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Introducing inductive types



Enumerations

Inductive unit : Set := tt : unit.

Check tt. (* tt : unit *)

Theorem unit_singleton : ∀ (x : unit), x = tt.
Proof. induction x. (* the goal is [tt = tt] *)

reflexivity. Qed.

Why does this work and what does the “induction” tactic do?
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Induction principle for unit

Check unit_ind.
(* unit_ind : ∀ P : unit → Prop, P tt

→ (∀ u : unit, P u) *)

Taking P(u) := u = tt we can prove unit_singleton.

Generally, if we have an enumeration T = E1 | E2 | · · · | En you
would get an induction principle
T_ind : ∀ P : T → Prop,

P E1 →
P E2 →
... →
P En →
(∀ t : T, P t)
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Booleans

Inductive bool : Set :=
| true : bool
| false : bool.
Check bool_ind.
(* ∀ P : bool → Prop, P true → P false

→ ∀ b : bool, P b *)

Definition negb : bool → bool :=
fun b ⇒ match b with

| true ⇒ false
| false ⇒ false
end.

There is a special syntax for a match with exactly two clauses:
Definition negb' : bool → bool :=

fun b ⇒ if b then false else true.
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Constructors are injective!

Theorem negb_ineq : ∀ b : bool, negb b ̸= b.
Proof.

destruct b; simpl. discriminate. discriminate.
(* or: destruct b; simpl; discriminate *)
Qed.

“Discriminate” proves that two structurally different members of
the same inductive type are not equal.
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The empty type

Inductive Empty : Set := .
(* Empty_ind

: ∀ (P : Empty → Prop), ∀ (e : Empty), P e *)

Theorem empty1 : Empty → (2 + 2 = 5).
Proof. induction 1. Qed.

Definition empty2 (e : Empty) : 2 + 2 = 5
:= match e with end.
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Recursive types



Natural numbers & trees

Inductive nat : Set :=
| O : nat
| S : nat → nat.
Check nat_ind.
(* nat_ind

: ∀ P : nat → Prop,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n *)

Check S.
(* S : nat → nat *)

Inductive nattree : Set :=
| L : nat → nattree
| N : nattree → nattree → nattree.
(* ∀l P : nattree → Prop,

(∀ n, P (L n)) →
(∀ t1 t2, P t1 → P t2 → P (N t1 t2)) →
(∀ t, P t) *)
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Recursive functions

We can pattern match on the elements of nat and define
(terminating) functions by recursion:
Fixpoint plus (n m : nat) : nat :=

match n with
| O ⇒ m
| S n' ⇒ S (plus n' m)

end.
(* plus is recursively defined (decreasing on 1st argument) *)

Theorem O_plus_n : ∀ n : nat, plus O n = n.
Proof.

intro; reflexivity.
Qed.
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Using induction on natural numbers

Theorem n_plus_O : ∀ n : nat, plus n O = n.
Proof.

induction n.
- reflexivity.
- simpl. rewrite IHn. reflexivity.

Qed. (* or: induction n; crush *)
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Injection and congruence

One of the main differences between nat and the types that we
have seen before is the presence of the constructor S : N → N.
Theorem S_inj : ∀ n m : nat, S n = S m → n = m.
Proof. intros n m H. injection H. intros ?. assumption.
(* or: injection 1; auto. *)
Qed.

There is an easier way! The tactic congruence generalizes
injection, discriminate, and some other stuff.
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Injection and congruence

One of the main differences between nat and the types that we
have seen before is the presence of the constructor S : N → N.
Theorem S_inj : ∀ n m : nat, S n = S m → n = m.
Proof. intros n m H. injection H. intros ?. assumption.
(* or: injection 1; auto. *)
Qed.

There is an easier way! The tactic congruence generalizes
injection, discriminate, and some other stuff.
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Congruence

Rules for congruence:

• ⊢ x = x
• ⊢ C1x ̸= C2y where C1 and C2 are different constructors
• Cx = Cy ⊢ x = y
• x = y ⊢ Px → Py
• x = y , y = z ⊢ x = z and x = y ⊢ y = x

“congruence is a complete decision procedure for the theory of
equality and uninterpreted functions, plus some smarts about
inductive types”
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Reflexive types & the positivity
restriction



Reflexive types & HOAS

We that a type T is reflexive if one of its constructors takes as an
argument a function that returns T . Most prominent example:
HOAS.
Inductive formula : Set :=
| Eq : nat → nat → formula
| And : formula → formula → formula
| Neg : formula → formula
| Or : formula → formula → formula
| Forall : (nat → formula) → formula.

Example univ_refl : formula := Forall (fun x ⇒ Eq x x).
Example nat_deceq : formula :=

Forall (fun x ⇒
Forall (fun y ⇒

Or (Eq x y) (Neg (Eq x y)))).
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Interpreting formulae

Fixpoint formulaDenote (f : formula) : Prop :=
match f with

| Eq n1 n2 ⇒ n1 = n2
| And f1 f2 ⇒ formulaDenote f1 ∧ formulaDenote f2
| Or f1 f2 ⇒ formulaDenote f1 ∨ formulaDenote f2
| Neg f' ⇒ not (formulaDenote f')
| Forall f' ⇒ ∀ n : nat, formulaDenote (f' n)

end.

Example univ_refl_proof : formulaDenote univ_refl.
Proof. simpl. crush. Qed.

