
Hierarchical Counterexamples for
Discrete-Time Markov Chains?

Nils Jansen1, Erika Ábrahám1, Jens Katelaan1, Ralf Wimmer2,
Joost-Pieter Katoen1, and Bernd Becker2

1 RWTH Aachen University, Germany
2 Albert-Ludwigs-University Freiburg, Germany

Abstract. This paper introduces a novel counterexample generation
approach for the verification of discrete-time Markov chains (DTMCs)
with two main advantages: (1) We generate abstract counterexamples
which can be refined in a hierarchical manner. (2) We aim at minimizing
the number of states involved in the counterexamples, and compute a
critical subsystem of the DTMC whose paths form a counterexample.
Experiments show that with our approach we can reduce the size of
counterexamples and the number of computation steps by several orders
of magnitude.

1 Introduction

Discrete-time Markov chains (DTMCs) are a well-known modeling formalism
for probabilistic systems. The probabilistic computation tree logic (PCTL) [6] is
suited to express bounds on the probability mass of all paths satisfying some
properties. E�cient algorithms and tools are available to verify PCTL properties
of DTMCs. Prominent model checkers like Prism [9] and Mrmc [8] o↵er methods
based on the solution of linear equation systems [6].

If verification reveals that a system does not fulfill a required property, the
ability to provide diagnostic information is crucial for bug fixing. A counterexample
carries an explanation why the property is violated. E. g., for Kripke structures and
linear temporal logic (LTL) formulae, a counterexample is a path that violates the
property, which can be generated by LTL model checking as a by-product without
additional overhead. State-of-the-art model checking algorithms for probabilistic
systems do not exhibit this feature. After model checking, current techniques
have to apply additional methods to generate probabilistic counterexamples.

Even for large state spaces, a counterexample consisting of a single path gives
an intuitive explanation why the property is violated. In the probabilistic setting,
instead of a single path we need a set of paths whose total probability mass violates
the bound specified by the PCTL formula [5]. It is much harder to understand
the behavior represented by such a probabilistic counterexample as it may

? This work was partly supported by the German Research Council (DFG) as part of
the research project CEBug (AB 461/1-1), the Transregional Collaborative Research
Center AVACS (SFB/TR 14) and the Research Training Group AlgoSyn (1298).

consist of a large or even infinite number of paths. To ease understanding, most
approaches aim at finding counterexamples with a small number of paths having
high probabilities. To generate more compact counterexamples, also the usage of
regular expressions [5], the detection of loops [11], and the abstraction of strongly
connected components (SCCs) [4] have been proposed, as well as diagnostic
subgraphs [3], which is most related to our counterexample representation.

We suggested in [2] a model checking approach based on the hierarchical
abstraction of SCCs. We abstract each SCC by a small loop-free graph in a
recursive manner by the abstraction of sub-SCCs. The result is an abstract
DTMC consisting of a single initial state and absorbing states, and transitions
carrying the total probabilities of reaching target states. In [2] we also gave an
idea of how to use the SCC-based model checking result for counterexample
generation. In this paper we generalize this approach and suggest a novel method
which computes a critical subsystem whose paths induce a counterexample. While
other methods concentrate on minimizing the number of paths, our computation
regards the system structure and aims at reducing the number of involved states
and transitions.

Critical subsystems are computed hierarchically. We refine a critical subsystem
by concretizing abstract states and reducing the concretized parts, such that the
reduced subsystem still induces a counterexample. This hierarchical approach
increases the usability of counterexamples for large state spaces. Concretization
of only the user-relevant parts of the abstract critical subsystem allows for an
intuitive approach for error correction.

The computation of critical subsystems is based on finding most probable
paths or path fragments to be contained in the critical subsystem. We propose
two approaches. The global method searches for paths through the entire system.
Our main contribution is the local search which aims at connecting most probable
path fragments. In contrast to most of the other approaches, our method is
complete, i. e., termination is always guaranteed.

Experiments for two well-known case studies show that our approach reduces
the size of counterexamples and the number of computation steps by several
orders of magnitude.

The paper is structured as follows: Section 2 contains some preliminaries.
We recall our model checking algorithm in Section 3. Section 4 describes our
counterexample generation method, for which we give some experimental results
in Section 5. A more detailed version of this paper, including examples and
illustrations, can be found in [1].

