Quantum Processes and Computation

Assignment 4, Wednesday, February 17, 2019

Exercise teachers:

Aleks Kissinger (aleks@cs.ru.nl)
John van de Wetering (wetering@cs.ru.nl)
Handing in your answers: There are two options:

1. Deliver a hard copy to the mailbox of John van de Wetering. Mercator 1, 3rd floor.
2. E-mail a PDF to wetering@cs.ru.nl. Please include your name and the exercise number in the filename, e.g. ACHTERNAAM-qpc-exercise4.pdf.

Deadline: Tuesday, February 26, 12:00
Goals: After completing these exercises you know about orthonormal bases, composition of linear maps and logic gates as linear maps. The total number of points is 100 , distributed over 5 exercises. Material covered in book: Sections 5.1, 5.2, 5.3.4 and a bit of 5.3.5

Exercise 1 (5.4) (20 points): We saw in the lecture that for a set A with n elements in relations the singletons:

$$
\mathcal{B}_{A}:=\{\sqrt{\sqrt{a}} \mid a \in A\}
$$

form a basis, that is, that no element can be removed from \mathcal{B}_{A} without losing the property of being a basis. This basis is also orthonormal. Show that this is the only orthonormal basis of A.

Bonus exercise: The orthonormality condition is actually not necessary for proving the uniqueness of the basis. Show that any basis (not necessarily orthonormal) of A must be the singleton basis.

Exercise 2 (5.54) (20 points): Let

$$
\stackrel{\psi}{\psi} \leftrightarrow\binom{\psi^{0}}{\psi^{1}} \quad \text { and } \quad \widehat{\phi} \leftrightarrow\left(\begin{array}{ll}
\phi_{0} & \phi_{1}
\end{array}\right)
$$

be respectively a 2 -dimensional state, and 2 -dimensional effect. Let λ be a number. Write the matrices for the processes
(i)

(ii)

(iii)

(iv)

Exercise 3 (5.58) (20 points): The matrices for cups and caps in 2 dimensions are:

$$
\checkmark\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right) \quad \curvearrowright \leftrightarrow\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)
$$

(i) First, verify the yanking equation

directly using the matrices of the 2-dimensional cup and cup by using the rules for sequential and parallel composition of matrices, i.e. show that $(\cap \otimes \mathrm{id}) \circ(\mathrm{id} \otimes \cup)=\mathrm{id}$ (where id is the 2×2 identity matrix).
(ii) Second, give the matrices for the cup and cap in 3 dimensions.

The next two excercises are about encoding classical logic gates in the theory of linear maps, as explained in Section 5.3.4. Recall that a classical logic gate F can be encoded as a linear map via:

Using this encoding, we defined:

Exercise 4 (5.86) (20 points): Show that

(Hint: try comparing the LHS to the RHS on all basis states, rather than writing out a big sum.)
Next, find ψ and ϕ such that the following equation holds:

Although it might not look like much now, this equation will turn out to lie at the heart of the notion of complementarity which we will cover in great depth in the coming lectures.
Exercise 5 (based on 5.83) (20 points): Show that if a logic gate has an inverse, its associated linear map is unitary.

