a l s t a t e to be modi f ied by each
% func t ion wi thout us ing s ide−e f f e c t s . Our s o l u t i on was to have each funct ion ,
% tha t has s ide−e f f e c t s , rece ive− and return the g l o b a l system s t a t e . The
% g l o b a l system s t a t e can then be accessed and modi f ied by a l l those func t i ons .
System state : TYPE =

[#
th i s : Th i s th r ead po in t e r , % Pointer to a c t i v e thread .
threads : Thread l i s t , % Li s t o f a l l t hreads .
e r r o r : I p c e r r , % Ind i ca t e s i f error occurred .
t imeout : L4 timeout , % Ind i ca t e s i f t imeout occurred .
seed : nat , % Seed used fo r randomness .
handshake attempted : bool , % Ind i ca t e s i f handshake attempted .
a s s e r t i o n s h e l d : bool , % Ind i ca t e s i f a s s e r t i on s he ld .
r e c e i v e r i n i t i a l i z e d : bool % Receiver s t a t e i n i t i a l i z e d .

#]

% We use an un in t e rpre t ed thread s t a t e constant to de f i ne other thread s t a t e s
% with , f o r example the empty− and f u l l thread s t a t e s are der i ved o f i t .
TS: Thread state

END f i a s c o t y p e s

76

Appendix B

PVS: fiasco functions.pvs

% −−−
% The Fiasco IPC implementation i s b a s i c a l l y a s e t o f in ter−r e l a t e d func t i ons .
% Here we de f ine our PVS repre s en ta t i on o f those func t i on s . Although most
% func t i ons can be mapped almost one−on−one to t h e i r C++ counterparts , some
% func t i ons are a c t u a l l y s imp l i f i e d vers ions , which de s c r i b e the behaviour o f
% i t s Fiasco implementat ions at a more a b s t r a c t l e v e l . There have a l s o been
% func t i ons added tha t are not in the C++ source , in a l l cases t h i s has been
% done to s p l i t up l a r g e r func t i on s in to more compact parts , the f u n c t i o n a l i t y
% of course remains i n t a c t .
% −−−
f i a s c o f u n c t i o n s : THEORY
EXPORTING ALL WITH ALL
BEGIN

% −−−
% Import the t h e o r i e s which w i l l be used in our lemmas .
% −−−
IMPORTING f i a s c o t y p e s
IMPORTING f i a s c o s t a t e s

% −−−
% Funct ional s p e c i f i c a t i o n s which w i l l d e s c r i b e IPC in Fiasco .
% −−−

% Add b i t s to the s t a t e o f a thread , a l l b i t s s e t in the <b i t s > thread s t a t e
% w i l l be s e t in the s t a t e o f the thread pointed to by <tp >.
s t a t e add d i r t y (tp : Thread pointer , b i t s : Thread state ,

s t a t e o l d : System state) : System state =
LET

% Determine which s t a t e to work with .
s t a t e = s t a t e o l d ‘ threads (tp) ‘ s ta te ,
s t a t e = s t a t e WITH

[
thread ready := state ‘ thread ready OR b i t s ‘ thread ready ,
th r ead canc e l := state ‘ t h r ead canc e l OR b i t s ‘ th read cance l ,
thread dead := state ‘ thread dead OR b i t s ‘ thread dead ,
thread busy := state ‘ thread busy OR b i t s ‘ thread busy ,
t h r e ad i nva l i d := state ‘ t h r e ad i nva l i d OR b i t s ‘ t h r ead inva l i d ,
t h r e ad po l l i n g := state ‘ t h r e ad po l l i n g OR b i t s ‘ t h r e ad po l l i n g ,
t h r e ad r e c e i v i n g := state ‘ t h r e ad r e c e i v i n g OR b i t s ‘ t h r e ad r e c e i v i ng ,
t h r e a d i p c i n p r o g r e s s := state ‘ t h r e a d i p c i n p r o g r e s s OR

b i t s ‘ t h r e ad i p c i n p r o g r e s s ,
t h r e ad s end i n p r o g r e s s := state ‘ t h r e ad s end i n p r o g r e s s OR

b i t s ‘ t h r e ad s end in p rog r e s s ,
t h r e a d t r a n s f e r i n p r o g r e s s := state ‘ t h r e a d t r a n s f e r i n p r o g r e s s OR

b i t s ‘ t h r e a d t r a n s f e r i n p r o g r e s s
]

IN

77

s t a t e o l d WITH [(threads) (tp) ‘ s t a t e := s t a t e]

% Dele te b i t s from the s t a t e o f a thread , a l l b i t s s e t in the <b i t s > thread
% s t a t e w i l l be unset in the s t a t e o f the thread pointed to by <tp >.
s t a t e d e l d i r t y (tp : Thread pointer , b i t s : Thread state ,

s t a t e o l d : System state) : System state =
LET

% Determine which s t a t e to work with .
s t a t e = s t a t e o l d ‘ threads (tp) ‘ s ta te ,
s t a t e = s t a t e WITH
[
thread ready := state ‘ thread ready AND NOT b i t s ‘ thread ready ,
th r ead canc e l := state ‘ t h r ead canc e l AND NOT b i t s ‘ th read cance l ,
thread dead := state ‘ thread dead AND NOT b i t s ‘ thread dead ,
thread busy := state ‘ thread busy AND NOT b i t s ‘ thread busy ,
t h r e ad i nva l i d := state ‘ t h r e ad i nva l i d AND NOT b i t s ‘ t h r ead inva l i d ,
t h r e ad po l l i n g := state ‘ t h r e ad po l l i n g AND NOT b i t s ‘ t h r e ad po l l i n g ,
t h r e ad r e c e i v i n g := state ‘ t h r e ad r e c e i v i n g AND NOT b i t s ‘ t h r e ad r e c e i v i ng ,
t h r e a d i p c i n p r o g r e s s := state ‘ t h r e a d i p c i n p r o g r e s s AND NOT

b i t s ‘ t h r e ad i p c i n p r o g r e s s ,
t h r e ad s end i n p r o g r e s s := state ‘ t h r e ad s end i n p r o g r e s s AND NOT

b i t s ‘ t h r e ad s end in p rog r e s s ,
t h r e a d t r a n s f e r i n p r o g r e s s := state ‘ t h r e a d t r a n s f e r i n p r o g r e s s AND NOT

b i t s ‘ t h r e a d t r a n s f e r i n p r o g r e s s
]

IN
s t a t e o l d WITH [(threads) (tp) ‘ s t a t e := s t a t e]

% Delete− and add b i t s to the s t a t e o f the thread pointed to by <tp >; a l l b i t s
% not s e t in the <mask> thread s t a t e w i l l f i r s t be unset and then a l l b i t s
% s e t in <b i t s > w i l l be s e t .
s t a t e chang e d i r t y (tp : Thread pointer , mask : Thread state ,

b i t s : Thread state , s t a t e o l d : System state) : System state =
LET

% Determine which s t a t e to work with .
s t a t e = s t a t e o l d ‘ threads (tp) ‘ s ta te ,
s t a t e = s t a t e WITH

[
thread ready := state ‘ thread ready AND mask ‘ thread ready ,
th r ead canc e l := state ‘ t h r ead canc e l AND mask ‘ th read cance l ,
thread dead := state ‘ thread dead AND mask ‘ thread dead ,
thread busy := state ‘ thread busy AND mask ‘ thread busy ,
t h r e ad i nva l i d := state ‘ t h r e ad i nva l i d AND mask ‘ th r ead inva l i d ,
t h r e ad po l l i n g := state ‘ t h r e ad po l l i n g AND mask ‘ th r e ad po l l i n g ,
t h r e ad r e c e i v i n g := state ‘ t h r e ad r e c e i v i n g AND mask ‘ th r e ad r e c e i v i ng ,
t h r e a d i p c i n p r o g r e s s := state ‘ t h r e a d i p c i n p r o g r e s s AND

mask ‘ t h r e ad i p c i n p r o g r e s s ,
t h r e ad s end i n p r o g r e s s := state ‘ t h r e ad s end i n p r o g r e s s AND

mask ‘ th r e ad s end in p rog r e s s ,
t h r e a d t r a n s f e r i n p r o g r e s s := state ‘ t h r e a d t r a n s f e r i n p r o g r e s s AND

mask ‘ t h r e a d t r a n s f e r i n p r o g r e s s
] ,

s t a t e = s t a t e WITH
[
thread ready := state ‘ thread ready OR b i t s ‘ thread ready ,
th r ead canc e l := state ‘ t h r ead canc e l OR b i t s ‘ th read cance l ,
thread dead := state ‘ thread dead OR b i t s ‘ thread dead ,
thread busy := state ‘ thread busy OR b i t s ‘ thread busy ,
t h r e ad i nva l i d := state ‘ t h r e ad i nva l i d OR b i t s ‘ t h r ead inva l i d ,
t h r e ad po l l i n g := state ‘ t h r e ad po l l i n g OR b i t s ‘ t h r e ad po l l i n g ,
t h r e ad r e c e i v i n g := state ‘ t h r e ad r e c e i v i n g OR b i t s ‘ t h r e ad r e c e i v i ng ,
t h r e a d i p c i n p r o g r e s s := state ‘ t h r e a d i p c i n p r o g r e s s OR

b i t s ‘ t h r e ad i p c i n p r o g r e s s ,
t h r e ad s end i n p r o g r e s s := state ‘ t h r e ad s end i n p r o g r e s s OR

b i t s ‘ t h r e ad s end in p rog r e s s ,

78

t h r e a d t r a n s f e r i n p r o g r e s s := state ‘ t h r e a d t r a n s f e r i n p r o g r e s s OR
b i t s ‘ t h r e a d t r a n s f e r i n p r o g r e s s

]
IN

s t a t e o l d WITH [(threads) (tp) ‘ s t a t e := s t a t e]

% Dele te b i t s from the s t a t e o f a thread , a l l b i t s s e t in the <b i t s > thread
% s t a t e w i l l be unset in the s t a t e o f the thread pointed to by <tp >.
%
% NOTE: in our model t h i s func t i on i s j u s t an i n t e r f a c e f o r the
% s t a t e d e l d i r t y () func t i on . However , in Fiasco there i s a r e a l d i f f e r e n c e
% between the two func t i on s as the d i r t y ver s ion assumes tha t the CPU lock
% i s held , which a l l ows f o r f a s t e r updat ing . As we have not model led the CPU
% lock , the two func t i ons are the same in our model . We have chosen to s t i l l
% inc lude the s t a t e d e l () func t i on because i t a l l ows f o r a b e t t e r r e f l e c t i o n
% of the source code and the model might l a t e r be changed to a l l ow CPU lo c k s .
s t a t e d e l (tp : Thread pointer , b i t s : Thread state ,

s t a t e o l d : System state) : System state =
s t a t e d e l d i r t y (tp , b i t s , s t a t e o l d)

% Delete− and add b i t s to the s t a t e o f the thread pointed to by <tp >; a l l b i t s
% not s e t in the <mask> thread s t a t e w i l l f i r s t be unset and then a l l b i t s
% s e t in <b i t s > w i l l be s e t .
%
% NOTE: here we have a s im i l a r s i t u a t i o n to the one de sc r i b ed in the notes o f
% the s t a t e d e l () funct ion , p l ea s e check i t s notes above f o r more informat ion .
s ta t e change (tp : Thread pointer , mask : Thread state , b i t s : Thread state ,

s t a t e o l d : System state) : System state =
s t a t e chang e d i r t y (tp , mask , b i t s , s t a t e o l d)

% Remove the thread l o c k on the partner thread by s e t t i n g the thread l o c k
% owner to the zero thread .
c l e a r d i r t y (partner : Thread pointer , s t a t e o l d : System state) : System state =

s t a t e o l d WITH [(threads) (partner) ‘ t h r ead l o ck := Zero thread]

% Remove the thread l o c k on the partner thread by s e t t i n g the thread l o c k
% owner to the zero thread .
%
% NOTE: a l though t h i s s p e c i f i c a t i o n i s equa l to t ha t o f c l e a r d i r t y () , once
% again t h i s i s due to our model be ing a s imp l i f i e d ver s ion o f the source
% code . In the source code , the c l e a r d i r t y () func t i on p o s s i b l y sw i t che s the
% execu t ion context , whereas the c l e a r d i r t y d on t sw i t c h () func t i on obv i ou s l y
% does not . As we do not model execu t ion con tex t swi tches , the r e s u l t o f the
% two func t i ons i s the same . We have s t i l l inc luded both func t i ons because o f
% the reasons a l s o s p e c i f i e d in the notes o f the s t a t e d e l () func t i on .
c l e a r d i r t y d on t sw i t c h (partner : Thread pointer ,

s t a t e o l d : System state) : System state =
s t a t e o l d WITH [(threads) (partner) ‘ t h r ead l o ck := Zero thread]

% Set the thread l o c k o f the partner thread to the <t h i s > thread .
%
% NOTE: t h i s i s a t y p i c a l func t i on in which a l o t o f implementation d e t a i l s
% have been ab s t r a c t ed away . In the C++ implementation , the func t i on f i r s t
% checks i f another thread has locked the partner and i f so , i t en t e r s a loop
% tha t wai t s f o r the l o c k to be r e l e a s ed . The end r e s u l t i s always t ha t the
% lock i s acquired by the <t h i s > thread so t h i s l ead to our s imp l i f i e d ver s ion .
l o c k d i r t y (partner : Thread pointer , s t a t e o l d : System state) : System state =

s t a t e o l d WITH [(threads) (partner) ‘ t h r ead l o ck := s t a t e o l d ‘ t h i s]

% Ind i ca t e s i f a partner i s ready fo r a sender .
sender ok (sender : Thread pointer , r e c e i v e r : Thread pointer ,

s t a t e o l d : System state) : bool =
% The r e c e i v e r shou ld at l e a s t be in a r e c e i v i n g IPC s t a t e .
IF NOT s t a t e o l d ‘ threads (r e c e i v e r) ‘ s ta te ‘ t h r e ad r e c e i v i n g OR

NOT s t a t e o l d ‘ threads (r e c e i v e r) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s
THEN

79

f a l s e
% Open wait : no partner shou ld be s p e c i f i e d and the sender shou ld be the
% f i r s t in the rece i ve r ’ s sender l i s t .
ELSIF s t a t e o l d ‘ threads (r e c e i v e r) ‘ partner = Zero thread AND

s t a t e o l d ‘ threads (r e c e i v e r) ‘ s e n d e r l i s t = F i r s t THEN
t rue

% Closed wait : check i f the sender i s the same as the partner s p e c i f i e d .
ELSIF sender = s t a t e o l d ‘ threads (r e c e i v e r) ‘ partner THEN

t rue
ELSE

f a l s e
ENDIF

% Set the partner o f the r e c e i v e r to the s p e c i f i e d sender .
s e t p a r t n e r (sender : Thread pointer , r e c e i v e r : Thread pointer ,

s t a t e o l d : System state) : System state =
s t a t e o l d WITH [(threads) (r e c e i v e r) ‘ partner := sender]

% I n i t i a l i z e IPC between the sender and r e c e i v e r .
i p c i n i t (sender : Thread pointer , r e c e i v e r : Thread pointer ,

s t a t e o l d : System state) : System state =
% Set the <t h r e ad t r an s f e r i n p r o g r e s s > b i t on the r e c e i v e r s t a t e .
LET

% Set the partner .
s tate temp = s e t p a r t n e r (sender , r e c e i v e r , s t a t e o l d) ,
b i t s = TS empty WITH [t h r e a d t r a n s f e r i n p r o g r e s s := true]

IN
s t a t e add d i r t y (r e c e i v e r , b i t s , s tate temp)

% Transfer a message between the sender and r e c e i v e r .
%
% NOTE: t h i s func t i on comple te l y i gnores the ac tua l copying o f the message ,
% we assume tha t the copying w i l l a lways succeed . What ’ s more , t h i s func t i on
% does not do anything at a l l because we t o t a l l y a b s t r a c t ed away the sending
% of the message .
t r an s f e r msg (r e c e i v e r : Thread pointer , s t a t e o l d : System state) : System state =

s t a t e o l d

% Ind i ca t e s i f the r e c e i v e r i s engaged in IPC with the sender .
i n i p c (sender : Thread pointer , r e c e i v e r : Thread pointer ,

s t a t e o l d : System state) : bool =
s t a t e o l d ‘ threads (r e c e i v e r) ‘ s ta te ‘ t h r e a d t r a n s f e r i n p r o g r e s s AND
s t a t e o l d ‘ threads (r e c e i v e r) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s AND NOT
s t a t e o l d ‘ threads (r e c e i v e r) ‘ s ta te ‘ t h r ead canc e l AND
s t a t e o l d ‘ threads (r e c e i v e r) ‘ partner = sender

% Wakeup the rece i ve r , which ensures t ha t the s t a t e i s changed to r e f l e c t t ha t
% i t i s no longer invo l v ed in IPC and i s ready to cont inue with o ther t a s k s .
wake r e c e i v e r (r e c e i v e r : Thread pointer , s t a t e o l d : System state) : System state =

% Define the mask and b i t s to change the s t a t e o f the r e c e i v e r .
LET mask = TS fu l l WITH [thread busy := f a l s e ,

t h r e ad r e c e i v i n g := f a l s e ,
t h r e a d t r a n s f e r i n p r o g r e s s := f a l s e ,
t h r e a d i p c i n p r o g r e s s := f a l s e] ,

b i t s = TS empty WITH [thread ready := true]
IN

s t a t e chang e d i r t y (r e c e i v e r , mask , b i t s , s t a t e o l d)

% Return a (random) sender l i s t s t a t u s .
%
% NOTE: the func t i on i s de f ined wi thout an implementation , t ha t means tha t we
% cannot p r ed i c t the re turn va lue o f the func t i on . However , as i t s t i l l i s a
% func t ion tha t means tha t equa l input parameters r e s u l t in the same return
% va lue s . Therefore , to r e a l l y ach ieve the randomness we are l ook ing f o r we
% need to make sure t ha t the input parameter never has the same va lue twice .
s e n d e r l i s t s t a t u s (n : nat) : S e n d e r l i s t s t a t u s

80

% Enqueue the <t h i s > thread in the rece i ve r ’ s sender l i s t .
sender enqueue (r e c e i v e r : Thread pointer , s t a t e o l d : System state) : System state =

LET
% Update the seed and ge t a random sender l i s t s t a t u s .
s t a t e o l d = s t a t e o l d WITH [seed := s t a t e o l d ‘ seed + 1] ,
s t a tu s = s e n d e r l i s t s t a t u s (s t a t e o l d ‘ seed)

IN
% Check i f the sender l i s t i s empty , i f so the <t h i s > thread w i l l become
% the f i r s t item in the sender l i s t and o therwi se i t w i l l be s e t to an
% enqueued s t a t u s (i n d i c a t i n g t ha t i t i s in the sender l i s t but i s not
% the f i r s t item) .
IF s t a tu s = Empty THEN

s t a t e o l d WITH [(threads) (r e c e i v e r) ‘ s e n d e r l i s t := F i r s t]
ELSE

s t a t e o l d WITH [(threads) (r e c e i v e r) ‘ s e n d e r l i s t := Enqueued]
ENDIF

% Dequeue the <t h i s > thread from the rece i ve r ’ s sender l i s t .
sender dequeue (r e c e i v e r : Thread pointer , s t a t e o l d : System state) : System state =

s t a t e o l d WITH [(threads) (r e c e i v e r) ‘ s e n d e r l i s t := Dequeued]

% Dequeue the <t h i s > thread from the rece i ve r ’ s sender l i s t .
sender dequeue head (r e c e i v e r : Thread pointer ,

s t a t e o l d : System state) : System state =
s t a t e o l d WITH [(threads) (r e c e i v e r) ‘ s e n d e r l i s t := Dequeued]

% Ind i ca t e s i f the sender i s in the rece i ve r ’ s sender l i s t .
i n s e n d e r l i s t (r e c e i v e r : Thread pointer , s t a t e o l d : System state) : bool =

NOT s t a t e o l d ‘ threads (r e c e i v e r) ‘ s e n d e r l i s t = Dequeued

% Prepare a thread fo r r e c e i v i n g a message from the s p e c i f i e d sender .
p r e p a r e r e c e i v e d i r t y (sender : Thread pointer , r e c e i v e r : Thread pointer ,

s t a t e o l d : System state) : System state =
LET

% Set the partner .
s tate temp = s e t p a r t n e r (sender , r e c e i v e r , s t a t e o l d) ,

mask = TS fu l l WITH [t h r e ad s end i n p r o g r e s s := f a l s e ,
t h r e ad po l l i n g := f a l s e ,
t h r e a d t r a n s f e r i n p r o g r e s s := f a l s e] ,

b i t s = TS empty WITH [t h r e ad r e c e i v i n g := true ,
t h r e a d i p c i n p r o g r e s s := true]

IN
s t a t e chang e d i r t y (r e c e i v e r , mask , b i t s , s tate temp)

% Ki l l the partner thread .
k i l l (partner : Thread pointer , s t a t e o l d : System state) : System state =

% Both locked− and i n v a l i d threads cannot be k i l l e d
IF NOT s t a t e o l d ‘ threads (partner) ‘ t h r ead l o ck = s t a t e o l d ‘ t h i s AND

NOT s t a t e o l d ‘ threads (partner) ‘ s ta te ‘ t h r e ad i nva l i d
THEN

s t a t e o l d WITH[(threads) (partner) ‘ s ta te ‘ thread dead := true]
ELSE

s t a t e o l d
ENDIF

% Update the current thread ’ s r e g i s t e r s , which can be used to crea t e a new
% thread out o f an e x i s t i n g one . This r e s u l t s in the <th read cance l> b i t
% of the <t h i s > thread be ing set , s i g n i f y i n g t ha t ongoing IPC shou ld be
% cance l l e d .
s y s t h r e ad e x r e g s (tp : Thread pointer , s t a t e o l d : System state) : System state =

s t a t e o l d WITH [(threads) (tp) ‘ s ta te ‘ t h r ead canc e l := true]

% An IPC timeout has occured , which means t ha t the s p e c i f i e d t imeout time has
% passed . We s imu la te t h i s by s e t t i n g the <timeout> member to t rue .