2 Preliminaries

Definition 1. Assume a set AP of atomic propositions. A discrete-time Markov
chain (DTMC) is a tuple M = (S, I, P, L) with a non-empty finite state set S,
an initial discrete probability distribution I : S ! [0, 1] with

P
s2S I(s) = 1, a

transition probability matrix P : S ⇥ S ! [0, 1] with
P

s02S P (s, s0) = 1 for all
s 2 S, and a labeling function L : S ! 2AP .

To reduce notation, we refer to the components of a DTMC Mu
l by Su

l , I
u
l ,

Pu
l , and Lu

l . E.g., we use S0 to denote the state set of the DTMC M 0. Assume in
the following a set AP of atomic propositions and a DTMC M = (S, I, P, L).

We say that there is a transition from a state s 2 S to a state s0 2 S i↵
P (s, s0) > 0. A path of M is a finite or infinite sequence ⇡ = s0s1 . . . of states
si 2 S such that P (si, si+1) > 0 for all i. We say that the transitions (si, si+1) are
contained in the path ⇡, written (si, si+1) 2 ⇡. We write PathsMinf for the set of

all infinite paths of M , and PathsMinf (s) for those starting in s 2 S. Analogously,

PathsMfin is the set of all finite paths of M , PathsMfin(s) of those starting in s, and

PathsMfin(s, t) of those starting in s and ending in t. A state t is called reachable

from another state s i↵ PathsMfin(s, t) 6= ;.
A state set S0 ✓ S is called absorbing in M i↵ there is a state in S0 from

which no state outside S0 is reachable in M . We call S0 bottom in M if this holds
for all states in S0. States s 2 S with P (s, s) = 1 are also called absorbing states.

We call M loop-free, if all of its loops are self-loops on absorbing states. A set
S0 ✓ S is strongly connected in M i↵ for all s, t 2 S0 there is a path from s to t
visiting states from S0 only. A strongly connected component (SCC) of M is a
maximal strongly connected subset of S.

The probability measure for finite paths ⇡ 2 PathsMfin is defined by PrMfin(⇡) =Q
(si,si+1)2⇡ P (si, si+1). For a set R ✓ PathsMfin of paths we have PrMfin(R) =

P
⇡2R0 Pr

M
fin(⇡) with R0 = {⇡ 2 R | 8⇡0 2 R. ⇡0 is no prefix of ⇡}.

The syntax of probabilistic computation tree logic (PCTL) [6] is given by3

' ::= p | ¬' | ' ^ ' | P⇠�(' U ')

for (state) formulae with p 2 AP , � 2 [0, 1] ✓ R, and ⇠ 2 {<, , �, >}. We
define ⌃ and ⇤ in the usual way.

For a property P� ('1 U '2) refuted by M , a counterexample is a set C ✓
PathsMfin , Pr

M
fin(C) > � of finite paths starting in an initial state and satisfying

'1 U '2. For P<� ('1 U '2), the probability mass has to be at least �. We consider
upper probability bounds; see [5] for the reduction of lower bounds to this case.

Model checking of PCTL properties can be reduced to checking properties of
the form P⇠�(⌃'). The '-states are also called target states. We concentrate on
this case and assume DTMCs to have single initial and target states. Note that
each DTMC can be equivalently transformed to satisfy these requirements.

3 SCC-based Model Checking

Next we recall our model checking algorithm from [2]. Given a DTMC M , we
are interested in the total probability of reaching its target state from its initial
state. Each non-bottom SCC S0 of M induces a DTMC Mind : those states of
the SCC through which paths may enter it are the initial states of Mind ; we
call them input states. Those states outside the SCC to which paths may exit,

3 In this paper we only consider unbounded properties.

the so-called output states, are absorbing states in Mind . The remaining graph
of Mind is defined by the SCC’s structure. We use InpM (S0) = {t 2 S0 | I(t) >
0_9s 2 S\S0. P (s, t) > 0} and OutM (S0) = {t 2 S\S0 | 9s 2 S0. P (s, t) > 0} for
the set of input respectively output states, and call states from S0 inner states.
Let in the following M = (S, I, P, L) be a DTMC and S0 ✓ S a not absorbing
state set in M .

