Quantum Processes and Computation

Assignment 1, Wednesday, January 30th, 2019

Exercise teachers:

Aleks Kissinger (aleks@cs.ru.nl)
John van de Wetering (wetering@cs.ru.nl)
The delivery boxes are located in the Mercator 1 building on the ground floor (where the Computer Science department ICIS is located).

Handing in your answers: There are two options:

1. Deliver a hard copy to the mailbox of John van de Wetering. Mercator 1, 3rd floor.
2. E-mail a PDF to wetering@cs.ru.nl. Please include your name and the exercise number in the filename, e.g. ACHTERNAAM-qpc-exercise1.pdf.

Deadline: Tuesday, February 5th, 12:00
Goals: After completing these exercises successfully you should be able to perform simple diagrammatic computations. The total number of points is 100 , distributed over 6 exercises.

Exercise 1 (3.4) (20 points): We saw in the lecture that functions and relations are examples of process theories. Give two other examples of a process theory. For each one answer the following questions:

1. What are the system-types?
2. What are the processes?
3. How do processes compose, both sequentially and parallel?
4. When should two processes be considered equal?

Hint: Be creative! You don't have to restrict yourself to mathematics.

Exercise 2 (3.10) (20 points): Please read Section 3.1 .3 about diagrams as diagram formulas. Draw the diagrams corresponding to the following diagram formulas:

1. $f_{B_{1} C_{2}}^{C_{4}} g_{C_{4}}^{D_{3}}$
2. $f_{A_{1}}^{A_{1}}$
3. $g_{B_{1}}^{A_{1}} f_{A_{1}}^{B_{1}}$
4. $1_{A_{1}}^{A_{6}} 1_{A_{2}}^{A_{5}} 1_{A_{3}}^{A_{4}}$.

Use the convention that inputs and outputs are numbered from left-to-right.
Exercise 3 (3.12) (20 points): Give the diagrammatic equations of a process $*$ taking two inputs and one output that express the algebraic properties of being

1. associative: $x *(y * z)=(x * y) * z$
2. commutative: $x * y=y * x$
3. having a unit: there exists a process e (with no inputs) such that $x * e=e * x=x$

Note: x, y and z should not appear in your final diagrams. They are however useful in trying to figure out what the diagrammatic equation should be.

Exercise 4 (3.15) (10 points): Using the copy operation:

write down the diagram representing distributivity: $(x+y) * z=(x * z)+(y * z))$? Here, + and * are processes that take two inputs and and one output.

Exercise 5 (3.30) (10 points): First compute the values of the following functions, then give the commonly used name of these functions:
(a) :

(b) :

where:

$$
\frac{1}{N O T}::\left\{\begin{array}{l}
0 \mapsto 1 \\
1 \mapsto 0
\end{array} \quad \text { and } \quad \frac{\mid}{\mid c N O T}::\left\{\begin{array}{l}
(0,0) \mapsto(0,0) \\
(0,1) \mapsto(0,1) \\
(1,0) \mapsto(1,1) \\
(1,1) \mapsto(1,0)
\end{array}\right.\right.
$$

Exercise 6 (3.31) (20 points): Suppose A, B, C, and D are sets and P is a relation given by:

$$
\begin{aligned}
A & =\left\{a_{1}, a_{2}, a_{3}\right\} \\
B & =\mathbb{B} \\
C & =\{\text { red, green }\} \\
D & =\mathbb{N}
\end{aligned}
$$

Compute P first for R, S, T given by:

$$
R::\left\{\begin{array}{l}
1 \mapsto\left(a_{1}, a_{1}\right) \\
1 \mapsto\left(a_{1}, a_{2}\right)
\end{array} \quad S::\left\{\begin{array}{l}
\left(a_{1}, 5\right) \mapsto(0, \text { red }) \\
\left(a_{1}, 5\right) \mapsto(1, \text { red }) \\
\left(a_{2}, 6\right) \mapsto(1, \text { green })
\end{array} \quad T::\left\{\begin{array}{l}
a_{1} \mapsto 200 \\
a_{3} \mapsto 5
\end{array}\right.\right.\right.
$$

and then for R, S, T given by:

$$
R::\left\{\begin{array}{l}
0 \mapsto A \times\left\{a_{2}, a_{3}\right\} \\
1 \mapsto A \times\left\{a_{2}, a_{3}\right\}
\end{array} \quad S::\left\{\begin{array}{c}
\left(a_{1}, 0\right) \mapsto \mathbb{B} \times\{\text { red, green }\} \\
\left(a_{1}, 1\right) \mapsto \mathbb{B} \times\{\text { red, green }\} \\
\left(a_{1}, 2\right) \mapsto \mathbb{B} \times\{\text { red, green }\} \\
\vdots
\end{array} \quad T::\left\{\begin{array}{c}
a_{1} \mapsto \mathbb{N} \\
a_{2} \mapsto \mathbb{N} \\
a_{3} \mapsto \mathbb{N}
\end{array}\right.\right.\right.
$$

Hint: Read Section 3.3.3.