81

t imeout (tp : Thread pointer , s t a t e o l d : System state) : System state =
LET

% Define the s t a t e changed by the t imeout .
mask = TS fu l l WITH [t h r e a d i p c i n p r o g r e s s := f a l s e] ,
b i t s = TS empty WITH [thread ready := true]

IN
s ta t e change (tp , mask , b i t s , s t a t e o l d) WITH [t imeout := true]

% Cal l ed by the r e c e i v e r on a sender to determine i f both are ready to engage
% in IPC .
i p c r e c e i v e r r e a d y (sender : Thread pointer , r e c e i v e r : Thread pointer ,

s t a t e o l d : System state) : bool =
s t a t e o l d ‘ threads (sender) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s AND
sender ok (sender , r e c e i v e r , s t a t e o l d)

% In t h i s func t i on the s ide−e f f e c t s o f the i p c r e c e i v e r r e a d y () func t i on are
% handled .
%
% NOTE: in the Fiasco source code the r e c e i v e r c a l l s the i p c r e c e i v e r r e a d y ()
% funct ion , which re turns a boolean va lue i nd i c a t i n g i f the sender was ready
% for the r e c e i v e r . However , t h i s func t i on a l s o has s ide−e f f e c t s i f the
% sender was indeed ready so we had to s p l i t up the func t i on in one in which
% a boolean va lue was returned and one in which the s ide−e f f e c t s are handled .
i p c r e c e i v e r r e ady chang e (sender : Thread pointer , r e c e i v e r : Thread pointer ,

s t a t e o l d : System state) : System state =
LET

% I n i t i a l i z e IPC .
s tate temp = i p c i n i t (sender , r e c e i v e r , s t a t e o l d) ,

% Set the sender to ready and ind i c a t e t ha t the t r an s f e r i s in progres s .
b i t s = TS empty WITH [thread ready := true ,

t h r e a d t r a n s f e r i n p r o g r e s s := true] ,
s tate temp = s t a t e add d i r t y (sender , b i t s , s tate temp) ,

% Remove the ready s t a t e from the r e c e i v e r .
b i t s = TS empty WITH [thread ready := true]

IN
s t a t e d e l d i r t y (r e c e i v e r , b i t s , s tate temp)

% This preemption ac t ion s i g n i f i e s a r e c e i v e r becoming ready to r e c e i v e a
% message from a sender .
r e c e i v e r r e ady (sender : Thread pointer , r e c e i v e r : Thread pointer ,

s t a t e o l d : System state) : System state =
LET

s t a t e o l d =
% Check i f the r e c e i v e r has been i n i t i a l i z e d .
IF NOT s t a t e o l d ‘ r e c e i v e r i n i t i a l i z e d THEN

% Prepare the r e c e i v e r us ing a ’ random ’ partner .
p r e p a r e r e c e i v e d i r t y (Rece ive r pa r tne r th r ead , r e c e i v e r , s t a t e o l d)

WITH [(r e c e i v e r i n i t i a l i z e d) := true]
ELSE

s t a t e o l d
ENDIF

IN
% Make sure the r e c e i v e r i s in the r i g h t s t a t e to r e c e i v e from a sender .
IF s t a t e o l d ‘ threads (r e c e i v e r) ‘ s ta te ‘ t h r e ad r e c e i v i n g AND

s t a t e o l d ‘ threads (r e c e i v e r) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s AND NOT
s t a t e o l d ‘ threads (r e c e i v e r) ‘ s ta te ‘ t h r ead canc e l

THEN
% Closed wait : check i f the sender i s the same as the partner s p e c i f i e d .
IF sender = s t a t e o l d ‘ threads (r e c e i v e r) ‘ partner THEN

% Check i f the sender meets the cond i t i ons o f the r e c e i v e r
IF i n s e n d e r l i s t (r e c e i v e r , s t a t e o l d) AND

i p c r e c e i v e r r e a d y (sender , r e c e i v e r , s t a t e o l d)
THEN

% Apply the changes caused by the s ide−e f f e c t s o f the

82

% ipc r e c e i v e r r e a d y () func t i on .
i p c r e c e i v e r r e ady chang e (sender , r e c e i v e r , s t a t e o l d)

ELSE
s t a t e o l d

ENDIF
% Open wait : no partner shou ld be s p e c i f i e d and the sender shou ld be
% the f i r s t item .
ELSE

% Check i f the sender i s not ready in which case i t shou ld be removed
% from the sender l i s t .
IF NOT i p c r e c e i v e r r e a d y (sender , r e c e i v e r , s t a t e o l d) THEN

sender dequeue head (r e c e i v e r , s t a t e o l d)
ELSE

% Apply the changes caused by the s ide−e f f e c t s o f the
% i p c r e c e i v e r r e a d y () func t i on .
i p c r e c e i v e r r e ady chang e (sender , r e c e i v e r , s t a t e o l d)

ENDIF
ENDIF

ELSE
s t a t e o l d

ENDIF

% Return a (random) preemption ac t ion .
%
% NOTE: the randomness achieved in the same way as de sc r i b ed in the notes o f
% the s e n d e r l i s t s t a t u s () func t i on .
preempt ion act ion (n : nat) : Preempt ion act ions

% Execute a l i s t o f preemption po in t ac t i ons .
pre empt i on po in t ac t i on s (a c t i on s : Preempt ion act ions , partner : Thread pointer ,

a l l ow t imeout : bool ,
s t a t e o l d : System state) : RECURSIVE System state =

CASES ac t i on s OF
nu l l : s t a t e o l d ,
cons (act ion , r ema in ing ac t i on s) :
LET s tate temp =

% Check i f a c a l l was made to s y s t h r e a d e x r e g s () .
IF ac t i on = Sys th r e ad ex r e g s THEN

s y s t h r e ad e x r e g s (s t a t e o l d ‘ th i s , s t a t e o l d)
% Only a l l ow a timeout to occur when sp e c i f i e d , most o f the time a
% timeout cannot occur .
ELSIF ac t i on = Timeout AND a l l ow t imeout THEN

t imeout (s t a t e o l d ‘ th i s , s t a t e o l d)
% Check i f the partner i s k i l l e d .
ELSIF ac t i on = K i l l THEN

k i l l (partner , s t a t e o l d)
% A rec e i v e r can only become ready when i t i s not equa l to the sender ,
% i f so i t would be wa i t ing f o r e v e r .
ELSIF ac t i on = Rece ive r r eady AND NOT s t a t e o l d ‘ t h i s = partner THEN

r e c e i v e r r e ady (s t a t e o l d ‘ th i s , partner , s t a t e o l d)
ELSE

s t a t e o l d
ENDIF

IN
% Execute the remaining ac t i ons .
pre empt i on po in t ac t i on s (r ema in ing ac t i ons , partner , a l low t imeout , s tate temp)

ENDCASES
MEASURE length (a c t i on s)

% Simulate a preemption po in t by i gnor ing the ac tua l s chedu l ing occuring and
% focus only on the e f f e c t s t ha t s chedu l ing might have on the system s t a t e .
% To ach ieve t h i s , a l i s t o f random preemption ac t i ons i s created , which are
% then executed and each executed ac t ion updates the system s t a t e .
preempt ion po int (partner : Thread pointer , a l l ow t imeout : bool ,

s t a t e o l d : System state) : System state =
LET

83

% Increment the seed and use i t to ge t a random l i s t o f preemption
% ac t i ons .
s t a t e o l d = s t a t e o l d WITH [seed := s t a t e o l d ‘ seed + 1] ,
a c t i on s = preempt ion act ion (s t a t e o l d ‘ seed)

IN
% Execute the preemption ac t i ons .
pre empt i on po in t ac t i on s (ac t ions , partner , a l low t imeout , s t a t e o l d)

% Abort the IPC send operat ion .
abort send (partner : Thread pointer , s t a t e o l d : System state) : System state =

LET
% Unset the b i t s t ha t i nd i c a t e t ha t the sender was busy in IPC .
b i t s = TS empty WITH [t h r e ad s end i n p r o g r e s s := true ,

t h r e ad po l l i n g := true ,
t h r e a d i p c i n p r o g r e s s := true ,
t h r e a d t r a n s f e r i n p r o g r e s s := true] ,

s tate temp = s t a t e d e l d i r t y (s t a t e o l d ‘ th i s , b i t s , s t a t e o l d) ,

s tate temp = preempt ion po int (partner , f a l s e , s tate temp) ,

s tate temp =
% Check i f the sender needs to be dequeued from the sender l i s t .
IF i n s e n d e r l i s t (partner , s tate temp) THEN

sender dequeue (partner , s tate temp)
ELSE

s tate temp
ENDIF,

s tate temp = preempt ion po int (partner , true , s tate temp)
IN

% Remove the thread l o c k on the r e c e i v e r .
c l e a r d i r t y (partner , s tate temp) WITH [e r r o r := true]

% Handle the f i n i s h i n g par t o f the do send wai t () func t i on .
do s e nd wa i t f i n i s h (partner : Thread pointer ,

s t a t e o l d : System state) : System state =
LET

s tate temp =
% I f a t imeout has h i t at t h i s point , i t can be s a f e l y ignored as the
% handshake has a l ready taken p lace . However , make sure t ha t the
% <t h r e ad i p c i n p ro g r e s s > b i t o f the <t h i s > thread i s s e t once again
% as the t imeout w i l l have unset i t .
IF s t a t e o l d ‘ t imeout THEN
LET

b i t s add = TS empty WITH [t h r e a d i p c i n p r o g r e s s := true]
IN

s t a t e add d i r t y (s t a t e o l d ‘ th i s , b i t s add , s t a t e o l d)
ELSE

s t a t e o l d
ENDIF,

% Add preemption po in t s and dequeue the sender from the sender l i s t .
s tate temp = preempt ion po int (partner , f a l s e , s tate temp) ,
s tate temp = sender dequeue (partner , s tate temp) ,
s tate temp = preempt ion po int (partner , f a l s e , s tate temp) ,

% Remove the p o l l i n g b i t as the handshake has ended .
b i t s d e l = TS empty WITH [t h r e ad po l l i n g := true] ,
s tate temp = s t a t e d e l d i r t y (state temp ‘ th i s , b i t s d e l , s tate temp)

IN
% Check i f IPC was cance l l e d .
IF state temp ‘ threads (state temp ‘ t h i s) ‘ s ta te ‘ t h r ead canc e l THEN

% Check i f the sender− and r e c e i v e r are s t i l l engaged in IPC , i f so the
% s t a t e o f the r e c e i v e r needs to be changed .
IF NOT i n i p c (state temp ‘ th i s , partner , s tate temp) THEN

abort send (partner , s tate temp)

84

ELSE
LET

mask = TS fu l l WITH [t h r e a d i p c i n p r o g r e s s := f a l s e] ,
b i t s = TS empty WITH [t h r ead canc e l := true , thread ready := true] ,
s tate temp = s t a t e chang e d i r t y (partner , mask , b i t s , s tate temp)

IN
abort send (partner , s tate temp)

ENDIF
% Abort the send i f the sender i s not in IPC with the r e c e i v e r or the
% re c e i v e r has been k i l l e d .
ELSIF NOT i n i p c (state temp ‘ th i s , partner , s tate temp) OR

state temp ‘ threads (partner) ‘ s ta te ‘ thread dead
THEN

abort send (partner , s tate temp)
ELSE

% Assert t ha t the sender i s not engaged in IPC with the r e c e i v e r and
% tha t the handshake b i t i s not s e t .
s tate temp WITH [(a s s e r t i o n s h e l d) :=

state temp ‘ a s s e r t i o n s h e l d AND
state temp ‘ threads (state temp ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s AND NOT

i n s e n d e r l i s t (partner , s tate temp) ,
e r r o r := f a l s e]

ENDIF

% Handle the wa i t ing loop part o f the do send wai t () funct ion , which wai t s f o r
% the r e c e i v e r to become ready fo r the sender .
do send wa i t l oop (partner : Thread pointer ,

s t a t e o l d : System state) : System state =
LET

% Remove the thread l o c k on the partner as we have to g i v e i t a chance in
% the preemption po in t to ge t in the s t a t e in which i t i s ready to r e c e i v e
% a message from the <t h i s > thread . Afterwards acqu i re the thread l o c k
% again .
s tate temp = c l e a r d i r t y (partner , s t a t e o l d) ,
s tate temp = preempt ion po int (partner , true , s tate temp) ,
s tate temp = l o c k d i r t y (partner , s tate temp)

IN
% Check i f IPC was cance l l e d or the handshake b i t was set , i f so f i n i s h the
% do send wai t () c a l l .
IF state temp ‘ threads (state temp ‘ t h i s) ‘ s ta te ‘ t h r ead canc e l OR

state temp ‘ threads (state temp ‘ t h i s) ‘ s ta te ‘ t h r e a d t r a n s f e r i n p r o g r e s s
THEN

do s e nd wa i t f i n i s h (partner , s tate temp)
ELSE
LET

% Assert t ha t the sender i s not engaged in IPC with the r e c e i v e r and tha t
% the handshake b i t i s not s e t .
s tate temp = state temp WITH [(a s s e r t i o n s h e l d) :=

state temp ‘ a s s e r t i o n s h e l d AND NOT
i n i p c (state temp ‘ th i s , partner , s tate temp) AND NOT

state temp ‘ threads (state temp ‘ t h i s) ‘ s ta te ‘ t h r e a d t r a n s f e r i n p r o g r e s s]
IN

% Check i f a t imeout has occured , i f so abor t the sending .
IF state temp ‘ timeout THEN
LET

% Assert t ha t the sender i s not engaged in IPC with the r e c e i v e r and
% tha t the handshake b i t i s not s e t .
s tate temp = state temp WITH [(a s s e r t i o n s h e l d) :=

state temp ‘ a s s e r t i o n s h e l d AND NOT
state temp ‘ threads (state temp ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s]

IN
abort send (partner , s tate temp)

% Abort the send i f the partner was k i l l e d .
ELSIF state temp ‘ threads (partner) ‘ s ta te ‘ thread dead THEN

abort send (partner , s tate temp)
ELSE

85

LET
% Assert t ha t the sender i s s t i l l engaged in the handshake with the
% re c e i v e r .
s tate temp = state temp WITH [(a s s e r t i o n s h e l d) :=

state temp ‘ a s s e r t i o n s h e l d AND
state temp ‘ threads (state temp ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s] ,

% Set the p o l l i n g s t a t e
b i t s = TS empty WITH [t h r e ad po l l i n g := true] ,
s tate temp = s t a t e add d i r t y (state temp ‘ th i s , b i t s , s tate temp)

IN
do s e nd wa i t f i n i s h (partner , s tate temp)

ENDIF
ENDIF

% Wait f o r the r e c e i v e r to become ready fo r the sender .
do send wai t (partner : Thread pointer , s t a t e o l d : System state) : System state =

LET
% Assert t ha t the no other thread but the zero− or <t h i s > thread ho ld the
% thread l o c k on the r e c e i v e r .
s tate temp = s t a t e o l d WITH [(a s s e r t i o n s h e l d) :=

s t a t e o l d ‘ a s s e r t i o n s h e l d AND
(s t a t e o l d ‘ threads (partner) ‘ t h r ead l o ck = Zero thread OR
s t a t e o l d ‘ threads (partner) ‘ t h r ead l o ck = s t a t e o l d ‘ t h i s)] ,

% Create a thread s t a t e which b i t s to add to the <t h i s > thread .
add b i t s = TS empty WITH [t h r e ad po l l i n g := true ,

t h r e ad s end i n p r o g r e s s := true ,
t h r e a d i p c i n p r o g r e s s := true] ,

s tate temp = s t a t e add d i r t y (state temp ‘ th i s , add bi t s , s tate temp) ,

% Lock the partner be f o r e cont inu ing .
s tate temp = l o c k d i r t y (partner , s tate temp) ,

% Add a preemption po in t
s tate temp = preempt ion po int (partner , f a l s e , s tate temp)

IN
% Check i f IPC was cance l l e d .
IF state temp ‘ threads (state temp ‘ t h i s) ‘ s ta te ‘ t h r ead canc e l THEN
LET

% Remove the thread l o c k on the r e c e i v e r .
s tate temp = c l e a r d i r t y (partner , s tate temp)

IN
% Dele te the b i t s from the <t h i s > thread ’ s s t a t e .
s t a t e d e l d i r t y (state temp ‘ th i s , TS ipc end mask ,

s tate temp) WITH [e r r o r := true]
ELSE

% Return i f the r e c e i v e r i s ready to r e c e i v e a message from the <t h i s >
% thread . I f not enter the wai t ing loop .
IF sender ok (state temp ‘ th i s , partner , s tate temp) THEN

s tate temp WITH [e r r o r := f a l s e]
ELSE
LET

% Enqueue the sender in the sender l i s t o f the r e c e i v e r .
s tate temp = sender enqueue (partner , s tate temp) ,

% Give the r e c e i v e r time to become ready fo r the sender .
s tate temp = preempt ion po int (partner , true , s tate temp)

IN
% Abort the sending i f a t imeout occured .
IF state temp ‘ timeout THEN

abort send (partner , s tate temp)
ELSE

do send wa i t l oop (partner , s tate temp)
ENDIF

ENDIF

86

ENDIF

% Try to have the sender and r e c e i v e r agree upon engaging in IPC .
t r y hand shake r e c e i v e r (partner : Thread pointer ,

s t a t e o l d : System state) : System state =
% Immediately re turn with an error i f the partner i s the Zero− or Ni l thread
% or the partner i s an i n v a l i d thread .
IF partner = Zero thread OR

s t a t e o l d ‘ threads (partner) ‘ s ta te ‘ t h r e ad i nva l i d OR
partner = Ni l th r ead