Definition 2. The DTMC induced by S0 in M , written DTMC (S0,M), is
Mind = (Sind , Iind , Pind , Lind) with

1. Sind = S0 [OutM (S0),
2. 8s 2 Sind .

�
Iind(s) > 0 $ s 2 InpM (S0)

�
,

3. Pind(s, t) =

8
><

>:

P (s, t) for s 2 S0 and t 2 Sind ,

1 for s = t 2 OutM (S0),

0 else.

4. 8s 2 Sind . Lind(s) = L(s).

We use the notation Inp(Mind) = {s 2 Sind | Iind(s) > 0} and Out(Mind) =
{s 2 Sind | Pind(s, s) = 1}.

The model checking procedure replaces inside M the subgraph Mind by
a smaller subgraph Mabs with the input and output states as state set and
transitions from each input state s to each output state t carrying the total
probability mass PrMind

�
PathsMind

fin (s, t)
�
.

Definition 3. Let DTMC (S0,M) = Mind = (Sind , Iind , Pind , Lind) and

ps,t = PrMind

fin

�
{ss1 . . . snt 2 PathsMind

fin | 81  i  n. si 6= s ^ si 6= t}
�

for all s 2 Inp(Mind) and t 2 Out(Mind). We define the abstraction of Mind ,
written Abs(Mind), to be the DTMC Mabs = (Sabs , Iabs , Pabs , Labs) with

1. Sabs = Inp(Mind) [Out(Mind),
2. Iabs(s) = Iind(s) for all s 2 Sabs ,

3. Pabs(s, t)=

8
><

>:

ps,t/
⇣P

t02Out(Mind)
ps,t0

⌘
for s 2 Inp(Mind), t 2 Out(Mind),

1 for s = t 2 Out(Mind),
0 else.

4. Labs(s) = Lind(s) for all s 2 Sabs .

Next we formalize the abstraction and the concretization of an SCC.

Definition 4. Let DTMC (S0,M) = M1 = (S1, I1, P1, L1), and M2 = (S2, I2, P2, L2)
a DTMC satisfying S2 \ (S\S1) = ; such that either M2 = Abs(M1) or
M1 = Abs(M2). Then the result of the substitution of M1 by M2 in M , written
M [M2/M1], is the DTMC Msub = (Ssub, Isub, Psub, Lsub) with

1. Ssub = (S\S1) [S2,
2. Isub(s) = I(s) for s 2 Ssub and 0 otherwise,

Algorithm 1

Model check(DTMC M = (S, I, P, L), PCTL-formula P⇠� (⌃ p))
begin

(M,Sub) := Abstract SCC(M, ;); (1)

result :=
⇣P

s2Inp(M)

P
t2Out(M) (I(s) · P (s, t)) ⇠ �

⌘
; (2)

return (result,M,Sub) (3)
end

Abstract SCC(DTMC M = (S, I, P, L), Abstractions Sub)
begin

for all non-bottom SCCs K in DTMC (S\Inp(M),M) do (4)
MK := DTMC (K,M); (Mabs

K ,Sub) := Abstract SCC(MK ,Sub); (5)
M := M [Mabs

K /MK] (6)
end for (7)
Mabs := Abs(M); Sub := Sub [

�
(M,Mabs)

; (8)

return (Mabs,Sub) (9)
end

3. Psub(s, t) = P2(s, t) for s 2
�
S2\Out(M2)

�
and t 2 S2, and P (s, t) otherwise,

4. Lsub(s) = L2(s) for s 2 S2 and L(s) otherwise.

The replacement of an SCC by its abstraction and vice versa does not a↵ect
the total probabilities of reaching a target state from an initial state in M [1].

To compute the abstraction Mabs of an induced DTMC Mind , we determine
the probabilities ps,t recursively as follows. We detect all non-bottom SCCs in
Mind that do not contain any input states of Mind , and replace them by their
abstractions recursively. The result is a DTMC M 0

ind which is loop-free in case
Mind has a single input state (multiple input states need a special treatment,
see [2]), such that the probabilities ps,t can be computed easily.