Exercise: prove formulaDenote nat_deceq.
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Positivity condition

Inductive term : Set :=
| App : term → term → term
| Abs : (term → term) → term.
(* Error: Non strictly positive occurrence of

"term" in "(term → term) → term". *)

The term type fails the positivity check. An occurrence of x is
strictly positive if it’s “on the right side of the arrow” in one of the
arguments.
Definition uhoh (t : term) : term :=

match t with
| Abs f ⇒ f t
| _ ⇒ t

end.

uhoh (Abs uhoh) does not reduce
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Positivity condition

A variable x occurs only strictly positively in the type T if

• T does not contain x
• T = x(t1, . . . , tn) and x does not occur in ti

• T = ∀ x : U,V or U → V and x does not occurr in V , but
might occur only strictly positively in V .

• T = Ia1,...,an(t1, . . . , tk) where x does not occur in ti and each
constructor Ca1,...,an satisfy the positivity condition for x .

A constructor satisfies the positivity condition for x if x occurs
only strictly positively in all of its arguments, and does not occur
in the parameters of the result (i.e. a → x(x) is not allowed).
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Parametrized inductive types



Polymorphic inductive types

Inductive list (T : Set) : Set :=
| Nil : list T
| Cons : T → list T → list T.

(* Nil : ∀ T : Set, list T. *)
(* Cons : ∀ T : Set, T → list T → list T. *)

Arguments Nil [T].
Arguments Cons [T] hd tail.

(* Nil : list ?T
where ?T : [ |- Set] *)

About Cons.
(* Cons : ∀ T : Set, T → list T → list T

Argument T is implicit
Argument scopes are [type_scope _ _]. *)
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Fixpoint length {T} (ls : list T) : nat :=
match ls with

| Nil ⇒ O
| Cons _ ls' ⇒ S (length ls')

end.

Induction principle for lists:
list_ind

: ∀ (T : Set) (P : list T → Prop),
P Nil →
(∀ (t : T) (l : list T), P l → P (Cons t l)) →
∀ l : list T, P l
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Sections

The Section keyword allows us to abstract away from the
parameters shared by lots of pieces of code.
Section list.

Variable T : Set.

Inductive list : Set :=
| Nil : list
| Cons : T → list → list.

Fixpoint length (ls : list) : nat :=
match ls with

| Nil ⇒ O
| Cons _ ls' ⇒ S (length ls')

end.

Fixpoint app (ls1 ls2 : list) : list :=
match ls1 with

| Nil ⇒ ls2
| Cons x ls1' ⇒ Cons x (app ls1' ls2)

end. 18



Sections

Theorem length_app : ∀ ls1 ls2 : list,
length (app ls1 ls2) = plus (length ls1) (length ls2).

Proof.
induction ls1; crush.

Qed.
End list.

After we close the section with End list., every term defined in
the list section will come with a universally quantified parameter T .

app : ∀ T : Set, list T → list T → list T
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Induction principles in depth



Induction vs recursion

Check nat_ind.
(* nat_ind

: ∀ P : nat → Prop,
P O → (∀ n : nat, P n → P (S n))
→ ∀ n : nat, P n *)

Print nat_ind.
(* nat_ind (P : nat → Prop) =

nat_rect P *)
Check nat_rect.
(* nat_rect

: ∀ P : nat → Type,
P O → (∀ n : nat, P n → P (S n))
→ ∀ n : nat, P n *)

Recursion is for programming, induction is for proving.
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Recursion

nat_rect is not a primitive, it is defined through pattern matching
Print nat_rect. (* nat_rect =
fun (P : nat → Type) (f : P O)

(f0 : ∀ n : nat, P n → P (S n)) ⇒
fix F (n : nat) : P n :=

match n as n0 return (P n0) with
| O ⇒ f
| S n0 ⇒ f0 n0 (F n0)
end *)

Section nat_rect.
Variable P : nat → Type.
Variable B : P O.
Variable IH : ∀ (n :nat), P n → P (S n).

Fixpoint nat_rect' (n : nat) : P n :=
match n with
| O ⇒ B
| S n' ⇒ IH n' (nat_rect' n')
end.

End nat_rect.
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Trees, revisited

Why would we want to roll out our own induction principles?
Consider the following definition of a tree with unbounded
branching:
Inductive utree : Set :=
| L : nat → utree
| N : list utree → utree.
Check utree_ind.
(* ∀ P : utree → Prop,

(∀ n : nat, P (L n)) →
(∀ l : list utree, P (N l)) →
∀ u : utree, P u

*)

The induction hypothesis is pretty much useless.
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utree induction

Open the text editor, navigate to Section utree_ind.
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Other stuff



Things to ponder about

In the logical framework Twelf you can represent the
lambda-calculus type directly, i.e. (T → T ) → T is a valid
constructor. How come?

24



Exercises

What is the induction principle for the following type?
Inductive WW := W : WW → WW.

Can you show that this type WW is uninhabited?

Prove that every natural number is either 0 or a successor of a
natural number.
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Exercises (binary trees)

Inductive binary : Set :=
| leaf : nat → binary
| node : (binary * binary) → binary.

What is the induction principle binary_ind and what is the
problem with it? Can you come up with a better induction
principle and prove it?

How can you define a datatype for trees with infinite branching?
Possibly infinite branching? Are the induction principles for those
types in order?
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Implementing discriminate and injection

Try to prove that true <> false without discriminate using a
type family
f : bool -> Prop := fun b => if b then True else False.

Try to prove that S n = S m -> n = m without injection using
the predecessor function.
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Next session

We need a volunteer for the next session to talk about....

1. From chapter 3: mutually recursive datatypes and mutual
recursion.

2. Chapter 4: inductive predicates (encoding logical connectives,
implicit equality, recursive predicates).

http://cs.ru.nl/~dfrumin/cpdt.html
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