THEN
s t a t e o l d WITH [e r r o r := true]

ELSE
LET

% Set the <handshake attempted> f i e l d to t rue because the r e c e i v e r i s
% va l i d .
s tate temp = s t a t e o l d WITH [handshake attempted := true]

IN
LET s tate temp =

% I f a thread l o c k i s a l ready he ld on the rece i ve r , acqu i re the thread
% lock (a f t e r a preemption po in t has been s e t) .
IF NOT state temp ‘ threads (partner) ‘ t h r ead l o ck = Zero thread THEN
LET s tate temp = preempt ion po int (partner , f a l s e , s tate temp) IN

l o c k d i r t y (partner , s tate temp)
ELSE

s tate temp
ENDIF

IN
% Check i f the r e s u l t o f the preemption po in t was t ha t IPC has been
% canceled , i f so remove the thread l o c k and return an error .
IF state temp ‘ threads (state temp ‘ t h i s) ‘ s ta te ‘ t h r ead canc e l THEN

c l e a r d i r t y (partner , s tate temp) WITH [e r r o r := true]
ELSE

% IPC has not been cance l l ed , now check i f the r e c e i v e r i s ready fo r
% the sender . I f not , wai t f o r the r e c e i v e r to become ready .
IF NOT sender ok (state temp ‘ th i s , partner , s tate temp) THEN
LET

s tate temp = do send wai t (partner , s tate temp)
IN

% Assert t ha t the sender does not ho ld a thread l o c k on the r e c e i v e r
% when an error occured .
s tate temp WITH [(a s s e r t i o n s h e l d) :=

state temp ‘ a s s e r t i o n s h e l d AND
(NOT state temp ‘ e r r o r OR
NOT state temp ‘ threads (partner) ‘ t h r ead l o ck = state temp ‘ t h i s)]

ELSE
s tate temp WITH [e r r o r := f a l s e]

ENDIF
ENDIF

ENDIF

% Handle the send part in the do ipc () func t i on .
do ip c s end pa r t (partner : Thread pointer , hav e r e c e i v e : bool ,

s t a t e o l d : System state) : System state =
% Star t with a handshake and immediate ly re turn i f an error occured .
LET s tate temp = t ry hand shake r e c e i v e r (partner , s t a t e o l d) IN
IF state temp ‘ e r r o r THEN

s tate temp
ELSE
LET

% Assert t ha t a f t e r a s u c c e s s f u l handshake the sender thread i s no
% longer p o l l i n g .
s tate temp = state temp WITH [(a s s e r t i o n s h e l d) :=

state temp ‘ a s s e r t i o n s h e l d AND
NOT state temp ‘ threads (state temp ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g] ,

87

% I n i t i a l i z e IPC .
s tate temp = i p c i n i t (state temp ‘ th i s , partner , s tate temp) ,

% Transfer the IPC message .
s tate temp = trans f e r msg (partner , s tate temp) ,

% Assert t ha t the thread l o c k on the r e c e i v e r i s he ld by the <t h i s > thread
% or tha t there i s no thread l o c k .
s tate temp = state temp WITH [(a s s e r t i o n s h e l d) :=

state temp ‘ a s s e r t i o n s h e l d AND
(state temp ‘ threads (partner) ‘ t h r ead l o ck = Zero thread OR
state temp ‘ threads (partner) ‘ t h r ead l o ck = state temp ‘ t h i s)]

IN
% Check i f an error occured or t ha t there i s no r e c e i v e par t .
IF state temp ‘ e r r o r OR NOT have r e c e i v e THEN
LET

s tate new =
% I f the partner i s s t i l l engaged in IPC , wake him up .
IF i n i p c (state temp ‘ th i s , partner , s tate temp) THEN

wake r e c e i v e r (partner , s tate temp)
ELSE

s tate temp
ENDIF,

% Remove the thread l o c k on the partner , ad ju s t the s t a t e o f the <t h i s >
% thread and return the error s t a t e o f the message t r an s f e r .
s tate new = c l e a r d i r t y (partner , s tate new)

IN
s t a t e d e l (state new ‘ th i s , TS ipc end mask ,

s tate new) WITH [e r r o r := state temp ‘ e r r o r]
ELSE
% Remove the thread l o c k on the partner .
LET s tate temp = c l e a r d i r t y d on t sw i t c h (partner , s tate temp) IN

% Return an error i f the partner i s not engaged in IPC with us . This i s
% because we only a r r i v e here i f no error occured during message
% t r an s f e r and there i s a r e c e i v e part , which means t ha t the partner
% has ye t to send a message to us and shou ld t h e r e f o r e s t i l l be engaged
% in IPC with us . I f the partner i s s t i l l in IPC with us , wake him up
% to enab le him to send h i s message .
IF NOT i n i p c (state temp ‘ th i s , partner , s tate temp) THEN

s t a t e d e l (state temp ‘ th i s , TS ipc end mask ,
s tate temp) WITH [e r r o r := true]

ELSE
wake r e c e i v e r (partner , s tate temp)

ENDIF
ENDIF

ENDIF

% Handle the r e c e i v e par t in the do ipc () func t i on .
d o i p c r e c e i v e p a r t (sender : Thread pointer , hav e r e c e i v e : bool ,

s t a t e o l d : System state) : System state =
s t a t e o l d WITH [(a s s e r t i o n s h e l d) :=

s t a t e o l d ‘ a s s e r t i o n s h e l d AND
have r e c e i v e]

% Handle IPC between the sender− and r e c e i v e r .
do ipc (have send : bool , partner : Thread pointer , have r e c e i v e : bool ,

sender : Thread pointer , s t a t e o l d : System state) : System state =
LET s tate temp =

% Check i f t he re i s a send part .
IF have send THEN

do ip c s end pa r t (partner , have r ece ive , s t a t e o l d)
ELSE

s t a t e o l d
ENDIF

IN
% I f no error occured in the send par t and there i s a r e c e i v e part ,

88

% enter the r e c e i v e par t and otherwi se re turn .
IF have r e c e i v e AND NOT state temp ‘ e r r o r THEN

d o i p c r e c e i v e p a r t (sender , have r ece ive , s tate temp)
ELSE

s tate temp
ENDIF

% Execute an IPC c a l l .
%
% NOTE: we t r i e d to make as few assumptions as p o s s i b l e on the system s t a t e
% but there are some f i e l d s t ha t have to be i n i t i a l i z e d be f o re engaging in
% IPC . Natura l ly , b e f o r e an IPC c a l l i s made there has not been any error ,
% timeout , handshake attempted . Furthermore i n i t i a l l y the a s s e r t i on s a l l ho ld .
s y s i p c (have send : bool , partner : Thread pointer ,

have r e c e i v e : bool , sender : Thread pointer ,
s t a t e o l d : System state) : System state =

LET s tate temp = s t a t e o l d WITH [(e r r o r) := f a l s e ,
(t imeout) := f a l s e ,
(handshake attempted) := f a l s e ,
(a s s e r t i o n s h e l d) := true ,
(r e c e i v e r i n i t i a l i z e d) := f a l s e]

IN
% Make sure there i s e i t h e r a send− or r e c e i v e part , i f so s t a r t IPC .
IF have send OR have r e c e i v e THEN

do ipc (have send , partner , have r ece ive , sender , s tate temp)
ELSE

s tate temp WITH [(e r r o r) := true]
ENDIF

END f i a s c o f u n c t i o n s

89

Appendix C

PVS: fiasco states.pvs

% −−
% In Fiasco there are s e v e r a l p rede f ined thread s t a t e s , here we model those
% s t a t e s . As our r ep r e s en ta t i on o f the thread s t a t e as a record o f boolean
% va lue s does not a l l ow fo r easy b i tw i s e combinining , we a l s o crea ted an empty−
% and f u l l thread s ta t e , in which none− r e s p e c t i v e l y a l l b i t s are set , to a l l ow
% for easy crea t i on o f thread s t a t e masks .
% −−
f i a s c o s t a t e s : THEORY
EXPORTING ALL WITH ALL
BEGIN

% −−
% Import the t h e o r i e s which w i l l be used in our lemmas .
% −−
IMPORTING f i a s c o t y p e s

% −−
% Declare the s t a t e combinations t ha t are used in Fiasco , which a l l ow fo r easy
% updat ing o f the s t a t e o f a thread .
% −−

% The empty thread s t a t e has a l l s t a t e b i t s s e t to f a l s e .
%
% NOTE: t h i s d e c l a ra t i on cannot be found in the Fiasco source code , but has
% been de f ined by us to a l l ow fo r easy crea t i on o f thread s t a t e s with
% s p e c i f i c b i t s s e t .
TS empty : Thread state = TS WITH[thread ready := f a l s e ,

th r ead canc e l := f a l s e ,
thread dead := f a l s e ,
thread busy := f a l s e ,
t h r e ad i nva l i d := f a l s e ,
t h r e ad po l l i n g := f a l s e ,
t h r e ad r e c e i v i n g := f a l s e ,
t h r e a d i p c i n p r o g r e s s := f a l s e ,
t h r e ad s end i n p r o g r e s s := f a l s e ,
t h r e a d t r a n s f e r i n p r o g r e s s := f a l s e]

% The f u l l thread s t a t e has a l l s t a t e b i t s s e t to t rue .
%
% NOTE: t h i s d e c l a ra t i on cannot be found in the Fiasco source code , but has
% been de f ined by us to a l l ow fo r easy crea t i on o f thread s t a t e s with
% s p e c i f i c b i t s unset .
TS fu l l : Thread state = TS WITH[thread ready := true ,

th r ead canc e l := true ,
thread dead := true ,
thread busy := true ,
t h r e ad i nva l i d := true ,
t h r e ad po l l i n g := true ,

90

t h r e ad r e c e i v i n g := true ,
t h r e a d i p c i n p r o g r e s s := true ,
t h r e ad s end i n p r o g r e s s := true ,
t h r e a d t r a n s f e r i n p r o g r e s s := true]

% This s t a t e mask i n d i c a t e s t ha t a thread i s sending an IPC message .
TS ipc sending mask : Thread state = TS empty WITH [

t h r e ad s end i n p r o g r e s s := true ,
t h r e ad po l l i n g := true

]

% This s t a t e mask i n d i c a t e s t ha t a thread i s r e c e i v i n g an IPC message .
TS ipc rece iv ing mask : Thread state = TS empty WITH [

thread busy := true ,
t h r e ad r e c e i v i n g := true ,
t h r e a d t r a n s f e r i n p r o g r e s s := true

]

% This s t a t e mask i s a combination o f the <TS ipc sending mask> and
% <TS ipc rece iv ing mask> masks with the add i t i on o f the
% <t h r e ad i p c i n p ro g r e s s > b i t be ing s e t .
TS ipc mask : Thread state = TS ipc rece iv ing mask WITH [

t h r e a d i p c i n p r o g r e s s := true ,
t h r e ad s end i n p r o g r e s s := true ,
t h r e ad po l l i n g := true

]

% This mask i s the sending mask with b i t s s e t t ha t i nd i c a t e t ha t a
% trans f e r− and IPC i s in progres s .
%
% NOTE: t h i s mask i s not one tha t i s a c t u a l l y de f ined in the Fiasco source
% code , but as i t i s used in s e v e r a l l o c a t i on s we dec ided to crea t e a
% s ing l e−point−of−d e f i n i t i o n which has become t h i s thread s t a t e mask .
TS ipc end mask : Thread state = TS ipc sending mask WITH [

t h r e a d t r a n s f e r i n p r o g r e s s := true ,
t h r e a d i p c i n p r o g r e s s := true

]

END f i a s c o s t a t e s

91

Appendix D

PVS: fiasco helpers.pvs

% −−
% There are many lemmas tha t are used in more than one o f our proper ty theor i e s ,
% fo r the se lemmas we have crea ted t h i s separa te theory , which other t h e o r i e s
% can e a s i l y import and use in t h e i r proo f s .
% −−
f i a s c o h e l p e r s : THEORY
BEGIN

% −−
% Import the t h e o r i e s which w i l l be used in our lemmas .
% −−
IMPORTING f i a s c o f u n c t i o n s

% −−
% Legend :
% LEMMA %− : the lemma depends on an assumption .
% LEMMA %/ : the lemma depends on an axiom .
% −−

% −−
% Lemmas which i n vo l v e the <s e n d e r l i s t > f i e l d o f the r e c e i v e r .
% −−

% When the <t h i s > thread i s i n i t i a l l y dequeued from the sender l i s t , t ha t w i l l
% a l s o be the case a f t e r c a l l i n g t imeout () .
t imeout dequeued unchanged : LEMMA

FORALL(r e c e i v e r : Thread pointer , s t a t e o l d : System state) :
LET s tate new = timeout (s t a t e o l d ‘ th i s , s t a t e o l d) IN

s t a t e o l d ‘ threads (r e c e i v e r) ‘ s e n d e r l i s t = Dequeued IMPLIES
state new ‘ threads (r e c e i v e r) ‘ s e n d e r l i s t = Dequeued

% When the <t h i s > thread i s i n i t i a l l y dequeued from the sender l i s t , t ha t w i l l
% a l s o be the case a f t e r c a l l i n g k i l l () .
k i l l dequeued unchanged : LEMMA

FORALL(r e c e i v e r : Thread pointer , s t a t e o l d : System state) :
LET s tate new = k i l l (r e c e i v e r , s t a t e o l d) IN

s t a t e o l d ‘ threads (r e c e i v e r) ‘ s e n d e r l i s t = Dequeued IMPLIES
state new ‘ threads (r e c e i v e r) ‘ s e n d e r l i s t = Dequeued

% When the <t h i s > thread i s i n i t i a l l y dequeued from the sender l i s t , t ha t w i l l
% a l s o be the case a f t e r c a l l i n g r e c e i v e r r eady () .
rece iver ready dequeued unchanged : LEMMA
FORALL(sender : Thread pointer , r e c e i v e r : Thread pointer , s t a t e o l d : System state) :

LET s tate new = r e c e i v e r r e ady (s t a t e o l d ‘ th i s , r e c e i v e r , s t a t e o l d) IN
s t a t e o l d ‘ threads (r e c e i v e r) ‘ s e n d e r l i s t = Dequeued IMPLIES

state new ‘ threads (r e c e i v e r) ‘ s e n d e r l i s t = Dequeued

% When the <t h i s > thread i s i n i t i a l l y dequeued from the sender l i s t , t ha t w i l l

92

% al so be the case a f t e r c a l l i n g preempt ion po in t ac t i ons () .
preempt ion po int act ions dequeued unchanged : LEMMA

FORALL (a c t i on s : Preempt ion act ions , a l l ow t imeout : bool ,
partner : Thread pointer , s t a t e o l d : System state) :

LET s tate new = preempt i on po in t ac t i on s (ac t ions , partner ,
a l low t imeout , s t a t e o l d) IN

s t a t e o l d ‘ threads (partner) ‘ s e n d e r l i s t = Dequeued IMPLIES
state new ‘ threads (partner) ‘ s e n d e r l i s t = Dequeued

% When the <t h i s > thread i s i n i t i a l l y dequeued from the sender l i s t , t ha t w i l l
% a l s o be the case a f t e r c a l l i n g preempt ion point () .
preemption point dequeued unchanged : LEMMA

FORALL (partner : Thread pointer , a l l ow t imeout : bool , s t a t e o l d : System state) :
LET s tate new = preempt ion po int (partner , a l low t imeout , s t a t e o l d) IN

s t a t e o l d ‘ threads (partner) ‘ s e n d e r l i s t = Dequeued IMPLIES
state new ‘ threads (partner) ‘ s e n d e r l i s t = Dequeued

% −−
% Lemmas which i n vo l v e the s t a t u s o f the <timeout> system s t a t e f i e l d .
% −−

% The <timeout> f i e l d i s not changed by c a l l i n g sender enqueue () .
sender enqueue t imeout unchanged : LEMMA

FORALL (r e c e i v e r : Thread pointer , s t a t e o l d : System state) :
LET s tate new = sender enqueue (r e c e i v e r , s t a t e o l d) IN

s t a t e o l d ‘ t imeout = state new ‘ timeout

% The <timeout> f i e l d i s not changed by c a l l i n g k i l l () .
k i l l t imeout unchanged : LEMMA

FORALL(r e c e i v e r : Thread pointer , s t a t e o l d : System state) :
LET s tate new = k i l l (r e c e i v e r , s t a t e o l d) IN

s t a t e o l d ‘ t imeout = state new ‘ timeout

% The <timeout> f i e l d i s not changed by c a l l i n g r e c e i v e r r eady () .
r e ce ive r r eady t imeout unchanged : LEMMA
FORALL(sender : Thread pointer , r e c e i v e r : Thread pointer , s t a t e o l d : System state) :

LET s tate new = r e c e i v e r r e ady (s t a t e o l d ‘ th i s , r e c e i v e r , s t a t e o l d) IN
s t a t e o l d ‘ t imeout = state new ‘ timeout

% When no t imeouts are al lowed , the <timeout> va lue w i l l not be changed by
% c a l l i n g preempt ion po in t ac t i ons () .
preempt ion po int act ions t imeout unchanged : LEMMA

FORALL (a c t i on s : Preempt ion act ions , partner : Thread pointer ,
s t a t e o l d : System state) :

LET s tate new = preempt i on po in t ac t i on s (ac t ions , partner ,
f a l s e , s t a t e o l d) IN

s t a t e o l d ‘ t imeout = state new ‘ timeout

% When no t imeouts are al lowed , the <timeout> va lue w i l l not be changed by
% c a l l i n g preempt ion point () .
preempt ion point t imeout unchanged : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = preempt ion po int (partner , f a l s e , s t a t e o l d) IN

s t a t e o l d ‘ t imeout = state new ‘ timeout

% When i n i t i a l l y the <timeout> f i e l d i s se t , t ha t w i l l s t i l l be the case a f t e r
% c a l l i n g preempt ion po in t ac t i ons () .
preempt i on po in t ac t i on s t imeout : LEMMA

FORALL (a c t i on s : Preempt ion act ions , a l l ow t imeout : bool ,
partner : Thread pointer , s t a t e o l d : System state) :

LET s tate new = preempt i on po in t ac t i on s (ac t ions , partner ,
a l low t imeout , s t a t e o l d) IN

s t a t e o l d ‘ t imeout IMPLIES state new ‘ timeout

% When i n i t i a l l y the <timeout> f i e l d i s se t , t ha t w i l l s t i l l be the case a f t e r
% c a l l i n g preempt ion point () .