The model checking algorithm is shown in Algorithm 1. We use a global
variable Sub to store the pairs of abstracted DTMCs and their abstractions for
the concretization during counterexample generation.4

4 Counterexample Generation

Our computation is based on the detection of single paths, which we use to
determine a subgraph (closure) of the original system. We call the closure a
critical subsystem if its paths form a counterexample for the violated property.

The closure is computed according to a selection m ✓ S⇥S. We use extendM :
(2S⇥S ⇥ PathsMfin) ! 2S⇥S defined by extend(m,⇡) =

�
(s, s0) 2 S ⇥ S

�� (s, s0) 2
m _ (s, s0) 2 ⇡

to extend a selection m with the transitions of a path ⇡.

4 Instead of copying, the implementation uses di↵erent markings to specify sub-graphs.

Algorithm 2

SearchAbstractCex(DTMC M , PCTL-formula P⇠� (⌃ p))
begin

(result,Mce,Sub) := ModelCheck(M , P⇠� (⌃ p)); (10)
if result = true then return ? (11)
else (12)

mmax :=
�
(s0, t)

; (13)

while true do (14)
mmin := mmax; (15)
(ready,Mce,mmin,mmax) := Concretize(Mce,mmin,mmax,Sub); (16)
if (ready = true) then return closureMce(mmax) (17)
else mmax := CriticalSubsystem

�
Mce,mmin,mmax,P⇠�(⌃ p)

�
; (18)

end if (19)
end while (20)

end if (21)
end

Definition 5 (Closure). For a DTMC M = (S, I, P, L), target state t, and
a selection m ✓ S ⇥ S, the closure closureM (m) = (Scl, Icl, Pcl, Lcl) of m in
M is given by Scl = S] {s?}, Icl(s) = I(s), Lcl(s) = L(s) for s 2 S and
Icl(s?) = 0, Lcl(s?) = ; and

Pcl(s, s
0) =

8
>>><

>>>:

P (s, s0) for (s, s0) 2 m,

1�
P

(s,s00)2m P (s, s00) for s 2 S\{t} and s0 = s?,

1 for s = s0 = t or s = s0 = s?,

0 otherwise.

Given a PCTL property ', we call a DTMC M 0 a critical subsystem of M for '
if M 0 = closureM (m) for some selection m and M 0 violates '.

4.1 The Basic Hierarchical Algorithm

We compute counterexamples in a hierarchical manner (see Algorithm 2): Intu-
itively, at first we compute a critical subsystem for the resulting abstract DTMC
of the model checking procedure. Then we refine the DTMC stepwise hand in
hand with its critical subsystem. For each refinement step, the abstract and the
refined critical subsystems di↵er only in states and transitions a↵ected by the
refinement step.

The initial critical subsystem is given by the closure closureMce(mmax) where
the selection mmax contains the only transition from the initial state s0 to the
target state t of Mce (line 13). Note that this initial subsystem represents all
paths of M from its initial to its target state.

The Concretize method (Algorithm 3) concretizes some heuristically deter-
mined abstract states in Mce. Thereby we remove all transitions from mmax

that were removed by the concretization and add all transitions added by the

Algorithm 3

Concretize(DTMC Mce, Selection mmin, Selection mmax, Abstractions Sub)
begin

first = true; (22)
while true do (23)

sa := ChooseAbstractState(closureMce(mmax)); (24)
if (sa = ?) then return (first,Mce,mmin,mmax) (25)
else (26)

first := false; (27)
Let (Mabs ,Mcon) 2 Sub s. t. sa 2 Inp(Mabs); (28)
Trabs :=

�
(s, s0) 2 Sabs⇥Sabs

�� s /2 Out(Mabs) ^ Pabs(s, s
0) > 0

; (29)

Trcon :=
�
(s, s0) 2 Scon⇥Scon

�� s /2 Out(Mcon) ^ Pcon(s, s
0) > 0

; (30)

mmin := mmin\Trabs ; mmax :=
�
mmax\Trabs

�
[Trcon ; (31)

