Quantum Processes and Computation
 Assignment 10, Wednesday, April 24, 2019

Exercise teachers:

Aleks Kissinger (aleks@cs.ru.nl)
John van de Wetering (wetering@cs.ru.nl)
Handing in your answers: There are two options:

1. Deliver a hard copy to the mailbox of John van de Wetering. Mercator 1, 3rd floor.
2. E-mail a PDF to wetering@cs.ru.nl. Please include your name and the exercise number in the filename, e.g. ACHTERNAAM-qpc-exercise1.pdf.

Deadline: Tuesday, May 7, 12:00
Goals: After completing these exercises you can reason with (strong) complementarity and can do concrete calculations with ZX-diagrams. The total number of points is 100, distributed over 3 exercises.
Material covered in book: sections 9.2, 9.3, 9.4.
Note: In this exercise sheet \bigcirc and \bigcirc will always represent strongly complementary spiders.
Exercise 1 (9.47) (30 points): Read Section 9.2.3 about the controlled-NOT gate (CNOT):

(i) Complete Lemma 9.46 by proving the remaining equalities:

(ii) Use complementarity and strong complementarity to prove that

The ZX-calculus is based on the Z- and X-spiders and bases, but of course the Bloch sphere has a third axis: the Y-axis. The 'Y-basis' states can be represented in two different ways as Z- and X-phase spiders:

But in fact, these expressions are only equal because we have doubled the states.
Exercise 2 (9.106) (30 points): Using the concrete definitions of the Z- and X-spider, show that

$$
\begin{equation*}
\frac{1}{\frac{\pi}{2}}=e^{i \frac{\pi}{4}}\left(-\frac{1}{2}\right) \quad\left(-\frac{\pi}{2}\right)=e^{-i \frac{\pi}{4}} \frac{1}{2} \tag{1}
\end{equation*}
$$

The two ways of writing the Y-basis states also allow us to find two different ways to copy these states. The first is:

because

and similarly with $\left(\frac{1}{-\frac{\pi}{2}}\right.$ (see the text above Exercise 9.107 in the book).
Exercise 3 (9.107) (40 points): Using the equalities derived in the previous exercise, and by exploiting the fact that $\left.\left\{\frac{1}{\left(\frac{\pi}{2}\right)}, \frac{1}{-\frac{\pi}{2}}\right)\right\}$ forms a basis for \mathbb{C}^{2}, show that

for some fixed global phase $e^{i \alpha}$.
We will refer to this equality as the Y-rule in the future, and it will be important for us in the next lecture, as it allows us to change the colours of a spider in a diagram.