93

preempt ion po int t imeout : LEMMA
FORALL (partner : Thread pointer , a l l ow t imeout : bool , s t a t e o l d : System state) :

LET s tate new = preempt ion po int (partner , a l low t imeout , s t a t e o l d) IN
s t a t e o l d ‘ t imeout IMPLIES state new ‘ timeout

% −−
% Lemmas which i n vo l v e the va lue o f the <error> system s t a t e f i e l d .
% −−

% The sender enqueue () func t i on l e a v e s the <error> f i e l d unmodified .
sender enqueue er ror unchanged : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = sender enqueue (partner , s t a t e o l d) IN

s t a t e o l d ‘ e r r o r = state new ‘ e r r o r

% The timeout () func t i on l e a v e s the <error> f i e l d unmodified .
t imeout error unchanged : LEMMA

FORALL(s t a t e o l d : System state) :
LET s tate new = timeout (s t a t e o l d ‘ th i s , s t a t e o l d) IN

s t a t e o l d ‘ e r r o r = state new ‘ e r r o r

% The k i l l () func t i on l e a v e s the <error> f i e l d unmodif ied .
k i l l e r r o r un chang ed : LEMMA

FORALL(r e c e i v e r : Thread pointer , s t a t e o l d : System state) :
LET s tate new = k i l l (r e c e i v e r , s t a t e o l d) IN

s t a t e o l d ‘ e r r o r = state new ‘ e r r o r

% The i p c r e c e i v e r r eady change () func t i on l e a v e s the <error> f i e l d unmodified .
i p c r e c e i v e r r e ady change e r r o r unchanged : LEMMA
FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = ip c r e c e i v e r r e ady chang e (s t a t e o l d ‘ th i s , partner , s t a t e o l d)IN

s t a t e o l d ‘ e r r o r = state new ‘ e r r o r

% The rec e i v e r r eady () func t i on l e a v e s the <error> f i e l d unmodified .
r e c e i v e r r e ady e r r o r unchanged : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = r e c e i v e r r e ady (s t a t e o l d ‘ th i s , partner , s t a t e o l d) IN

s t a t e o l d ‘ e r r o r = state new ‘ e r r o r

% The preempt ion po in t ac t i ons () func t i on l e a v e s the <error> f i e l d unmodified .
preempt i on po in t ac t i on s e r ro r unchanged : LEMMA

FORALL (a c t i on s : Preempt ion act ions , partner : Thread pointer ,
have t imeout : bool , s t a t e o l d : System state) :

LET s tate new = preempt i on po in t ac t i on s (ac t ions , partner ,
have timeout , s t a t e o l d) IN

s t a t e o l d ‘ e r r o r = state new ‘ e r r o r

% The preempt ion point () func t i on l e a v e s the <error> f i e l d unmodified .
preempt ion po int e r ror unchanged : LEMMA

FORALL (partner : Thread pointer , have t imeout : bool , s t a t e o l d : System state) :
LET s tate new = preempt ion po int (partner , have timeout , s t a t e o l d) IN

s t a t e o l d ‘ e r r o r = state new ‘ e r r o r

% −−
% Lemmas which i n vo l v e the va lue o f the <t h i s > system s t a t e f i e l d .
% −−

% Ind i ca t e t ha t the <t h i s > f i e l d i s not changed by c a l l i n g sender dequeue () .
sender dequeue th i s unchanged : LEMMA

FORALL(partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = sender dequeue (partner , s t a t e o l d) IN

s t a t e o l d ‘ t h i s = state new ‘ t h i s

% Ind i ca t e t ha t the <t h i s > f i e l d i s not changed by c a l l i n g sender enqueue () .
sender enqueue th i s unchanged : LEMMA

FORALL(partner : Thread pointer , s t a t e o l d : System state) :

94

LET s tate new = sender enqueue (partner , s t a t e o l d) IN
s t a t e o l d ‘ t h i s = state new ‘ t h i s

% Ind i ca t e t ha t the <t h i s > f i e l d i s not changed by c a l l i n g
% p r e p a r e r e c e i v e d i r t y () .
p r epa r e r e c e i v e d i r t y t h i s un chang ed : LEMMA

FORALL(sender : Thread pointer , r e c e i v e r : Thread pointer , s t a t e o l d : System state) :
LET s tate new = p r e p a r e r e c e i v e d i r t y (sender , r e c e i v e r , s t a t e o l d) IN

s t a t e o l d ‘ t h i s = state new ‘ t h i s

% Ind i ca t e t ha t the <t h i s > f i e l d i s not changed by c a l l i n g t imeout () .
t imeout th i s unchanged : LEMMA

FORALL(s t a t e o l d : System state) :
LET s tate new = timeout (s t a t e o l d ‘ th i s , s t a t e o l d) IN

s t a t e o l d ‘ t h i s = state new ‘ t h i s

% Ind i ca t e t ha t the <t h i s > f i e l d i s not changed by c a l l i n g k i l l () .
k i l l t h i s un chang ed : LEMMA

FORALL(r e c e i v e r : Thread pointer , s t a t e o l d : System state) :
LET s tate new = k i l l (r e c e i v e r , s t a t e o l d) IN

s t a t e o l d ‘ t h i s = state new ‘ t h i s

% Ind i ca t e t ha t the <t h i s > f i e l d i s not changed by c a l l i n g
% ipc r e c e i v e r r eady change () .
i p c r e c e i v e r r e ady change th i s unchanged : LEMMA

FORALL(r e c e i v e r : Thread pointer , s t a t e o l d : System state) :
LET s tate new = ip c r e c e i v e r r e ady chang e (s t a t e o l d ‘ th i s , r e c e i v e r ,

s t a t e o l d) IN
s t a t e o l d ‘ t h i s = state new ‘ t h i s

% Ind i ca t e t ha t the <t h i s > f i e l d i s not changed by c a l l i n g r e c e i v e r r eady () .
r e c e i v e r r e ady th i s unchanged : LEMMA

FORALL(r e c e i v e r : Thread pointer , s t a t e o l d : System state) :
LET s tate new = r e c e i v e r r e ady (s t a t e o l d ‘ th i s , r e c e i v e r , s t a t e o l d) IN

s t a t e o l d ‘ t h i s = state new ‘ t h i s

% Ind i ca t e t ha t the <t h i s > f i e l d i s not changed by c a l l i n g
% preempt ion po in t ac t i ons () .
preempt i on po in t ac t i on s th i s unchanged : LEMMA

FORALL (a c t i on s : Preempt ion act ions , partner : Thread pointer ,
have t imeout : bool , s t a t e o l d : System state) :

LET s tate new = preempt i on po in t ac t i on s (ac t ions , partner ,
have timeout , s t a t e o l d) IN

s t a t e o l d ‘ t h i s = state new ‘ t h i s

% Ind i ca t e t ha t the <t h i s > f i e l d i s not changed by c a l l i n g preempt ion point () .
preempt ion po int th i s unchanged : LEMMA

FORALL (partner : Thread pointer , have t imeout : bool , s t a t e o l d : System state) :
LET s tate new = preempt ion po int (partner , have timeout , s t a t e o l d) IN

s t a t e o l d ‘ t h i s = state new ‘ t h i s

% Ind i ca t e t ha t the <t h i s > f i e l d i s not changed by c a l l i n g abor t send () .
abor t s end th i s unchanged : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = abort send (partner , s t a t e o l d) IN

s t a t e o l d ‘ t h i s = state new ‘ t h i s

% Ind i ca t e t ha t the <t h i s > f i e l d i s not changed by c a l l i n g
% do s end wa i t f i n i s h () .
do s end wa i t f i n i s h th i s un changed : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = do s e nd wa i t f i n i s h (partner , s t a t e o l d) IN

s t a t e o l d ‘ t h i s = state new ‘ t h i s

% Ind i ca t e t ha t the <t h i s > f i e l d i s not changed by c a l l i n g
% do send wa i t l oop () .

95

do send wa i t l oop th i s unchanged : LEMMA
FORALL (partner : Thread pointer , s t a t e o l d : System state) :

LET s tate new = do send wa i t l oop (partner , s t a t e o l d) IN
s t a t e o l d ‘ t h i s = state new ‘ t h i s

% Ind i ca t e t ha t the <t h i s > f i e l d i s not changed by c a l l i n g do send wai t () .
do send wa i t th i s unchanged : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = do send wai t (partner , s t a t e o l d) IN

s t a t e o l d ‘ t h i s = state new ‘ t h i s

% Ind i ca t e t ha t the <t h i s > f i e l d i s not changed by c a l l i n g
% t ry handshake r e c e i v e r () .
t ry handshake r e c e i v e r th i s unchanged : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = t ry hand shake r e c e i v e r (partner , s t a t e o l d) IN

s t a t e o l d ‘ t h i s = state new ‘ t h i s

% Ind i ca t e t ha t the <t h i s > f i e l d i s not changed by c a l l i n g do i p c s end par t () .
do ipc s end pa r t th i s unchanged : LEMMA

FORALL (partner : Thread pointer , have r e c e i v e : bool , s t a t e o l d : System state) :
LET s tate new = do ip c s end pa r t (partner , have r ece ive , s t a t e o l d) IN

s t a t e o l d ‘ t h i s = state new ‘ t h i s

% Ind i ca t e t ha t the <t h i s > f i e l d i s not changed by c a l l i n g
% do i p c r e c e i v e p a r t () .
do i p c r e c e i v e pa r t t h i s un chang ed : LEMMA

FORALL (sender : Thread pointer , have r e c e i v e : bool , s t a t e o l d : System state) :
LET s tate new = do i p c r e c e i v e p a r t (sender , have r ece ive , s t a t e o l d) IN

s t a t e o l d ‘ t h i s = state new ‘ t h i s

% Ind i ca t e t ha t the <t h i s > f i e l d i s not changed by c a l l i n g s y s i p c () .
s y s i p c th i s unchanged : LEMMA

FORALL (have send : bool , partner : Thread pointer , hav e r e c e i v e : bool ,
sender : Thread pointer , s t a t e o l d : System state) :

% Engage in IPC with the supp l i e d parameters .
LET s tate new = sy s i p c (have send , partner ,

have r ece ive , sender , s t a t e o l d) IN
s t a t e o l d ‘ t h i s = state new ‘ t h i s

END f i a s c o h e l p e r s

96

Appendix E

PVS: fiasco state.pvs

% −−
% Many lemmas depend on s p e c i f i c b i t s o f a thread s t a t e to be s e t or unset a f t e r
% c a l l i n g a func t i on . For a l l those lemmas dea l i n g with s t a t e b i t s t ha t are not
% d i r e c t l y t i e d to a property , we have crea ted t h i s separa te theory , which other
% th eo r i e s can e a s i l y import and use .
% −−
f i a s c o s t a t e : THEORY
BEGIN

% −−
% Import the t h e o r i e s which w i l l be used in our lemmas .
% −−
IMPORTING f i a s c o f u n c t i o n s
IMPORTING f i a s c o l o c k
IMPORTING f i a s c o h e l p e r s

% −−
% Legend :
% LEMMA %− : the lemma depends on an assumption .
% LEMMA %/ : the lemma depends on an axiom .
% −−

% −−
% Lemmas dea l i ng with the s t a t u s o f the <t h r e ad i p c i n p ro g r e s s > b i t .
% −−

% The <t h r e ad i p c i n p ro g r e s s > b i t o f the <t h i s > thread w i l l not be changed
% a f t e r sender enqueue () was c a l l e d .
s ende r enqueue ipc in p rog r e s s unchanged : LEMMA

FORALL (r e c e i v e r : Thread pointer , s t a t e o l d : System state) :
LET s tate new = sender enqueue (r e c e i v e r , s t a t e o l d) IN

s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s =
state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s

% The <t h r e ad i p c i n p ro g r e s s > b i t o f the <t h i s > thread w i l l not be changed
% a f t e r k i l l () was c a l l e d .
k i l l i p c i n p r o g r e s s u n c h an g e d : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = k i l l (partner , s t a t e o l d) IN

s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s =
state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s

% The <t h r e ad i p c i n p ro g r e s s > b i t o f the <t h i s > thread w i l l not be changed
% a f t e r r e c e i v e r r eady () was c a l l e d and the sender (the <t h i s > thread) was
% not equa l to the r e c e i v e r .
%
% NOTE: depends on the add i t i ona l assumption tha t the sender i s not equa l
% to the r e c e i v e r .

97

r e c e i v e r r e ady i p c i n p r o g r e s s un chang ed : LEMMA %−
FORALL(sender : Thread pointer , r e c e i v e r : Thread pointer , s t a t e o l d : System state) :

LET s tate new = r e c e i v e r r e ady (s t a t e o l d ‘ th i s , r e c e i v e r , s t a t e o l d) IN
NOT s t a t e o l d ‘ t h i s = r e c e i v e r IMPLIES

s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s =
state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s

% When no t imeouts are al lowed , the <t h r e ad i p c i n p ro g r e s s > b i t o f the
% <t h i s > thread w i l l not be changed a f t e r c a l l i n g preempt ion po in t ac t i ons () .
pr e empt i on po in t a c t i on s no t imeou t i p c i n p rog r e s s unchanged : LEMMA

FORALL (a c t i on s : Preempt ion act ions , partner : Thread pointer ,
s t a t e o l d : System state) :

LET s tate new = preempt i on po in t ac t i on s (ac t ions , partner , f a l s e , s t a t e o l d) IN
s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s =

state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s

% When no t imeouts are al lowed , the <t h r e ad i p c i n p ro g r e s s > b i t o f the
% <t h i s > thread w i l l not be changed a f t e r c a l l i n g preempt ion point () .
pre empt i on po in t no t imeout ipc in prog r e s s unchanged : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = preempt ion po int (partner , f a l s e , s t a t e o l d) IN

s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s =
state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s

% When no timeout has occured , the <t h r e ad i p c i n p ro g r e s s > b i t o f the
% <t h i s > thread w i l l not be changed a f t e r c a l l i n g preempt ion po in t ac t i ons () .
pr e empt i on po in t a c t i on s no t imeou t i p c i n p rog r e s s unchanged2 : LEMMA

FORALL (a c t i on s : Preempt ion act ions , partner : Thread pointer ,
a l l ow t imeout : bool , s t a t e o l d : System state) :

LET s tate new = preempt i on po in t ac t i on s (ac t ions , partner ,
a l low t imeout , s t a t e o l d) IN

NOT s t a t e o l d ‘ t imeout AND
NOT state new ‘ timeout IMPLIES

s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s =
state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s

% When no timeout has occured , the <t h r e ad i p c i n p ro g r e s s > b i t o f the
% <t h i s > thread w i l l not be changed a f t e r c a l l i n g preempt ion point () .
preempt i on po in t no t imeout ipc in prog r e s s unchanged2 : LEMMA

FORALL (partner : Thread pointer , a l l ow t imeout : bool , s t a t e o l d : System state) :
LET s tate new = preempt ion po int (partner , a l low t imeout , s t a t e o l d) IN

NOT s t a t e o l d ‘ t imeout AND
NOT state new ‘ timeout IMPLIES

s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s =
state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s

% When the <t h r e a d i p c i n p r o g r e s s b i t > o f the <t h i s > thread i s i n i t i a l l y
% not set , a f t e r c a l l i n g preempt ion po in t ac t i ons () i t w i l l s t i l l be unset .
p r e emp t i o n po i n t a c t i o n s n o t t h r e ad i p c i n p r o g r e s s : LEMMA

FORALL (a c t i on s : Preempt ion act ions , partner : Thread pointer ,
a l l ow t imeout : bool , s t a t e o l d : System state) :

LET s tate new = preempt i on po in t ac t i on s (ac t ions , partner ,
a l low t imeout , s t a t e o l d) IN

NOT s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s
IMPLIES

NOT state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s

% When the <t h r e a d i p c i n p r o g r e s s b i t > o f the <t h i s > thread i s i n i t i a l l y
% not set , a f t e r c a l l i n g preempt ion point () i t w i l l s t i l l be unset .
p r e empt i on po i n t no t t h r e ad i p c i n p r o g r e s s : LEMMA

FORALL (partner : Thread pointer , a l l ow t imeout : bool , s t a t e o l d : System state) :
LET s tate new = preempt ion po int (partner , a l low t imeout , s t a t e o l d) IN

NOT s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s
IMPLIES

NOT state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s

98

% When the preempt ion po in t ac t i ons () func t i on has s e t the t imeout to true ,
% then tha t imp l i e s t ha t the <t h r e ad i p c i n p ro g r e s s > b i t o f the <t h i s >
% thread i s unset .
p r e emp t i on po i n t a c t i o n s t imeou t no t t h r e ad i p c i n p r o g r e s s : LEMMA

FORALL (a c t i on s : Preempt ion act ions , partner : Thread pointer ,
a l l ow t imeout : bool , s t a t e o l d : System state) :

LET s tate new = preempt i on po in t ac t i on s (ac t ions , partner ,
a l low t imeout , s t a t e o l d) IN

NOT s t a t e o l d ‘ t imeout AND
state new ‘ timeout IMPLIES

NOT state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s

% When the preempt ion point () func t i on has s e t the t imeout to true , then tha t
% imp l i e s t ha t the <t h r e ad i p c i n p ro g r e s s > b i t o f the <t h i s > thread i s unset .
p r e empt i on po i n t t imeou t no t th r e ad i p c i n p r og r e s s : LEMMA

FORALL (partner : Thread pointer , a l l ow t imeout : bool , s t a t e o l d : System state) :
LET s tate new = preempt ion po int (partner , a l low t imeout , s t a t e o l d) IN

NOT s t a t e o l d ‘ t imeout AND
state new ‘ timeout IMPLIES

NOT state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s

% −−
% Lemmas which i n vo l v e the s t a t u s o f the <t h r e ad t r an s f e r i n p r o g r e s s > b i t .
% −−

% When the <t h r e ad t r an s f e r i n p r o g r e s s > b i t o f the <t h i s > thread i s not se t ,
% tha t imp l i e s t ha t the partner and the <t h i s > thread are not engaged in IPC .
%
% NOTE: un fo r tuna t e l y t h i s i s s t i l l an axiom , i t shou ld be a lemma .
n o t t r a n s f e r i n p r o g r e s s n o t i n i p c : AXIOM

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
NOT s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e a d t r a n s f e r i n p r o g r e s s
IMPLIES

NOT i n i p c (s t a t e o l d ‘ th i s , partner , s t a t e o l d)

% −−
% Lemmas which i n vo l v e the s t a t u s o f the <t h r e ad po l l i n g > b i t .
% −−

% The <t h r e ad po l l i n g > b i t i s not s e t when sender ok () re turns t rue .
%
% NOTE: un fo r tuna t e l y we need t h i s axiom because o f a bug in the code .
% Should the bug be f i x ed , than t h i s axiom can be removed .
s e nd e r o k no t p o l l i n g : AXIOM

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
s ender ok (s t a t e o l d ‘ th i s , partner , s t a t e o l d) IMPLIES

NOT s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g

% The <t h r e ad po l l i n g > b i t o f the <t h i s > thread i s not modi f ied by the k i l l ()
% func t ion .
k i l l p o l l i n g un chang ed : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = k i l l (partner , s t a t e o l d) IN

s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g =
state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g

% The <t h r e ad po l l i n g > b i t o f the <t h i s > thread i s not modi f ied by the
% timeout () func t i on .
t imeout po l l ing unchanged : LEMMA

FORALL (s t a t e o l d : System state) :
LET s tate new = timeout (s t a t e o l d ‘ th i s , s t a t e o l d) IN

s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g =
state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g

% The <t h r e ad po l l i n g > b i t o f the <t h i s > thread i s not modi f ied by the
% rece i v e r r eady () func t i on .