Mce := Mce[Mcon/Mabs]; (32)
end if (33)

end while (34)
end

Algorithm 4 Global Search

CriticalSubsystem(DTMC Mce, Selection mmin, Selection mmax, Formula P⇠� (⌃ p))
begin

k := 0; Mmax := closureMce(mmax); (35)
Let s0 be the initial and t the target state of Mmax; (36)
repeat (37)
k := k + 1; ⇡ := FindNextPath(s0, t,Mmax, k); mmin := extend(mmin,⇡); (38)

until ModelCheck(closureMce(mmin), P⇠� (⌃ p)) reports violation; (39)
return mmin; (40)

end

concretization (line 31). If the closure of mmax in Mce represents a counterex-
ample, then also the closure of the updated selection mmax in the concretization
of Mce represents a counterexample with the same probability. However, this
counterexample may be unnecessarily large. CriticalSubsystem searches for a
smaller selection included in mmax that still contains all transitions that were
not a↵ected by the concretization.

4.2 Search Algorithms

Global search. An implementation for CriticalSubsystem, which we call the
global search algorithm, is proposed in Algorithm 4. Similarly to [5], we search for
most probable paths from the initial state to the target state in the subsystem
Mmax = closureMce(mmax) (line 35). After a next most probable path has been
found (line 38), the algorithm extends mmin with the found path (line 38). This
procedure is repeated until the closure of mmin is large enough to represent a
counterexample (line 39).

Algorithm 5 Local Search

CriticalSubsystem(DTMC Mce, Selection mmin, Selection mmax,
PCTL-formula P⇠� (⌃ p))

begin

Mcl := closureMce(mmin); (41)
while ModelCheck(Mcl,P⇠� (⌃ p)) reports satisfaction do (42)

Msearch := closureMce(mmax\mmin); (43)
⇧ :=

�
⇡0 2 Paths

Msearch
fin (s, t)

�� s 2 Inp(Msearch) ^ t 2 Out(Msearch)

; (44)

⇡ := argmax⇡2⇧ Prfin(⇡); (45)
mmin := extend(mmin,⇡); Mcl := closureMce(mmin); (46)

end while (47)
return mmin (48)

end

Local search. The global search is complete, but it may find most probable paths
which do not extend the minimal selection mmin. This can be time-consuming,
e. g., when many di↵erent traversals of loops are considered.

Our second implementation for CriticalSubsystem (Algorithm 5), which we
call the local search, overcomes this problem and finds only paths that extend the
minimal selection and increase the target reachability probability of its closure.
Instead of searching for paths from the initial to the target state, it aims at
finding most probable path fragments that connect fragments of already found
paths to new paths. The path fragments should, as the paths for the global
search, lie in the closure of mmax. But this time they should (1) start at states
reachable from an initial state via transitions of mmin, (2) end in states from
which the target state is reachable via transitions from mmin, and (3) contain
transitions from mmax\mmin only. I. e., we only search for path fragments in the
subgraphs inserted by the last concretization step, which connect path fragments
in the closure of mmin to whole paths from the initial to the target state.

5 Experimental results

We developed a C++ implementation with exact arithmetic for both search
algorithms, and used it to run experiments on a 2.4 GHz dual core CPU with
4 GB RAM. We used Prism [9] to generate models for di↵erent instances of the
parametrized synchronous leader election protocol [7] and the crowds protocol [10].

The global and the local search work on hierarchical data types. However,
they can also directly be applied to concrete models. We consider this non-
hierarchical approach to obtain a fair comparison to [5]. Table 1 compares the
global method with the k-shortest path search for the leader election protocol,
where the probability of reaching a target state is always 1. Table 2 depicts results
for the crowds benchmark additionally containing the local search. The global
search finds paths in the same order as k-sp, but due to the closure computation
earlier termination, a significantly smaller number of needed paths, and therefore a

Table 1. Results for the leader benchmark on concrete models (TO > 1h)

states 3902 12302
transitions 5197 16397
prob. threshold 0.92 0.93 0.95 0.95 0.96 0.97

k-sp # paths 1193 8043 41636 3892 53728 -TO-
states 3593 3903 3903 11690 12302 12302

global # paths 1193 1301 1850 3892 4360 5870
states 3593 3634 3676 11690 11815 11941
prob. 0.9205 0.9302 0.9501 0.9502 0.9600 0.9700