99

%
% NOTE: depends on the add i t i ona l assumption tha t the sender i s not equa l
% to the r e c e i v e r .
r e c e i v e r r e ady po l l i n g unchanged : LEMMA %−

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = r e c e i v e r r e ady (s t a t e o l d ‘ th i s , partner , s t a t e o l d) IN

NOT s t a t e o l d ‘ t h i s = partner IMPLIES
s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g =
state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g

% The <t h r e ad po l l i n g > b i t o f the <t h i s > thread i s not modi f ied by the
% preempt ion po in t ac t i ons () func t i on .
pre empt i on po in t ac t i on s po l l i ng unchanged : LEMMA

FORALL (a c t i on s : Preempt ion act ions , partner : Thread pointer ,
a l l ow t imeout : bool , s t a t e o l d : System state) :

LET s tate new = preempt i on po in t ac t i on s (ac t ions , partner ,
a l low t imeout , s t a t e o l d) IN

s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g =
state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g

% The <t h r e ad po l l i n g > b i t o f the <t h i s > thread i s not modi f ied by the
% preempt ion point () func t i on .
preempt ion po int po l l ing unchanged : LEMMA

FORALL (partner : Thread pointer , a l l ow t imeout : bool , s t a t e o l d : System state) :
LET s tate new = preempt ion po int (partner , a l low t imeout , s t a t e o l d) IN

s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g =
state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g

% After c a l l i n g abor t send () , the <t h i s > thread ’ s <t h r e ad po l l i n g > b i t w i l l
% always be unset .
abo r t s e nd no t po l l i n g : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = abort send (partner , s t a t e o l d) IN

NOT state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g

% After c a l l i n g d o s end wa i t f i n i s h () , the <t h i s > thread ’ s <t h r e ad po l l i n g >
% b i t w i l l a lways be unset .
d o s e n d wa i t f i n i s h n o t p o l l i n g : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = do s e nd wa i t f i n i s h (partner , s t a t e o l d) IN

NOT state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g

% After c a l l i n g do send wa i t l oop () , the <t h i s > thread ’ s <t h r e ad po l l i n g > b i t
% w i l l a lways be unset .
do s end wa i t l o op no t po l l i n g : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = do send wa i t l oop (partner , s t a t e o l d) IN

NOT state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g

% After c a l l i n g do send wai t () , the <t h i s > thread ’ s <t h r e ad po l l i n g > b i t w i l l
% always be unset .
%
% NOTE: depends on the [s e nd e r o k no t p o l l i n g] axiom .
do s end wa i t n o t po l l i n g : LEMMA %/

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = do send wai t (partner , s t a t e o l d) IN

NOT state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g

% I f no error has occured when c a l l i n g t r y handshake r e c e i v e r () , the
% <t h r e ad po l l i n g > o f the <t h i s > thread w i l l a lways be unset .
%
% NOTE: depends on the add i t i ona l assumption tha t i n i t i a l l y the
% <t h r e ad po l l i n g > b i t o f the <t h i s > thread i s not s e t .
t r y h and s h a k e r e c e i v e r n o e r r o r n o t p o l l i n g : LEMMA %−

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = t ry hand shake r e c e i v e r (partner , s t a t e o l d) IN

100

NOT s t a t e o l d ‘ e r r o r AND
NOT state new ‘ e r r o r AND
NOT s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g IMPLIES

NOT state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g

% I f we assume tha t i n i t i a l l y the <t h i s > thread ’ s <t h r e ad po l l i n g > b i t i s not
% set , i t w i l l s t i l l be unset a f t e r c a l l i n g t r y handshake r e c e i v e r () .
%
% NOTE: depends on the add i t i ona l assumption tha t i n i t i a l l y the
% <t h r e ad po l l i n g > b i t o f the <t h i s > thread i s not s e t .
t r y h and shak e r e c e i v e r n o t p o l l i n g : LEMMA %−

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = t ry hand shake r e c e i v e r (partner , s t a t e o l d) IN

NOT s t a t e o l d ‘ e r r o r AND
NOT s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g IMPLIES

NOT state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g

% I f we assume tha t i n i t i a l l y the <t h i s > thread ’ s <t h r e ad po l l i n g > b i t i s not
% set , i t w i l l s t i l l be unset a f t e r c a l l i n g do i p c s end par t () .
%
% NOTE: depends on the add i t i ona l assumption tha t i n i t i a l l y the
% <t h r e ad po l l i n g > b i t o f the <t h i s > thread i s not s e t .
do i p c s e nd pa r t n o t p o l l i n g : LEMMA %−

FORALL (partner : Thread pointer , have r e c e i v e : bool , s t a t e o l d : System state) :
LET s tate new = do ip c s end pa r t (partner , have r ece ive , s t a t e o l d) IN

NOT s t a t e o l d ‘ e r r o r AND
NOT s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g IMPLIES

NOT state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g

% I f we assume tha t i n i t i a l l y , the <t h i s > thread ’ s <t h r e ad po l l i n g > b i t i s
% not set , i t w i l l s t i l l be unset a f t e r c a l l i n g s y s i p c () .
%
% NOTE: depends on the add i t i ona l assumption tha t i n i t i a l l y the
% <t h r e ad po l l i n g > b i t o f the <t h i s > thread i s not s e t .
%
% NOTE: b a s i c a l l y we have proved here t ha t the <t h r e ad po l l i n g > b i t be ing
% unset i s an invar i an t .
s y s i p c n o t p o l l i n g : LEMMA %−

FORALL (have send : bool , partner : Thread pointer , hav e r e c e i v e : bool ,
sender : Thread pointer , s t a t e o l d : System state) :

% Engage in IPC with the supp l i e d parameters .
LET s tate new = sy s i p c (have send , partner ,

have r ece ive , sender , s t a t e o l d) IN
NOT s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g IMPLIES

NOT state new ‘ threads (state new ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g

END f i a s c o s t a t e

101

Appendix F

PVS: fiasco lock.pvs

% −−
% When the sender and r e c e i v e r engage in IPC i t i s r equ i red t ha t the r e c e i v e r
% i s not l ocked by another thread , because o therwi se the sender does not have
% complete access to the r e c e i v e r (which i t needs to send the message) .
% Therefore , when the r e c e i v e r i s a v a l i d r e c e i v e r (because o therwi se IPC i s
% premature ly abor ted) , the sender at tempts a handshake with the r e c e i v e r .
% Part o f t ha t handshake i s a check i f the r e c e i v e r i s l ocked by another thread .
% I f so , the sender acqu i r e s the thread l o c k . There are thus two p o s s i b i l i t i e s
% fo r the rece i ve r ’ s thread l o c k : i t i s he ld by the sender (the <t h i s > thread) or
% i t i s not he ld . Af ter IPC has f i n i s h ed , the thread l o c k on the r e c e i v e r shou ld
% be re l eased , because o therwi se other threads cannot access the r e c e i v e r thread .
% −−
f i a s c o l o c k : THEORY
BEGIN

% −−
% Import the t h e o r i e s which w i l l be used in our lemmas .
% −−
IMPORTING f i a s c o f u n c t i o n s
IMPORTING f i a s c o h e l p e r s

% −−
% Legend :
% LEMMA %− : the lemma depends on an assumption .
% LEMMA %/ : the lemma depends on an axiom .
% −−

% −−
% Lemmas which i n vo l v e the s t a t u s o f the <thread lock> f i e l d o f the r e c e i v e r .
% −−

% The thread l o c k on the partner i s always f r e e a f t e r c a l l i n g abor t send () .
ab o r t s e n d l o c k f r e e : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = abort send (partner , s t a t e o l d) IN

state new ‘ threads (partner) ‘ t h r ead l o ck = Zero thread

% The thread l o c k on the partner i s not changed by sender enqueue () .
sender enqueue lock unchanged : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = sender enqueue (partner , s t a t e o l d) IN

s t a t e o l d ‘ threads (partner) ‘ t h r ead l o ck =
state new ‘ threads (partner) ‘ t h r ead l o ck

% The thread l o c k on the partner i s not changed by t imeout () .
t imeout lock unchanged : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = timeout (s t a t e o l d ‘ th i s , s t a t e o l d) IN

102

s t a t e o l d ‘ threads (partner) ‘ t h r ead l o ck =
state new ‘ threads (partner) ‘ t h r ead l o ck

% The thread l o c k on the partner i s not changed by k i l l () .
k i l l l o c k unchang ed : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = k i l l (partner , s t a t e o l d) IN

s t a t e o l d ‘ threads (partner) ‘ t h r ead l o ck =
state new ‘ threads (partner) ‘ t h r ead l o ck

% The thread l o c k on the partner i s not changed by i p c r e c e i v e r r eady change () .
i p c r e c e i v e r r e ady change l o ck unchanged : LEMMA
FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = ip c r e c e i v e r r e ady chang e (s t a t e o l d ‘ th i s , partner , s t a t e o l d)IN

s t a t e o l d ‘ threads (partner) ‘ t h r ead l o ck =
state new ‘ threads (partner) ‘ t h r ead l o ck

% The thread l o c k on the partner i s not changed by r e c e i v e r r eady () .
r e c e i v e r r eady l o ck unchanged : LEMMA

FORALL(partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = r e c e i v e r r e ady (s t a t e o l d ‘ th i s , partner , s t a t e o l d) IN

s t a t e o l d ‘ threads (partner) ‘ t h r ead l o ck =
state new ‘ threads (partner) ‘ t h r ead l o ck

% The thread l o c k on the partner i s not changed by preempt ion po in t ac t i ons () .
preempt ion po in t ac t i ons l o ck unchanged : LEMMA

FORALL (a c t i on s : Preempt ion act ions , partner : Thread pointer ,
have t imeout : bool , s t a t e o l d : System state) :

LET s tate new = preempt i on po in t ac t i on s (ac t ions , partner , have timeout ,
s t a t e o l d) IN

s t a t e o l d ‘ threads (partner) ‘ t h r ead l o ck =
state new ‘ threads (partner) ‘ t h r ead l o ck

% The thread l o c k on the partner i s not changed by preempt ion point () .
preempt ion po int lock unchanged : LEMMA

FORALL (partner : Thread pointer , have t imeout : bool , s t a t e o l d : System state) :
LET s tate new = preempt ion po int (partner , have timeout , s t a t e o l d) IN

s t a t e o l d ‘ threads (partner) ‘ t h r ead l o ck =
state new ‘ threads (partner) ‘ t h r ead l o ck

% The thread l o c k on the partner i s always f r e e or he ld by the <t h i s > thread
% a f t e r c a l l i n g d o s end wa i t f i n i s h () i f i n i t i a l l y the <t h i s > thread i s the
% owner o f the thread l o c k on the r e c e i v e r and i f no error occurred wh i l e
% execu t ing the func t i on func t ion .
d o s e n d w a i t f i n i s h n o e r r o r l o c k f r e e o r h e l d : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = do s e nd wa i t f i n i s h (partner , s t a t e o l d) IN

NOT s t a t e o l d ‘ e r r o r AND
NOT state new ‘ e r r o r AND
s t a t e o l d ‘ threads (partner) ‘ t h r ead l o ck = s t a t e o l d ‘ t h i s IMPLIES

state new ‘ threads (partner) ‘ t h r ead l o ck = Zero thread OR
state new ‘ threads (partner) ‘ t h r ead l o ck = state new ‘ t h i s

% The thread l o c k on the partner i s always f r e e or he ld by the <t h i s > thread
% a f t e r c a l l i n g do send wa i t l oop () , i f i n i t i a l l y the <t h i s > thread i s the
% owner o f the thread l o c k on the r e c e i v e r and i f no error occurred wh i l e
% execu t ing the func t i on func t ion .
d o s e n d wa i t l o o p n o e r r o r l o c k f r e e o r h e l d : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = do send wa i t l oop (partner , s t a t e o l d) IN

NOT s t a t e o l d ‘ e r r o r AND
NOT state new ‘ e r r o r AND
s t a t e o l d ‘ threads (partner) ‘ t h r ead l o ck = s t a t e o l d ‘ t h i s IMPLIES

state new ‘ threads (partner) ‘ t h r ead l o ck = Zero thread OR
state new ‘ threads (partner) ‘ t h r ead l o ck = state new ‘ t h i s

103

% The thread l o c k on the partner i s always f r e e or he ld by the <t h i s > thread
% i f no error occured in the execu t ing o f do send wai t () .
d o s e n d wa i t n o e r r o r l o c k f r e e o r h e l d : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = do send wai t (partner , s t a t e o l d) IN

NOT s t a t e o l d ‘ e r r o r AND
NOT state new ‘ e r r o r IMPLIES

state new ‘ threads (partner) ‘ t h r ead l o ck = Zero thread OR
state new ‘ threads (partner) ‘ t h r ead l o ck = state new ‘ t h i s

% The thread l o c k on the partner i s always f r e e or he ld by the <t h i s > thread
% i f no error occured in the execu t ing o f t r y handshake r e c e i v e r () .
t r y h a nd s h a k e r e c e i v e r n o e r r o r l o c k f r e e o r h e l d : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = t ry hand shake r e c e i v e r (partner , s t a t e o l d) IN

NOT s t a t e o l d ‘ e r r o r AND
NOT state new ‘ e r r o r IMPLIES

state new ‘ threads (partner) ‘ t h r ead l o ck = Zero thread OR
state new ‘ threads (partner) ‘ t h r ead l o ck = state new ‘ t h i s

% The thread l o c k on the partner i s always f r e e i f an error occured in the
% execu t ion o f d o s end wa i t f i n i s h () .
d o s e n d w a i t f i n i s h e r r o r l o c k f r e e : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = do s e nd wa i t f i n i s h (partner , s t a t e o l d) IN

state new ‘ e r r o r IMPLIES state new ‘ threads (partner) ‘ t h r ead l o ck = Zero thread

% The thread l o c k on the partner i s always f r e e i f an error occured in the
% execu t ion o f do send wa i t l oop () .
d o s e n d wa i t l o o p e r r o r l o c k f r e e : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = do send wa i t l oop (partner , s t a t e o l d) IN

state new ‘ e r r o r IMPLIES state new ‘ threads (partner) ‘ t h r ead l o ck = Zero thread

% The thread l o c k on the partner i s always f r e e i f an error occured in the
% execu t ion o f do send wai t () .
d o s e n d wa i t e r r o r l o c k f r e e : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = do send wai t (partner , s t a t e o l d) IN

state new ‘ e r r o r IMPLIES state new ‘ threads (partner) ‘ t h r ead l o ck = Zero thread

% The thread l o c k on the partner i s always f r e e i f an error occured when
% execu t ing t r y handshake r e c e i v e r () and a handshake has been attempted .
t r y hand shak e r e c e i v e r h and shak e e r r o r l o c k f r e e : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = t ry hand shake r e c e i v e r (partner , s t a t e o l d) IN

NOT s t a t e o l d ‘ handshake attempted AND
NOT s t a t e o l d ‘ e r r o r AND
state new ‘ handshake attempted AND
state new ‘ e r r o r IMPLIES

state new ‘ threads (partner) ‘ t h r ead l o ck = Zero thread

% The thread l o c k on the partner i s always f r e e a f t e r c a l l i n g
% do ip c s end par t () i f a handshake has been attempted .
do ip c s end pa r t handshake a t t empted l o ck f r e e : LEMMA

FORALL (partner : Thread pointer , have r e c e i v e : bool , s t a t e o l d : System state) :
LET s tate new = do ip c s end pa r t (partner , have r ece ive , s t a t e o l d) IN

NOT s t a t e o l d ‘ handshake attempted AND
NOT s t a t e o l d ‘ e r r o r AND
state new ‘ handshake attempted IMPLIES

state new ‘ threads (partner) ‘ t h r ead l o ck = Zero thread

% I f an IPC handshake has been attempted on a v a l i d IPC partner , t h i s shou ld
% imply t ha t there i s no thread l o c k on the partner a f t e r IPC has f i n i s h e d .
handshake at t empted lock f r e e : LEMMA

FORALL (have send : bool , partner : Thread pointer , hav e r e c e i v e : bool ,

104

sender : Thread pointer , s t a t e o l d : System state) :
% Engage in IPC with the supp l i e d parameters .
LET s tate new = sy s i p c (have send , partner ,

have r ece ive , sender , s t a t e o l d) IN
state new ‘ handshake attempted IMPLIES

state new ‘ threads (partner) ‘ t h r ead l o ck = Zero thread

END f i a s c o l o c k

105

Appendix G

PVS: fiasco wakeup.pvs

% −−
% In Fiasco IPC i t i s p o s s i b l e to have a combined send− and r e c e i v e c a l l , which
% means tha t a f t e r a sender has sent i t s message to the r e c e i v e r . I t then wai t s
% fo r t ha t r e c e i v e r to send a message back to him . Af ter the sender has sent
% i t s message , i t thus en te r s a r e c e i v i n g s t a t e . S imul taneous ly the r e c e i v e r
% ente r s a sending s t a t e . Now the sender has to wait f o r the r e c e i v e r to
% send i t s message . I t i s t h e r e f o r e important t ha t the r e c e i v e r i s ready to be
% scheduled , o therwi se the sender might be wa i t ing f o r e v e r f o r the r e c e i v e r to
% send a message back . The r e c e i v e r be ing ready to be schedu led i s c on t r o l l e d
% by a s i n g l e b i t , namely the <thread ready> b i t t ha t thus has to be s e t when
% the r e c e i v e r sw i t che s to the sending s t a t u s .
% −−
f i a sco wakeup : THEORY
BEGIN

% −−
% Import the t h e o r i e s which w i l l be used in our lemmas .
% −−
IMPORTING f i a s c o f u n c t i o n s

% −−
% Legend :
% LEMMA %− : the lemma depends on an assumption .
% LEMMA %/ : the lemma depends on an axiom .
% −−

% −−
% Lemmas in vo l v i n g the <thread ready> b i t o f the partner thread .
% −−

% When the sender− and r e c e i v e r are s t i l l engaged in IPC a f t e r the send part
% has f i n i s hed , the r e c e i v e r shou ld be in a s t a t e ready to be schedu led which
% means tha t the <thread ready> b i t o f the r e c e i v e r shou ld be s e t .
do i p c s e nd pa r t i n i p c r e c e i v e r awok en : LEMMA

FORALL (partner : Thread pointer , have r e c e i v e : bool , s t a t e o l d : System state) :
LET s tate new = do ip c s end pa r t (partner , have r ece ive , s t a t e o l d) IN

NOT state new ‘ e r r o r AND i n i p c (state new ‘ th i s , partner , s tate new) IMPLIES
state new ‘ threads (partner) ‘ s ta te ‘ thread ready

END f i a sco wakeup

106

Appendix H

PVS: fiasco assert.pvs

% −−
% This theory focuse s on the v e r i f i c a t i o n o f the a s s e r t () c a l l s t ha t are made in
% the Fiasco IPC source code . I t i s important t ha t our model can v e r i f y t ha t
% the se a s s e r t i on s hold , as a f a i l u r e o f a s i n g l e a s s e r t i on w i l l cause Fiasco to
% abor t execu t ion comp le te l y .
% −−
f i a s c o a s s e r t : THEORY
BEGIN

% −−
% Import the t h e o r i e s which w i l l be used in our lemmas .
% −−
IMPORTING f i a s c o f u n c t i o n s
IMPORTING f i a s c o l o c k
IMPORTING f i a s c o s t a t e
IMPORTING f i a s c o h e l p e r s

% −−
% Legend :
% LEMMA %− : the lemma depends on an assumption .
% LEMMA %/ : the lemma depends on an axiom .
% −−

% −−
% Dec larat ion o f lemmas r e l a t e d to the system s ta t e ’ s <a s s e r t i on s h e l d > f i e l d .
% −−

% The a s s e r t i on s ho ld a f t e r sender dequeue () i s c a l l e d .
s end e r d equ eu e a s s e r t i o n s h e l d : LEMMA

FORALL (r e c e i v e r : Thread pointer , s t a t e o l d : System state) :
LET s tate new = sender dequeue (r e c e i v e r , s t a t e o l d) IN

s t a t e o l d ‘ a s s e r t i o n s h e l d IMPLIES state new ‘ a s s e r t i o n s h e l d

% The a s s e r t i on s ho ld a f t e r sender enqueue () i s c a l l e d .
s end e r enqueu e a s s e r t i o n s h e l d : LEMMA

FORALL (r e c e i v e r : Thread pointer , s t a t e o l d : System state) :
LET s tate new = sender enqueue (r e c e i v e r , s t a t e o l d) IN

s t a t e o l d ‘ a s s e r t i o n s h e l d IMPLIES state new ‘ a s s e r t i o n s h e l d

% The a s s e r t i on s ho ld a f t e r t imeout () i s c a l l e d .
t imeou t a s s e r t i o n s h e l d : LEMMA

FORALL (s t a t e o l d : System state) :
LET s tate new = timeout (s t a t e o l d ‘ th i s , s t a t e o l d) IN

s t a t e o l d ‘ a s s e r t i o n s h e l d IMPLIES state new ‘ a s s e r t i o n s h e l d

% The a s s e r t i on s ho ld a f t e r k i l l () i s c a l l e d .
k i l l a s s e r t i o n s h e l d : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :

107

LET s tate new = k i l l (partner , s t a t e o l d) IN
s t a t e o l d ‘ a s s e r t i o n s h e l d IMPLIES state new ‘ a s s e r t i o n s h e l d

% The a s s e r t i on s ho ld a f t e r r e c e i v e r r eady () i s c a l l e d .
r e c e i v e r r e a d y a s s e r t i o n s h e l d : LEMMA
FORALL(sender : Thread pointer , r e c e i v e r : Thread pointer , s t a t e o l d : System state) :

LET s tate new = r e c e i v e r r e ady (s t a t e o l d ‘ th i s , r e c e i v e r , s t a t e o l d) IN
s t a t e o l d ‘ a s s e r t i o n s h e l d IMPLIES state new ‘ a s s e r t i o n s h e l d

% The a s s e r t i on s ho ld a f t e r preempt ion po in t ac t i ons () i s c a l l e d .
p r e emp t i o n po i n t a c t i o n s a s s e r t i o n s h e l d : LEMMA

FORALL (a c t i on s : Preempt ion act ions , partner : Thread pointer ,
a l l ow t imeout : bool , s t a t e o l d : System state) :

LET s tate new = preempt i on po in t ac t i on s (ac t ions , partner ,
a l low t imeout , s t a t e o l d) IN

s t a t e o l d ‘ a s s e r t i o n s h e l d IMPLIES state new ‘ a s s e r t i o n s h e l d

% The a s s e r t i on s ho ld a f t e r preempt ion point () i s c a l l e d .
p r e empt i on po i n t a s s e r t i o n s h e l d : LEMMA

FORALL (partner : Thread pointer , a l l ow t imeout : bool , s t a t e o l d : System state) :
LET s tate new = preempt ion po int (partner , a l low t imeout , s t a t e o l d) IN

s t a t e o l d ‘ a s s e r t i o n s h e l d IMPLIES state new ‘ a s s e r t i o n s h e l d

% The a s s e r t i on s ho ld a f t e r abor t send () i s c a l l e d .
ab o r t s e nd a s s e r t i o n s h e l d : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = abort send (partner , s t a t e o l d) IN

s t a t e o l d ‘ a s s e r t i o n s h e l d IMPLIES state new ‘ a s s e r t i o n s h e l d

% The a s s e r t i on s ho ld a f t e r d o s end wa i t f i n i s h () i s c a l l e d and i n i t i a l l y
% e i t h e r a t imeout occurred or the <t h r e ad i p c i n p ro g r e s s > b i t o f the
% <t h i s > thread i s s e t .
d o s e n d wa i t f i n i s h a s s e r t i o n s h e l d : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = do s e nd wa i t f i n i s h (partner , s t a t e o l d) IN

s t a t e o l d ‘ a s s e r t i o n s h e l d AND
(s t a t e o l d ‘ t imeout OR
s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s) IMPLIES

state new ‘ a s s e r t i o n s h e l d

% The a s s e r t i on s ho ld a f t e r do send wa i t l oop () i s c a l l e d and i n i t i a l l y
% no timeout occurred and the <t h r e ad i p c i n p ro g r e s s > b i t o f the
% <t h i s > thread i s s e t .
%
% NOTE: depends on the [n o t t r a n s f e r i n p r o g r e s s n o t i n i p c] axiom .
do s e nd wa i t l o o p a s s e r t i o n s h e l d : LEMMA %/

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = do send wa i t l oop (partner , s t a t e o l d) IN

s t a t e o l d ‘ a s s e r t i o n s h e l d AND
NOT s t a t e o l d ‘ t imeout AND
s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e a d i p c i n p r o g r e s s IMPLIES

state new ‘ a s s e r t i o n s h e l d

% The a s s e r t i on s ho ld a f t e r do send wai t () i s c a l l e d when i n i t i a l l y
% no timeout occured and the partner thread i s not l ocked or locked
% by the <t h i s > thread .
do s e nd wa i t a s s e r t i o n s h e l d : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
LET s tate new = do send wai t (partner , s t a t e o l d) IN

NOT s t a t e o l d ‘ t imeout AND
s t a t e o l d ‘ a s s e r t i o n s h e l d AND
(s t a t e o l d ‘ threads (partner) ‘ t h r ead l o ck = Zero thread OR
s t a t e o l d ‘ threads (partner) ‘ t h r ead l o ck = s t a t e o l d ‘ t h i s)

IMPLIES
state new ‘ a s s e r t i o n s h e l d

108

% The var ious a s s e r t i on s in the code ho ld a f t e r c a l l i n g
% t ry handshake r e c e i v e r () when i n i t i a l l y no error or t imeout occured .
t r y h and s h a k e r e c e i v e r a s s e r t i o n s h e l d : LEMMA

FORALL (partner : Thread pointer , s t a t e o l d : System state) :
% Engage in IPC with the supp l i e d parameters .
LET s tate new = t ry hand shake r e c e i v e r (partner , s t a t e o l d) IN

NOT s t a t e o l d ‘ t imeout AND
NOT s t a t e o l d ‘ e r r o r AND
s t a t e o l d ‘ a s s e r t i o n s h e l d
IMPLIES

state new ‘ a s s e r t i o n s h e l d

% The var ious a s s e r t i on s in the code shou ld ho ld a f t e r hand l ing the send part
% when i n i t i a l l y no error or t imeout occurred .
%
% NOTE: depends on the add i t i ona l assumption tha t i n i t i a l l y the
% <t h r e ad po l l i n g > b i t o f the <t h i s > thread i s not s e t .
do i p c s e n d p a r t a s s e r t i o n s h e l d : LEMMA %−

FORALL (partner : Thread pointer , have r e c e i v e : bool , s t a t e o l d : System state) :
LET s tate new = do ip c s end pa r t (partner , have r ece ive , s t a t e o l d) IN

NOT s t a t e o l d ‘ e r r o r AND
NOT s t a t e o l d ‘ t imeout AND
NOT s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g AND
s t a t e o l d ‘ a s s e r t i o n s h e l d
IMPLIES

state new ‘ a s s e r t i o n s h e l d

% The var ious a s s e r t i on s in the code shou ld ho ld a f t e r engaging in IPC .
%
% NOTE: depends on the add i t i ona l assumption tha t i n i t i a l l y the
% <t h r e ad po l l i n g > b i t o f the <t h i s > thread i s not s e t .
a s s e r t i o n s h e l d : LEMMA %−

FORALL (have send : bool , partner : Thread pointer , hav e r e c e i v e : bool ,
sender : Thread pointer , s t a t e o l d : System state) :

% Engage in IPC with the supp l i e d parameters .
LET s tate new = sy s i p c (have send , partner ,

have r ece ive , sender , s t a t e o l d) IN
NOT s t a t e o l d ‘ threads (s t a t e o l d ‘ t h i s) ‘ s ta te ‘ t h r e ad po l l i n g IMPLIES

state new ‘ a s s e r t i o n s h e l d

END f i a s c o a s s e r t

109

Appendix I

C++: thread-ipc.cpp

//−−
// LEGEND:
// //% : comments added by us .
// //# : a l i n e t ha t has not been model led .
// //! : a l i n e t ha t has been added by us .
//−−

/∗∗ Receiver−ready c a l l b a c k .
Rece ivers make sure to c a l l t h i s func t i on on wai t ing senders when
they ge t ready to r e c e i v e a message from tha t sender . Senders need
to overwr i t e t h i s i n t e r f a c e .

Class Thread ’ s implementation wakes up the sender i f i t i s s t i l l in
sender−wait s t a t e .

∗/
PUBLIC virtual
bool
Thread : : i p c r e c e i v e r r e a d y (Rece iver ∗ recv)
{

a s s e r t (r e c e i v e r ()) ; //#
a s s e r t (r e c e i v e r () == recv) ; //#
a s s e r t (r e c e i v e r () == cur rent ()) ; //#

i f (! (s t a t e () & Thr ead ip c i n p r og r e s s))
return fa l se ;

i f (! recv−>sender ok (this))
return fa l se ;

recv−> i p c i n i t (this) ;

s t a t e add d i r t y (Thread ready | Thr e ad t r an s f e r i n p r o g r e s s) ;

ready enqueue () ; //#

// put r e c e i v e r in to s l e e p
r e c e i v e r ()−> s t a t e d e l d i r t y (Thread ready) ;

return true ;
}

/∗∗ L4 IPC system c a l l .
This i s the ‘ normal ’ ’ ve r s ion o f the IPC system c a l l . I t u s ua l l y only
g e t s c a l l e d i f i p c s h o r t c u t () has f a i l e d .
@param regs system−c a l l arguments .
@return va lue to be returned in %eax r e g i s t e r .

∗/

110

IMPLEMENT inl ine NOEXPORT ALWAYS INLINE
void
Thread : : s y s i p c ()
{

Sys ipc f r ame ∗ r eg s = sys f r ame ca s t <Sys ipc f rame >(this−>r eg s ()) ; //#

I p c e r r r e t (0) ; //#
L4 timeout t = regs−>t imeout () ; //#

// f ind the ipc partner thread be long ing to the d e s t i na t i on id
L4 uid id = regs−>snd dst () ; //#
bool hav e r e c e i v e pa r t = regs−>r cv de s c () . h a s r e c e i v e () ; //#
bool have send part = regs−>snd desc () . has snd () ; //#
bool have sender = fa l se ; //#
bool lookup done = fa l se ; //#
Thread ∗ partner = 0 ; //#
Sender ∗ sender = 0 ; //#
I r q a l l o c ∗ i n t e r r up t = 0 ; //#

// Add Thread de layed ∗ f l a g s i f t h i s a ”next−per iod ” IPC .
// The f l a g s must be c l ea red again on a l l e x i t paths from t h i s func t i on .
i f (EXPECT FALSE (id . nex t pe r i od ())) //#

{
s ta t e add (Thread de layed dead l ine) ; //#

i f (id . i s n i l () && t . rcv exp () && ! t . rcv man () && //#
! regs−>has abs r cv t imeout ()) // next period , 0 t imeout //#

goto su c c e s s ; //#

i f (mode () & Nons t r i c t) //#
s ta t e add (Thread de layed ipc) ; //#

}

// do we do a c l o s ed r e c e i v e opera t ion ?
i f (EXPECT TRUE(hav e r e c e i v e pa r t)) //#

{
i f (regs−>r cv de s c () . open wait ()) //#

have sender = true ; //#
else i f (EXPECT FALSE(id . i s n i l ())) //#

{
// only prepare IPC for t imeout != 0 //#
i f (! t . rcv exp () | | t . rcv man () | | regs−>has abs r cv t imeout ()) //#

{
sender = n i l t h r e a d ; //#
have sender = true ; //#

}
}

else i f (EXPECT FALSE(id . i s i r q ())) //#
{

i n t e r r up t = I r q a l l o c : : lookup (regs−>i r q ()) ; //#

i f (EXPECT FALSE (! i n t e r r up t)) //#
{

c ommi t i p c f a i l u r e (regs , I p c e r r : : Eno t ex i s t en t) ; //#
return ; //#

}

i f (in t e r rupt−>owner () != this) //#
{

// a r e c e i v e with a t imeout != 0 from a non−as soc i a t ed
// i n t e r r up t i s i l l e g a l
i f (! t . rcv exp () | | t . rcv man () //#

| | regs−>has abs r cv t imeout ()) //#
{

c ommi t i p c f a i l u r e (regs , I p c e r r : : Eno t ex i s t en t) ; //#
return ; //#

111

}
}

i f (in t e r rupt−>owner () == this) //#
{

// we always t r y to r e c e i v e from the
// assoc ’ d i r q f i r s t , not from the spec . one
sender = nonu l l s t a t i c c a s t <I rq ∗>(i n t e r r up t) ; //#
have sender = true ; //#

}
}

else // regu l a r thread id //#
{

partner = lookup (id , space ()) ; //#
lookup done = true ; //#

i f (EXPECT FALSE (! partner | | partner−>s t a t e () == Thread inva l id)) //#
{

c ommi t i p c f a i l u r e (regs , I p c e r r : : Eno t ex i s t en t) ; //#
return ; //#

}

i f (EXPECT FALSE (id . i s p reempt ion ())) //#
sender = partner−>preemption () ; //#

else //#
sender = partner ; //#

have sender = true ; //#
}

}

i f (EXPECT TRUE(have send part)) //#
{

// i r q qu i r k s
i f (EXPECT FALSE(id . i s i r q ())) //#

{
I r q a l l o c ∗ i r q = I r q a l l o c : : lookup (regs−>i r q ()) ; //#
i f (EXPECT FALSE(! i r q | | i rq−>owner () != this)) //#

{
// f a i l e d −− cou ld not a s s o c i a t e new i r q
c ommi t i p c f a i l u r e (regs , I p c e r r : : Eno t ex i s t en t) ; //#
return ; //#

}

i f (regs−>msg word (0) == 0) // ack IRQ //#
i rq−>acknowledge () ; //#

else i f (regs−>msg word (0) == 1) // d i s a s s o c i a t e IRQ //#
d i s a s s o c i a t e i r q (i r q) ; //#

else //#
{

// f a i l e d −− cou ld not a s s o c i a t e new i r q
c ommi t i p c f a i l u r e (regs , I p c e r r : : Eno t ex i s t en t) ; //#
return ; //#

}
have send part = fa l se ; //#

}
else i f (! lookup done) //#

partner = lookup (id , space ()) ; //#
}

i f (EXPECT FALSE(hav e r e c e i v e pa r t && ! have sender)) //#
{

i f (! i n t e r r up t) // i s d i sa s soc from IRQ //#
{

a s s e r t (t . rcv exp () && ! t . rcv man ()) ; // timeout 0 //#
//

112

// d i s a s s o c i a t e from a l l IRQs
//
i f (i r q) //#

{
I r q a l l o c : : f r e e a l l (this) ; //#
i r q = 0 ; //#

}
c ommi t i p c f a i l u r e (regs , I p c e r r : : Retimeout) ; //#
return ; //#

}
else //#

{
//
// a s s o c i a t e with an i n t e r r up t
//
i f (a s s o c i a t e i r q (i n t e r r up t)) //#

{
// success
c ommi t i p c f a i l u r e (regs , I p c e r r : : Retimeout) ; //#
return ; //#

}
}

hav e r e c e i v e pa r t = fa l se ; //#
}

i f (EXPECT TRUE(have send part | | hav e r e c e i v e pa r t))
r e t = do ipc (have send part , partner ,

have r e c e i v e pa r t , sender ,
t , r eg s) ;

s u c c e s s : //#
i f (EXPECT TRUE(! r e t . h a s e r r o r ())) //#

commit ipc succe s s (regs , r e t) ; //#
else //#

c ommi t i p c f a i l u r e (regs , r e t) ; //#

// New per iod doesn ’ t beg in as long as Thread de layed dead l ine i s s t i l l s e t
while (s t a t e c h an g e s a f e l y (˜ (Thread de layed dead l ine | Thread ready) , //#

Thread de layed dead l ine)) //#
schedu le () ; //#

}

PRIVATE
Ip c e r r Thread : : do send wai t (Thread ∗partner , L4 timeout t , Sys ipc f r ame ∗ r eg s)
{

// t e s t i f we have locked the partner
// in the b e s t case the partner i s unlocked
a s s e r t (! partner−>th r ead l o ck ()−> t e s t ()

| | partner−>th r ead l o ck ()−> l ock owner () == this) ;

s t a t e add d i r t y (Thread po l l ing | Thread send in prog r e s s | Thread ip c i n p rog r e s s) ;
// r e g i s t e r partner so t ha t we can be dequeued by k i l l ()
s e t r e c e i v e r (partner) ; //#

// l o c k here f o r the preemption po in t s
partner−>th r ead l o ck ()−> l o c k d i r t y () ;
Proc : : preempt ion po int () ;

i f (s t a t e () & Thread cance l)
{

partner−>th r ead l o ck ()−> c l e a r d i r t y () ;

s t a t e d e l (Thread ipc sending mask
| Thr e ad t r an s f e r i n p r o g r e s s
| Thread ip c i n p r og r e s s) ;

113

return I p c e r r (I p c e r r : : Secance led) ;
}

i f (partner−>sender ok (this))
return 0 ;

sender enqueue (partner−>s e n d e r l i s t () , s ched context ()−>pr i o ()) ;

a s s e r t (partner−>partner () != this) ; // !
a s s e r t (! (s t a t e () & Th r e ad t r an s f e r i n p r o g r e s s)) ; // !

Proc : : preempt ion po int () ;

IPC timeout timeout ; //#

i f (EXPECT FALSE(t . snd exp ()))
{

Unsigned64 tva l = snd t imeout (t , r eg s) ; //#
// Zero t imeout or t imeout exp i red a l ready −− g i v e up
i f (t va l == 0) //#

return abort send (I p c e r r : : Setimeout , partner) ;

// enqueue timeout
Proc : : preempt ion po int () ; //#

s e t t imeout (&timeout) ; //#
t imeout . s e t (t va l) ; //#

}

do
{

partner−>th r ead l o ck ()−> c l e a r d i r t y () ;
// p o s s i b l e PREEMPTION POINT

Proc : : preempt ion po int () ;

//% We have not model led the c a l l to the <schedu l e ()> f unc t i on as
//% i t s purpose i s to g i v e the r e c e i v e r time to become ready to
//% rece i v e a message from t h i s thread . In our model t h i s can
//% happen when the <preempt ion point ()> f unc t i on i s c a l l e d .
//% As we do not a c t u a l l y model the time a r e c e i v e r needs to
//% have to become ready t h i s wa i t ing i s uncessary .
i f ((s t a t e () & (Thr ead ip c i n p rog r e s s | Thread po l l ing //#

| Thread cance l | Thr e ad t r an s f e r i n p r o g r e s s)) //#
== (Thr ead ip c i n p r og r e s s | Thread po l l ing)) //#
{

s t a t e d e l d i r t y (Thread ready) ; //#
schedu le () ; //#

}

//% This preemption po in t i s supe r f l uou s in our model as we
//% abs t r a c t ed away the code d i r e c t l y above and thus would end
//% up with two consecu t i v e preemption po in t s .
Proc : : preempt ion po int () ; //#

// i f we are here 5 cases are p o s s i b l e
// − t imeout has h i t
// − i pc was cance led
// − the r e c e i v e r had awoken us
// − the r e c e i v e r has been k i l l e d
// − or someone has simply awake us , then we go to s l e e p again

partner−>th r ead l o ck ()−> l o c k d i r t y () ;

114

i f (EXPECT FALSE(s t a t e () & Thread cance l))
break ;

// ipc handshake b i t i s s e t
i f (s t a t e () & Th r e ad t r an s f e r i n p r o g r e s s)

break ;

a s s e r t (! partner−>i n i p c (this)) ;

//% This a s s e r t i on i s redundant due to the break s p e c i f i e d above .
a s s e r t (! (s t a t e () & Th r e ad t r an s f e r i n p r o g r e s s)) ;

// de t e c t i f we have timed out
i f (t imeout . h a s h i t ())

{
// ipc t imeout always c l e a r t h i s f l a g
a s s e r t (! (s t a t e () & Thr ead ip c i n p rog r e s s)) ;
return abort send (I p c e r r : : Setimeout , partner) ;

}

i f (partner−>s t a t e () == Thread dead)
return abort send (I p c e r r : : Enot ex i s t ent , partner) ;

// huh? someone has simply awake us , goto s l e e p again

// Make sure we ’ re r e a l l y s t i l l in IPC
a s s e r t (s t a t e () & Thr ead ip c i n p rog r e s s) ;

// adding again , so t ha t i p c r e c e i v e r r e a d y f i nd the cor r ec t s t a t e
s t a t e add d i r t y (Thread po l l ing) ;

} while (true) ; //#

// because the handshake has a l ready taken p lace
// an t r i g g e r e d t imeout can be ignored
i f (t imeout . h a s h i t ())

s t a t e add d i r t y (Thr ead ip c i n p r og r e s s) ;

// r e s e t i s only an s imple dequeing operat ion from an doub le
// l i n k ed l i s t , so we dont need an ex t ra preemption po in t f o r t h i s
t imeout . r e s e t () ; //#
s e t t imeout (0) ; //#

Proc : : preempt ion po int () ;
sender dequeue (partner−>s e n d e r l i s t ()) ;
Proc : : preempt ion po int () ;

s t a t e d e l d i r t y (Thread po l l ing) ;

i f (EXPECT FALSE(s t a t e () & Thread cance l))
{

// t h i s t e s t catch partner−cance l and k i l l
i f (! partner−>i n i p c (this))

return abort send (I p c e r r : : Secance led , partner) ;