Table 2. Results for the crowds benchmark on concrete models (TO > 1h)

states 396 3515 18817
transitions 576 6035 32677
total prob. 0.1891 0.2346 0.4270
prob. threshold 0.12 0.15 0.1 0.12 0.15 0.21 0.23 0.2 0.25

k-sp # paths 1301 26184 3974 26981 488644 -TO- -TO- -TO- -TO-
states 133 133 671 831 1071 -TO- -TO- -TO- -TO-

global # paths 38 76 91 220 935 3478 151639 3007 56657
closures 24 29 58 73 181 364 623 302 767
states 89 93 143 169 631 671 1071 663 2047
prob. 0.1339 0.1514 0.1014 0.1203 0.1501 0.2101 0.2300 0.2002 0.2500

local # paths 26 32 60 68 98 326 665 202 798
states 55 67 99 104 171 670 900 326 1439
prob. 0.1238 0.1509 0.1018 0.1211 0.1525 0.2101 0.2300 0.2001 0.2508

smaller number of computation steps are achieved. For probability thresholds near
the total probability, the number of paths for k-sp is several orders of magnitude
larger. The number of considered states can also be reduced significantly. The
local search not only leads to smaller critical subsystems in most cases, but also
needs a much smaller number of found path fragments in comparison to the
global search. The probability mass for all types of counterexamples is always
very close to the specified probability threshold. Note that for our methods we
model check only extended subsystems, while for the local search actually every
new path extends the system.

The search for hierarchical counterexamples is motivated by their usefulness
and understandability. The results in Table 3 show that the hierarchical search
leads to critical subsystems of comparable size (the third last column is the
hierarchical version of the global search in the second last column of Table 2).
The number of found paths is much larger in the hierarchical approach, because
we have to search at each abstraction level. However, due to abstraction, the
found paths are shorter, especially for the local search, and the concretization up
to the concrete level seems not necessary for many cases. We did experiments
using di↵erent heuristics for the number of abstract states that are concretized in
one step (e. g., either a single one or

p
n with n the number of abstract states). We

Table 3. Results for a crowds instance (18817 states, 32677 transitions, 0.2 probability
threshold) on the hierarchical model

search type global local
abstract states to concretize in one step

p
single

p
single

heuristic to choose the next abstract state prob none prob none prob prob

paths 13525 912455 38379 594881 496 545
closures 728 730 728 729 496 545
states 457 457 458 457 319 347
refinements 13 10 37 37 9 28

also tried two di↵erent heuristics for the choice of the next abstract state, either
being just the next one found (“none”), or the one whose outgoing transitions
have the maximal average probability (“prob”).

References

1. Ábrahám, E., Jansen, N., Katelaan, J., Wimmer, R., Katoen, J.P.,
Becker, B.: Hierarchical counterexamples for discrete-time Markov chains.
Tech. rep., RWTH Aachen University (2011), http://sunsite.informatik.rwth-
aachen.de/Publications/AIB/2011/2011-11.pdf

2. Ábrahám, E., Jansen, N., Wimmer, R., Katoen, J.P., Becker, B.: DTMC model
checking by SCC reduction. In: Proc. of QEST. pp. 37–46. IEEE CS (2010)

3. Aljazzar, H., Leue, S.: Directed explicit state-space search in the generation of coun-
terexamples for stochastic model checking. IEEE Trans. on Software Engineering
36(1), 37–60 (2010)

4. Andrés, M.E., D’Argenio, P., van Rossum, P.: Significant diagnostic counterexamples
in probabilistic model checking. In: Proc. of HVC. LNCS, vol. 5394, pp. 129–148.
Springer (2008)

5. Han, T., Katoen, J.P., Damman, B.: Counterexample generation in probabilistic
model checking. IEEE Trans. on Software Engineering 35(2), 241–257 (2009)

6. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

7. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Information and
Computation 88(1), 60–87 (1990)

8. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. In: Proc. of QEST. pp. 167–176.
IEEE CS (2009)

9. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Proc. of CAV. LNCS, Springer (2011), (to appear)

10. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. ACM Trans.
on Information and System Security 1(1), 66–92 (1998)

11. Wimmer, R., Braitling, B., Becker, B.: Counterexample generation for discrete-time
Markov chains using bounded model checking. In: Proc. of VMCAI. LNCS, vol.
5403, pp. 366–380. Springer (2009)