// the partner s t i l l wa i t s f o r us , cance l them too
partner−>s ta t e change (˜ Thread ipc in p rog r e s s ,

Thread cance l | Thread ready) ;
partner−>ready enqueue () ; //#
Proc : : preempt ion po int () ; //#
return abort send (I p c e r r : : Seaborted , partner) ;

}

// partner cance led ? , hand les k i l l too
i f (EXPECT FALSE(! partner−>i n i p c (this)))

return abort send (I p c e r r : : Seaborted , partner) ;

115

i f (partner−>s t a t e () == Thread dead)
return abort send (I p c e r r : : Enot ex i s t ent , partner) ;

a s s e r t (s t a t e () & Thr ead ip c i n p r og r e s s) ;
a s s e r t (! i n s e n d e r l i s t ()) ;

return 0 ;
}

PRIVATE
Ip c e r r Thread : : abort send (I p c e r r err , Rece iver ∗ partner)
{

s t a t e d e l d i r t y (Thread send in prog r e s s | Thread po l l ing |
Thread ip c i n p r og r e s s | Thr e ad t r an s f e r i n p r o g r e s s) ;

a s s e r t (partner) ; //#

Proc : : preempt ion po int () ;
i f (i n s e n d e r l i s t ())

sender dequeue (partner−>s e n d e r l i s t ()) ;

Proc : : preempt ion po int () ;
partner−>th r ead l o ck ()−> c l e a r d i r t y () ;

//% Another preemption po in t i s not u s e f u l in our model as a f t e r t h i s
//% func t ion has been c a l l e d the terminat ion w i l l be terminated and
//% thus no other s ta tements w i l l be executed which might have been
//% in f l u enced by the preemption po in t .
Proc : : preempt ion po int () ;
i f (t imeout && timeout−> i s s e t ()) //#

t imeout−>r e s e t () ; //#

s e t t imeout (0) ; //#

return e r r ;
}

PRIVATE inl ine NEEDS[” l o gd e f s . h”]
I p c e r r Thread : : t r y handshake r e c e i v e r (Thread ∗partner , L4 timeout t ,

Sys ipc f r ame ∗ r eg s)
{

// By touching the partner t cb we can ra i s e an pag e f au l t .
// The Pf handler might be enab le the in t e r rup t s , i f no mapping in
// the master ke rne l d i r e c t o r y e x i s t s .
// Because the partner can crea ted in between ,
// and partner−>s t a t e () == Thread inva l id i s i n s u f f i c i e n t
// we need a cance l t e s t .
//

i f (EXPECT FALSE (partner == 0
// must not send to L4 NIL ID
| | partner−>s t a t e () == Thread inva l id
| | partner == n i l t h r e a d))

return I p c e r r (I p c e r r : : Eno t ex i s t en t) ;

a s s e r t (cpu lock . t e s t ()) ; //#

i f (EXPECT FALSE(partner−>th r ead l o ck ()−> t e s t ())) // l o c k i s not f r e e
{

Proc : : preempt ion po int () ;
partner−>th r ead l o ck ()−> l o c k d i r t y () ;

}

i f (EXPECT FALSE(s t a t e () & Thread cance l))

116

{
// c l e a r d i r t y () handle the not l ocked case too
partner−>th r ead l o ck ()−> c l e a r d i r t y () ;
return I p c e r r (I p c e r r : : Secance led) ;

}

I p c e r r e r r (0) ;

i f (EXPECT FALSE (! partner−>sender ok
(n o nu l l s t a t i c c a s t <Sender∗>(cu r r en t th r ead ()))))

{
e r r = do send wai t (partner , t , r eg s) ;

// i f an error occured , we shou ld not ho ld the l o c k anymore
a s s e r t (! e r r . h a s e r r o r () | | partner−>th r ead l o ck ()−> l ock owner () != this) ;

}

return e r r ;
}

PRIVATE inl ine
void
Thread : : wake r e c e i v e r (Thread ∗ r e c e i v e r)
{

// I f ne i t h e r IPC partner i s de layed , j u s t update the r e c e i v e r ’ s s t a t e
i f (EXPECT TRUE (! ((s t a t e () | r e c e i v e r−>s t a t e ()) & Thread de layed ipc))) //#

{
r e c e i v e r−>s t a t e chang e d i r t y (˜ (Thread ipc rece iv ing mask

| Thread ip c i n p rog r e s s) ,
Thread ready) ;

return ;
}

//% As we do not model p e r i od i c threads , we assume tha t the
//% i f−s tatement above w i l l a lways be t rue . The s e c t i on below i s thus
//% comple te l y ignored .

// C r i t i c a l s e c t i on i f e i t h e r IPC partner i s de layed u n t i l i t s next per iod
a s s e r t (cpu lock . t e s t ()) ; //#

// Sender has no r e c e i v e phase and dead l ine t imeout a l ready h i t
i f ((s t a t e () & (Thread rece iv ing | //#

Thread de layed dead l ine | Thread de layed ipc)) == //#
Thread de layed ipc) //#

{
s t a t e chang e d i r t y (˜ Thread de layed ipc , 0) ; //#
sw i t ch sched (sched context ()−>next ()) ; //#
dead l i n e t imeou t . s e t (Timer : : sy s t em c lock () + per iod ()) ; //#

}

// Receiver ’ s dead l ine t imeout a l ready h i t
i f ((r e c e i v e r−>s t a t e () & (Thread de layed dead l ine | //#

Thread de layed ipc) == //#
Thread de layed ipc)) //#

{
r e c e i v e r−>s t a t e chang e d i r t y (˜ Thread de layed ipc , 0) ; //#
r e c e i v e r−>sw i t ch sched (r e c e i v e r−>s ched context ()−>next ()) ; //#
r e c e i v e r−> dead l i n e t imeou t . s e t (Timer : : sy s t em c lock () + //#

r e c e i v e r−>per iod ()) ; //#
}

r e c e i v e r−>s t a t e chang e d i r t y (˜ (Thread ipc mask | Thread de layed ipc) , //#
Thread ready) ; //#

}

117

/∗∗
∗ Send an IPC message .
∗ Block u n t i l we can send the message or the t imeout h i t s .
∗ @param partner the r e c e i v e r o f our message
∗ @param t a timeout s p e c i f i e r
∗ @param regs sender ’ s IPC r e g i s t e r s
∗ @return sender ’ s IPC error code
∗/

PRIVATE
Ip c e r r Thread : : do ipc (bool have send , Thread ∗partner ,

bool have rece ive , Sender ∗ sender ,
L4 timeout t , Sys ipc f r ame ∗ r eg s)

{

bool dont swi tch = fa l se ; //#

i f (have send)
{

I p c e r r e r r = t ry hand shake r e c e i v e r (partner , t , r eg s) ;

i f (EXPECT FALSE(e r r . h a s e r r o r ()))
return e r r ;

a s s e r t (! (s t a t e () & Thread po l l ing)) ;

partner−> i p c i n i t (this) ;

// mmh, we can r e s e t the r e c e i v e r s t imeout
// ping pong with t imeouts w i l l p r o f i t from i t , because
// i t w i l l r e qu i r e much l e s s s o r t i n g overhead
// i f we dont r e s e t the timeout , the p o s s i b i l i t y i s very high
// tha t the r e c e i v e r t imeout i s in the t imeout queue
i f (partner−> t imeout && partner−> t imeout−> i s s e t ()) //#

{
partner−> t imeout−>r e s e t () ; //#
partner−>s e t t imeout (0) ; //#

}

I p c e r r r e t = t rans f e r msg (partner , r eg s) ;

i f (Conf ig : : d e c e i t b i t d i s a b l e s s w i t c h && //#
regs−>snd desc () . d e c e i t e ()) //#

dont swi tch = true ; //#

// partner locked , i . e . l a z y l o c k i n g (not l ocked) or we own the l o c k
a s s e r t (! partner−>th r ead l o ck ()−> t e s t ()

| | partner−>th r ead l o ck ()−> l ock owner () == this) ;

i f (EXPECT FALSE(r e t . h a s e r r o r () | | ! h av e r e c e i v e))
{

// make the ipc partner ready i f s t i l l engaged in ipc with us
i f (partner−>i n i p c (this))

{
wake r e c e i v e r (partner) ;
i f (! dont swi tch) //#

partner−>th r ead l o ck ()−> s e t sw i t c h h i n t (SWITCH ACTIVATE LOCKEE) ; //#
}

partner−>th r ead l o ck ()−> c l e a r d i r t y () ;

s t a t e d e l (Thread ipc sending mask
| Thr e ad t r an s f e r i n p r o g r e s s
| Thread ip c i n p rog r e s s) ;

118

return r e t ;
}

partner−>th r ead l o ck ()−> c l e a r d i r t y d on t sw i t c h () ;
// p o s s i b l e preemption po in t

i f (EXPECT TRUE(! partner−>i n i p c (this)))
{

s t a t e d e l (Thread ipc sending mask
| Thr e ad t r an s f e r i n p r o g r e s s
| Thread ip c i n p rog r e s s) ;

return I p c e r r : : Secance led ;
}

wake r e c e i v e r (partner) ;

}
else

regs−>msg dope (0) ; //#

a s s e r t (have r e c e i v e) ;
i f (s t a t e () & Thread cance l) //#

{
s t a t e d e l (Thread ipc mask) ; //#
return I p c e r r : : Recanceled ; //#

}

//% The l i n e s below can be found in our model in a s l i g h t l y a l t e r e d vers ion ,
//% namely in the becoming
p r e p a r e r e c e i v e d i r t y (sender , r eg s) ;

while (EXPECT TRUE
((s t a t e () & (Thread rece iv ing | Thread ip c i n p rog r e s s | Thread cance l))
== (Thread rece iv ing | Thread ip c i n p r og r e s s)))

{

Sender ∗next = 0 ; //#

i f (EXPECT FALSE((long)∗ s e n d e r l i s t ())) //#
{

i f (sender) // c l o s ed wait //#
{

i f (sender−> i n s e n d e r l i s t () //#
&& this == sender−>r e c e i v e r () //#
&& sender−>i p c r e c e i v e r r e a d y (this)) //#

next = sender ; //#
}

else // open wait //#
{

next = ∗ s e n d e r l i s t () ; //#
i f (! next−>i p c r e c e i v e r r e a d y (this)) //#

{
next−>sender dequeue head (s e n d e r l i s t ()) ; //#
Proc : : preempt ion po int () ; //#
continue ; //#

}
}

}

a s s e r t (cpu lock . t e s t ()) ; //#

//% We w i l l s k i p the f o l l ow i n g cond i t i ona l s tatement as i t only

119

//% dea l s wi th the schedu l ing o f the partner and we have not
//% model led schedu l ing .
i f (EXPECT FALSE((long) next)) //#

{

a s s e r t (! (s t a t e () & Thr ead ip c i n p rog r e s s) //#
| | ! (s t a t e () & Thread ready)) ; //#

// maybe sw i t ch exec shou ld re turn an boo l to avoid t e s t i n g the
// s t a t e tw ice
i f (have send) { //#

a s s e r t (partner) ; //#
a s s e r t (partner−>sched ()) ; //#

}

i f (EXPECT TRUE(have send && ! dont swi tch //#
&& (partner−>s t a t e () & Thread ready) //#
&& (next−>s end e r p r i o () <= partner−>sched()−>pr i o ()))) //#

sw i t ch exe c l o ck ed (partner , Context : : Not Helping) ; //#
else //#

{
Proc : : preempt ion po int () ; //#
a s s e r t (cpu lock . t e s t ()) ; //#
i f (have send && (partner−>s t a t e () & Thread ready)) //#

partner−>ready enqueue () ; //#
schedu le () ; //#

}

a s s e r t (s t a t e () & Thread ready) ; //#
}

else i f (EXPECT TRUE(have send && (partner−>s t a t e () & Thread ready)))
{

i f (! dont swi tch) //#
sw i t ch exe c l o ck ed (partner , Context : : Not Helping) ; //#

else //#
partner−>ready enqueue () ; //#

}
else //#

go t o s l e e p (t , r eg s) ; //#

have send = fa l se ; //#
}

a s s e r t (! (s t a t e () & Thread ipc sending mask)) ; //#

i f (EXPECT FALSE((long) t imeout)) { //#
t imeout−>r e s e t () ; //#

s e t t imeout (0) ; //#
}

// i f the r e c e i v e operat ion was cance led / f i n i s h e d be f o re we
// swi tched to the o ld rece i ve r , f i n i s h the send
i f (have send && (partner−>s t a t e () & Thread ready)) //#

{
i f (! dont switch) //#

sw i t ch exe c l o ck ed (partner , Context : : Not Helping) ; //#
else //#

partner−>ready enqueue () ; //#
}

// f a s t out i f i pc i s a l ready f i n i s h e d
i f (EXPECT TRUE((s t a t e () & //#

(˜ (Thread fpu owner | Thread cance l))) == Thread ready)) //#
return g e t i p c e r r (r eg s) ;

120

//% We w i l l never reach t h i s po in t as we do not model long IPC , we
//% th e r e f o r e assume tha t the i f−s tatement d i r e c t l y above t h i s
//% statement i s always t rue .
hand l e l ong i p c () ; //#

// abnormal terminat ion ?
i f (EXPECT FALSE (s t a t e () & Thread ipc rece iv ing mask)) //#

{
// the IPC has not been f i n i s h e d . cou ld be t imeout or cance l
// XXX shou ld only modify the error−code part o f the s t a t u s code

i f (s t a t e () & Thread busy) // we ’ ve presumably been r e s e t ! //#
commit ipc succe s s (regs , I p c e r r : : Reaborted) ; //#

// e l s e
i f (s t a t e () & Thread cance l) // we ’ ve presumably been r e s e t ! //#

{
#i f 0 //#

i f (s t a t e () & Th r e ad t r an s f e r i n p r o g r e s s) //#
{

LOG MSG(this , ”REAB2”) ; //#
commit ipc succe s s (regs , I p c e r r : : Reaborted) ; //#
}

else //#
{

LOG MSG(this , ”RECA1”) ; //#
#endif //#

commit ipc succe s s (regs , I p c e r r : : Recanceled) ; //#
#i f 0 //#

}
#endif //#

}

else //#
commit ipc succe s s (regs , I p c e r r : : Retimeout) ; //#

}

s t a t e d e l (Thread ipc mask) ; //#

return g e t i p c e r r (r eg s) ; // sender puts re turn code here //#
}

PRIVATE inl ine NEEDS [”map ut i l . h” , Thread : : copy utcb to ,
Thread : : u n l o c k r e c e i v e r]

I p c e r r Thread : : t r an s f e r msg (Thread ∗ r e c e i v e r ,
Sys ipc f r ame ∗ s end e r r e g s)

{
//% In our model , we assume tha t the t r an s f e r r i n g o f a message always
//% succeeds so a l l l i n e s in t h i s func t i on have been ab s t r a c t ed away
//% in our model .

i f (! Conf ig : : d e c e i t b i t d i s a b l e s s w i t c h && sende r r eg s−>snd desc () . d e c e i t e ()) //#
panic (” dec e i v ing ipc ”) ; // XXX unimplemented //#

Sys ipc f r ame ∗ d s t r e g s = r e c e i v e r−>r c v r e g s () ; //#
const L4 msgdope re t dope (s ende r r eg s−>snd desc () , //#

Sys ipc f r ame : : num reg words () , 0) ; //#

ds t r eg s−>msg dope (r e t dope) ; // s t a t u s code : rcv ’ d 2 dw //#

// copy message r e g i s t e r conten ts
s ende r r eg s−>copy msg (d s t r e g s) ; //#

copy utcb to (r e c e i v e r) ; //#

121

// copy sender ID
ds t r eg s−>r c v s r c (id ()) ; //#

// f a s t out i f on ly r e g i s t e r msg
i f (EXPECT TRUE(sende r r eg s−>snd desc () . i s r e g i s t e r i p c ())) //#

return 0 ;

//% We w i l l never reach t h i s po in t as we do not model long IPC and thus
//% assume tha t < i s r e g i s t e r i p c ()> always re turns t rue .

// because we do a longer ipc with preemption points , we s e t a corrent ipc s t a t e
s t a t e add d i r t y (Thread send in prog r e s s | //#

Thread ip c i n p r og r e s s | Thr e ad t r an s f e r i n p r o g r e s s) ; //#

Mword r e t = 0 ; // s t a t u s code : IPC su c c e s s f u l
// we need the l o c k here d e f i n i t l y
r e c e i v e r−>th r ead l o ck ()−> l o c k d i r t y () ; //#

// shor t f l e x p a g e mapping to r e g i s t e r /rmap r e c e i v e r
i f (EXPECT TRUE (sende r r eg s−>snd desc () . msg () == 0 //#

&& (ds t r eg s−>r cv de s c () . i s r e g i s t e r i p c () //#
| | ds t r eg s−>r cv de s c () . rmap ()))) //#

{
a s s e r t (s ende r r eg s−>snd desc () .map ()) ; //#

i f (EXPECT FALSE (! d s t r eg s−>r cv de s c () . rmap ())) //#
// rcvr not expec t ing an fpage ? //#
{

ds t r eg s−>msg dope s e t e r r o r (I p c e r r : : Remsgcut) ; //#
r e t = I p c e r r : : Semsgcut ; //#

}
else //#

{
Proc : : s t i () ; //#

ds t r eg s−>msg dope combine //#
(fpage map (space () , //#

L4 fpage (s ende r r eg s−>msg word (1)) , //#
r e c e i v e r−>space () , d s t r eg s−>r cv de s c () . fpage () , //#
s ende r r eg s−>msg word (0) , //#
L4 fpage (s ende r r eg s−>msg word (1)) . grant ())) ; //#

Proc : : c l i () ; //#

i f (d s t r eg s−>msg dope () . r cv map fa i l ed ()) //#
r e t = I p c e r r : : Semapfa i led ; //#

}
return r e t ; //#

}

Proc : : preempt ion po int () ; //#

// e l s e long ipc
p r epa r e l ong i p c (r e c e i v e r , s ende r r e g s) ; //#

I p c e r r e r r o r r e t ; //#

a s s e r t (s t a t e () & Thread send in prog r e s s) ; //#
r e c e i v e r−>th r ead l o ck ()−> c l e a r d i r t y () ; //#

CNT IPC LONG; //#
Proc : : s t i () ; //#
e r r o r r e t = do send long (r e c e i v e r , s ende r r e g s) ; //#
Proc : : c l i () ; //#

122

a s s e r t (r e c e i v e r−>th r ead l o ck ()−> l ock owner () == this) ; //#

a s s e r t (e r r o r r e t . h a s e r r o r () | | s t a t e () //#
& (Thread send in prog r e s s | Thr e ad t r an s f e r i n p r o g r e s s)) ; //#

return e r r o r r e t ; //#
}

123

Appendix J

C++: sender.cpp

//−−
// LEGEND:
// //% : comments added by us .
// //# : a l i n e t ha t has not been model led .
// //! : a l i n e t ha t has been added by us .
//−−

/∗∗ Sender in a queue o f senders ? .
@return true i f sender has enqueued in a r e c e i v e r ’ s l i s t o f wa i t ing

senders
∗/

PUBLIC inl ine
bool
Sender : : i n s e n d e r l i s t ()
{

//% We have crea ted a s imp l i f i e d ver s ion o f the sender l i s t in our model ,
//% th e r e f o r e the ac tua l implementation below i s not d i r e c t l y but
//% i n d i r e c t l y r e f l e c t e d in our model .
return s ender next ;

}

PROTECTED
//PROTECTED in l i n e NEEDS [< casser t >, ” cpu lock . h” , ” l ock guard . h” ,
// Sender : : rep lace node , Sender : : t r e e i n s e r t]
void Sender : : sender enqueue (Sender ∗∗head , unsigned short pr i o)
{

//% We have crea ted a s imp l i f i e d ver s ion o f the sender l i s t in our model ,
//% th e r e f o r e the ac tua l implementation below i s not d i r e c t l y but
//% i n d i r e c t l y r e f l e c t e d in our model .

a s s e r t (p r i o <256); //#

s e nd e r p r i o = pr i o ; //#

Lock guard<Cpu lock> guard (&cpu lock) ; //#

i f (i n s e n d e r l i s t ()) //#
return ; //#

s e n d e r l = s end e r r = 0 ; //#
s ende r pa r en t = 0 ; //#

s ender next = sender prev = this ; //#

Sender ∗p = ∗head ; //#

i f (! p) //#
{

124

∗head = this ; //#
return ; //#

}

Sender ∗x = this ; //#

// b i g g e r prio , r ep l ace top element
// we dont handle the case same max pr io here !
i f (s e nd e r p r i o > p−> s e nd e r p r i o) //#

{
r ep l ac e node (p) ; //#
x = p ; // ok , i n s e r t the o ld top element too //#
∗head = this ; //#

}

x−>t r e e i n s e r t (∗ head) ; //#
}

PUBLIC
//PUBLIC i n l i n e NEEDS [< casser t >, ” cpu lock . h” , ” l ock guard . h” ,
// Sender : : remove tree e lem , Sender : : remove head]
void Sender : : sender dequeue (Sender ∗∗head)
{

//% We have crea ted a s imp l i f i e d ver s ion o f the sender l i s t in our model ,
//% th e r e f o r e the ac tua l implementation below i s not d i r e c t l y but
//% i n d i r e c t l y r e f l e c t e d in our model .

i f (! i n s e n d e r l i s t ()) //#
return ; //#

Lock guard<Cpu lock> guard (&cpu lock) ; //#

// we are removing top (the sender element with the h i g h e s t pr io
// so we need to c a l c u l a t e an new top element

i f (this == ∗head) //#
∗head = remove head () ; //#

else //#
remove tree e l em () ; //#

// mark as dequeued
s ender next = 0 ; //#

}

// An s p e c i a l vers ion , only to remove the head
// t h i s i s neccessary i f the r e c e i v e r removes the o ld know head
// a f t e r an unsucce s s f u l i p c r e c e i v e r r e a d y .
PUBLIC
void Sender : : sender dequeue head (Sender ∗∗head)
{

//% Our

i f (! i n s e n d e r l i s t ()) //#
return ; //#

Lock guard<Cpu lock> guard (&cpu lock) ; //#

// we are removing top (the sender element with the h i g h e s t pr io
// so we need to c a l c u l a t e an new top element

i f (this == ∗head) //#
∗head = remove head () ; //#

// mark as dequeued
s ender next = 0 ; //#

}

125

Appendix K

C++: receiver.cpp

//−−
// LEGEND:
// //% : comments added by us .
// //# : a l i n e t ha t has not been model led .
// //! : a l i n e t ha t has been added by us .
//−−

/∗∗ IPC partner (sender) .
@return sender o f ongoing or prev ious IPC operat ion

∗/
PROTECTED inl ine
Sender∗
Rece iver : : partner () const
{

return par tne r ;
}

// In t e r f a c e f o r senders

/∗∗ Head of sender l i s t .
@return a re f e r ence to the r e c e i v e r ’ s l i s t o f senders

∗/
PUBLIC inl ine
Sender ∗∗
Rece iver : : s e n d e r l i s t ()
{

//% We have crea ted a s imp l i f i e d ver s ion o f the sender l i s t in our model ,
//% th e r e f o r e the ac tua l implementation below i s not d i r e c t l y but
//% i n d i r e c t l y r e f l e c t e d in our model .
return & s e n d e r f i r s t ;

}

// MANIPULATORS

/∗∗ I n i t i a t e s a r e c e i v i n g IPC and updates the ipc partner .
@param sender the sender t ha t wants to e s t a b l i s h an IPC handshake

∗/
PUBLIC inl ine NEEDS [Rece iver : : s e t pa r tne r ,

Rece iver : : r cv r eg s ,
Rece iver : : c l e a r pag e i n r e qu e s t ,
” entry f rame . h” , ” sender . h” , ” l 4 t yp e s . h”]

void
Rece iver : : i p c i n i t (Sender∗ sender)
{

s e t p a r t n e r (sender) ;
r c v r e g s ()−> r c v s r c (sender−>id ()) ; //#
s t a t e add d i r t y (Th r e ad t r an s f e r i n p r o g r e s s) ;

126

}

PROTECTED inl ine
void Rece iver : : p r e p a r e r e c e i v e d i r t y (Sender ∗partner ,

Sys ipc f r ame ∗ r eg s)
{

// cpu l o c k required , or weird t h in g s w i l l happen
a s s e r t (cpu lock . t e s t ()) ; //#

s e t r c v r e g s (r eg s) ; // message shou ld be poked in here //#
s e t p a r t n e r (partner) ;

s t a t e chang e d i r t y (˜ (Thread ipc sending mask | Thr e ad t r an s f e r i n p r o g r e s s) ,
Thread rece iv ing | Thread ip c i n p rog r e s s) ;

}

PUBLIC inl ine
bool
Rece iver : : i n i p c (Sender ∗ sender)
{

Mword i p c s t a t e = (s t a t e () & (Thr ead ip c i n p r og r e s s
| Thread cance l
| Thr e ad t r an s f e r i n p r o g r e s s)) ;

i f (EXPECT TRUE
((i p c s t a t e == (Th r e ad t r an s f e r i n p r o g r e s s | Thread ip c i n p r og r e s s))
&& par tne r == sender))

return true ;

return fa l se ;
}

/∗∗ Set the IPC partner (sender) .
@param partner IPC partner

∗/
PROTECTED inl ine
void
Rece iver : : s e t p a r t n e r (Sender∗ partner)
{

par tne r = partner ;
}

/∗∗ Return whether the r e c e i v e r i s ready to accept a message from the
g iven sender .
@param sender thread tha t wants to send a message to t h i s r e c e i v e r
@return true i f r e c e i v e r i s in co r r ec t s t a t e to accept a message

r i g h t now (open wait , or c l o s ed wait and wai t ing f o r sender) .
∗/

IMPLEMENT inl ine NEEDS[” std macros . h” , ” t h r e ad s t a t e . h” , Rece iver : : partner]
bool
Rece iver : : s ender ok (const Sender ∗ sender) const
{

unsigned i p c s t a t e = s t a t e () & (Thread rece iv ing |
// Thread send in progress |
Thread ip c i n p r og r e s s) ;

// I f Thread send in progress i s s t i l l se t , we ’ re s t i l l in the send phase
i f (EXPECT FALSE (i p c s t a t e != (Thread rece iv ing | Thread ip c i n p r og r e s s)))

return fa l se ;

// Check open wait ; t e s t i f t h i s sender i s r e a l l y the f i r s t in queue
i f (EXPECT TRUE(! partner ()

&& (! s e n d e r f i r s t | | sender == s e n d e r f i r s t)))
{

a s s e r t (! (s t a t e () & Thread po l l ing)) ; // !
return true ;

127

}

// Check c l o s ed wait ; t e s t i f t h i s sender i s r e a l l y who we s p e c i f i e d
i f (EXPECT TRUE (sender == partner ()))

{
a s s e r t (! (s t a t e () & Thread po l l ing)) ; // !
return true ;

}

return fa l se ;
}

128

Bibliography

[AFH+06] Mark Aiken, Manuel Fähndrich, Chris Hawblitzel, Galen Hunt, and James Larus. Decon-
structing process isolation. Technical report, Microsoft Research, 2006. 2.1.4, 4

[AMD05] Inc. Advanced Micro Devices. AMD secure virtual machine architecture reference manual,
May 2005. 7

[Aus05] National ICT Australia. NICTA L4-embedded kernel reference manual, version nicta n1.
Technical report, Kensington Research Laboratory, Sydney, Australia, November 2005. 2.2.3

[BK05] Marcus Völp Bernhard Kauer. L4.Sec preliminary microkernel reference manual. Technical
report, Technische Universität Dresden, Dresden, Germany, October 2005. 2.2.1

[BLS04] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system:
An overview, October 2004. 2.1.2

[BMS+97] Ricky W. Butler, Paul S. Miner, Mandayam K. Srivas, Dave A. Greve, and Steven P. Miller.
A new bitvectors library for pvs, January 1997. 3.2.4

[Cor05] Intel Corporation. Intel virtualization technology specification for the IA-32 intel architecture,
April 2005. 7

[Cur92] Paul Curzon. Of what use is a verified compiler specification? Technical Report 274, Univer-
sity of Cambridge, Computer Laboratory, November 1992. 2.1.2

[CV98] Judith Crow and Ben Di Vito. Formalizing space shuttle software requirements: four case
studies. ACM Transactions on Software Engineering and Methodology, 7(3):296–332, 1998.
2.4.1

[Dau03] Matthias Daum. Development of a semantics compiler for C++. Master’s thesis, Dresden
University of Technology, September 2003. 2.5.2

[Dij75] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Commun. ACM, 18(8):453–457, 1975. 2.5.3

[DL05] Robert DeLine and K. Rustan M. Leino. BoogiePL: A typed procedural language for checking
object-oriented programs. Technical report, Microsoft Research, May 2005. 2.1.2

[EGHT94] David Evans, John Guttag, James Horning, and Yang Meng Tan. LCLint: A tool for using
specifications to check code. In Proceedings of the ACM SIGSOFT ’94 Symposium on the
Foundations of Software Engineering, pages 87–96, 1994. 2.1.2

[End05] Endrawaty. Verification of the fiasco IPC implementation. Master’s thesis, Dresden University
of Technology, March 2005. 2.5.3

[FL06] Manuel Fähndrich and James R. Larus. Language support for fast and reliable message-based
communication in singularity OS, 2006. 2.1.4

129

[HAB+06] Galen C. Hunt, Mark Aiken, Paul Barham, Manuel Fähndrich, Chris Hawblitzel, Orion Hod-
son, James R. Larus, Steven Levi, Nick Murphy, Bjarne Steensgaard, David Tarditi, Ted
Wobber, and Brian D. Zill. Sealing OS processes to improve dependability and security.
Technical report, Microsoft Research, April 2006. 2.1.4

[HBB+98] H. Härtig, R. Baumgartl, M. Borriss, C. Hamann, M. Hohmuth, F. Mehnert, L. Reuther,
S. Schönberg, and J. Wolter. DROPS: OS support for distributed multimedia applications.
In Proceedings of the Eighth ACM SIGOPS European Workshop, Sintra, Portugal, September
1998. 2.3.2

[HBG+06] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S. Tanenbaum.
Modular system programming in MINIX 3. j-LOGIN, 31(2):19–28, April 2006. 2.1.3

[HH01] Michael Hohmuth and Hermann Härtig. Pragmatic nonblocking synchronization for real-time
systems. In Proceedings of the General Track: 2002 USENIX Annual Technical Conference,
pages 217–230, Berkeley, CA, USA, 2001. USENIX Association. 2.3.4

[HHJT98] U. Hensel, M. Huisman, B. Jacobs, and H. Tews. Reasoning about classes in object-oriented
languages: Logical models and tools. In C. Hankin, editor, Proceedings of European Sym-
posium on Programming (ESOP ’98), number 1381 in Lecture Notes in Computer Science,
pages 105–121. Springer-Verlag, 1998. 2.1.2, 2.5.1

[HHL+97] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Sebastian Schönberg, and Jean Wolter.
The performance of µ-kernel-based systems. In SOSP ’97: Proceedings of the sixteenth ACM
symposium on Operating systems principles, pages 66–77, New York, NY, USA, 1997. ACM
Press. 1, 2.2.1

[Hil92] Dan Hildebrand. An architectural overview of QNX. In Proceedings of the Workshop on
Micro-kernels and Other Kernel Architectures, pages 113–126, Berkeley, CA, USA, 1992.
USENIX Association. 2.1.3

[HJvdB99] Marieke Huisman, Bart Jacobs, and Joachim van den Berg. A case study in class library
verification: Java’s vector class. In A. Moreira and D. Demeyer, editors, Object-Oriented
Technology: ECOOP’99 Workshop Reader, volume 1743, pages 109–110, Lisbon, Portugal,
1999. Springer-Verlag. 2.1.2

[HLA+05] Galen Hunt, James R. Larus, Martin Abadi, Mark Aiken, Paul Barham, Manuel Fähndrich,
Chris Hawblitzel, Orion Hodson, Steven Levi, Nick Murphy, Bjarne Steensgaard, David
Tarditi, Ted Wobber, and Brian D. Zill. An overview of the singularity project. Techni-
cal report, Microsoft Research, October 2005. 2.1, 2.1.4

[HPV00] Klaus Havelund, John Penix, and Willem Visser. Spin model checking and software verifi-
cation, 7th international spin workshop, stanford, ca, usa, august 30 - september 1, 2000,
proceedings. In SPIN, volume 1885 of Lecture Notes in Computer Science. Springer, Septem-
ber 2000. 2.5.3

[HT03] Michael Hohmuth and Hendrik Tews. The semantics of C++ data types: Towards verifying
low-level system components, July 2003. 2.5.2

[HTS03] M. Hohmuth, H. Tews, and S. Stephens. Applying source-code verification to a microkernel
— the VFiasco project, May 2003. 1, 2.1, 2.1.3, 2.5

[IFI05] IFIP. Dependable computing and fault tolerance. http://www.dependability.org/wg10.4,
2005. 1

[Int06] SRI International. SRI International, an independent, non-profit R&D organization dedicated
to client success. http://www.sri.com/, December 2006. 2.4.1

130

http://www.dependability.org/wg10.4
http://www.sri.com/

[JMG+02] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang. Cyclone: A safe
dialect of C, 2002. 2.1.1

[JS06] Scott Doerrie Jonathan Shapiro, Swaroop Sridhar. BitC language specification, June 2006.
2.1.1

[KK06] Rafal Kolanski and Gerwin Klein. Formalising the l4 microkernel api. In CATS ’06: Proceed-
ings of the 12th Computing: The Australasian Theroy Symposium, pages 53–68, Darlinghurst,
Australia, Australia, 2006. Australian Computer Society, Inc. 2.5.5

[LBR99] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation for detailed design.
In Haim Kilov, Bernhard Rumpe, and Ian Simmonds, editors, Behavioral Specifications of
Businesses and Systems, pages 175–188. Kluwer Academic Publishers, 1999. 2.1.2

[Lie93] Jochen Liedtke. Improving IPC by kernel design. In 14th ACM Symposium on Operating
System Principles (SOSP), December 1993. 2.2.2, 2.3.3

[Lie95] Jochen Liedtke. On µ-kernel construction. In SOSP ’95: Proceedings of the fifteenth ACM
symposium on Operating systems principles, pages 237–250, New York, NY, USA, 1995. ACM
Press. 1, 2.1.3, 2.2.3

[Lie96] Jochen Liedtke. L4 reference manual - 486, Pentium, Pentium Pro, version 2.0. Technical
report, IBM T.J. Watson Research Center, Yorktown Heights, NY, September 1996. 1, 2.2.1

[Lie99] Jochen Liedtke. L4 nucleus version x reference manual, x86, version x.0. Technical report,
Universität Karlsruhe, September 1999. 2.2.1

[Lie04] Jochen Liedtke. L4 experimental kernel reference manual, version x.2. Technical report,
Universität Karlsruhe, June 2004. 2.2.1

[Met96] Werner Metterhausen. L3 referenzhandbuch, 1996. 2.2.1

[MHH02] F. Mehnert, M. Hohmuth, and H. Härtig. Cost and benefit of separate address spaces in
real-time operating systems, December 2002. 2.1.4

[MS95] Steven P. Miller and Mandayam Srivas. Formal verification of the AAMP5 microprocessor:
A case study in the industrial use of formal methods. In Proceedings of the Workshop on
Industrial Strength Formal Specification Techniques (WIFT’95), Boca Raton, Florida, 1995.
2.4.1

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002. 2.1.2, 2.5.5

[Owr] Version September Owre. PVS language reference. 2.1.2

[Pet02] Michael Peter. Leistungs-analyse und -optimierung des L4Linux-systems. Master’s thesis,
Technische Universität Dresden, June 2002. 2.3.7

[PG74] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable third gener-
ation architectures. Commun. ACM, 17(7):412–421, 1974. 2.1.4

[Reu05] René Reusner. Implementierung eines echtzeit-ipc-pfades mit unterbrechungspunkten für
L4/Fiasco. Master’s thesis, Technische Universität Dresden, July 2005. 2.3.6, 2.3.7, 2.5.4, 5.2

[RJO+89] Richard Rashid, Daniel Julin, Douglas Orr, Richard Sanzi, Robert Baron, Alesandro Forin,
David Golub, and Michael B. Jones. Mach: a system software kernel. In Proceedings of the
1989 IEEE International Conference, COMPCON, pages 176–178, San Francisco, CA, USA,
1989. IEEE Comput. Soc. Press. 2.1.3

131

[Sch01] Sebastian Schönberg. A user mode l4 environment. In 2nd International Workshop on
Microkernel-based Systems, Chateau Lake Louise, Banff, AB, Canada, October 2001. 2.3.2

[SN01] Ib Sorensen and David Neilson. B: towards zero defect software, 2001. 2.1.2, 2.5.5

[Ste04] Udo Steinberg. Quality-assuring scheduling in the fiasco microkernel. Master’s thesis, Tech-
nische Universität Dresden, March 2004. 2.3.3

[Tew00] H. Tews. A case study in coalgebraic specification: Memory management in the fiasco
microkernel. Technical Report TPG2/1/2000, SFB 358, April 2000. 2.5.1

[TKN07] Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and separation logic. In
Martin Hofmann and Matthias Felleisen, editors, Proc. 34th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL’07), pages 97–108, Nice, France,
January 2007. 2.5.5

[Uni06] Johns Hopkins University. The coyotos secure operating system, 2006. 2.1.1

[vdBJ01] Joachim van den Berg and Bart Jacobs. The LOOP compiler for Java and JML. Lecture
Notes in Computer Science, 2031:299+, 2001. 2.1.2, 6.2.4

[Vit03] Ben L. Di Vito. Application of strategies/tactics in higher order logics. In Proceedings of
STRATA 2003, First International Workshop on Design and Application of Strategies/Tactics
in Higher Order Logics, July 2003. 2.4.1

132

	Introduction
	Backgrounds
	Improving software dependability
	Safe language
	Code verification
	Minimized kernel
	Isolation

	L4 microkernel
	Introduction
	Design
	Implementations

	Fiasco
	Introduction
	History
	Threads
	Synchronization
	Locks
	Timeouts
	IPC

	PVS
	Introduction
	Features
	Example proof

	Related work
	Verifying memory management in Fiasco
	Developing a C++ semantics compiler
	Verifying IPC in Fiasco
	Improved IPC path
	L4.verified

	Model creation
	Modeling approach
	PVS model
	Properties
	Abstractions
	Theory structure
	Fiasco types
	Fiasco functions
	Splitting functions
	Preemption points

	Model verification
	Verification attempts
	Property 1: removal of sender's thread lock on receiver
	Property 2: waking up receiver in combined send/receive
	Property 3: validation of assertions in the code

	Discussion
	General discussion
	Research discussion

	Conclusions and future work
	Conclusions
	Future work
	Further verification
	Modular proofs
	Automation of verification
	Improved conversion

	Appendix PVS: fiasco_types.pvs
	Appendix PVS: fiasco_functions.pvs
	Appendix PVS: fiasco_states.pvs
	Appendix PVS: fiasco_helpers.pvs
	Appendix PVS: fiasco_state.pvs
	Appendix PVS: fiasco_lock.pvs
	Appendix PVS: fiasco_wakeup.pvs
	Appendix PVS: fiasco_assert.pvs
	Appendix C++: thread-ipc.cpp
	Appendix C++: sender.cpp
	Appendix C++: receiver.cpp

