
Inductive types
CPDT reading group

Dan Frumin
December 7, 2016

Overview for today

Introducing inductive types

Recursive types

Reflexive types & the positivity restriction

Parametrized inductive types

Induction principles in depth

1

Introducing inductive types

Enumerations

Inductive unit : Set := tt : unit.

Check tt. (* tt : unit *)

Theorem unit_singleton : ∀ (x : unit), x = tt.
Proof. induction x. (* the goal is [tt = tt] *)

reflexivity. Qed.

Why does this work and what does the “induction” tactic do?

2

Induction principle for unit

Check unit_ind.
(* unit_ind : ∀ P : unit → Prop, P tt

→ (∀ u : unit, P u) *)

Taking P(u) := u = tt we can prove unit_singleton.

Generally, if we have an enumeration T = E1 | E2 | · · · | En you
would get an induction principle
T_ind : ∀ P : T → Prop,

P E1 →
P E2 →
... →
P En →
(∀ t : T, P t)

3

Booleans

Inductive bool : Set :=
| true : bool
| false : bool.
Check bool_ind.
(* ∀ P : bool → Prop, P true → P false

→ ∀ b : bool, P b *)

Definition negb : bool → bool :=
fun b ⇒ match b with

| true ⇒ false
| false ⇒ false
end.

There is a special syntax for a match with exactly two clauses:
Definition negb' : bool → bool :=

fun b ⇒ if b then false else true.

4

Constructors are injective!

Theorem negb_ineq : ∀ b : bool, negb b ̸= b.
Proof.

destruct b; simpl. discriminate. discriminate.
(* or: destruct b; simpl; discriminate *)
Qed.

“Discriminate” proves that two structurally different members of
the same inductive type are not equal.

5

The empty type

Inductive Empty : Set := .
(* Empty_ind

: ∀ (P : Empty → Prop), ∀ (e : Empty), P e *)

Theorem empty1 : Empty → (2 + 2 = 5).
Proof. induction 1. Qed.

Definition empty2 (e : Empty) : 2 + 2 = 5
:= match e with end.

6

Recursive types

Natural numbers & trees

Inductive nat : Set :=
| O : nat
| S : nat → nat.
Check nat_ind.
(* nat_ind

: ∀ P : nat → Prop,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n *)

Check S.
(* S : nat → nat *)

Inductive nattree : Set :=
| L : nat → nattree
| N : nattree → nattree → nattree.
(* ∀l P : nattree → Prop,

(∀ n, P (L n)) →
(∀ t1 t2, P t1 → P t2 → P (N t1 t2)) →
(∀ t, P t) *)

7

Recursive functions

We can pattern match on the elements of nat and define
(terminating) functions by recursion:
Fixpoint plus (n m : nat) : nat :=

match n with
| O ⇒ m
| S n' ⇒ S (plus n' m)

end.
(* plus is recursively defined (decreasing on 1st argument) *)

Theorem O_plus_n : ∀ n : nat, plus O n = n.
Proof.

intro; reflexivity.
Qed.

8

Using induction on natural numbers

Theorem n_plus_O : ∀ n : nat, plus n O = n.
Proof.

induction n.
- reflexivity.
- simpl. rewrite IHn. reflexivity.

Qed. (* or: induction n; crush *)

9

Injection and congruence

One of the main differences between nat and the types that we
have seen before is the presence of the constructor S : N → N.
Theorem S_inj : ∀ n m : nat, S n = S m → n = m.
Proof. intros n m H. injection H. intros ?. assumption.
(* or: injection 1; auto. *)
Qed.

There is an easier way! The tactic congruence generalizes
injection, discriminate, and some other stuff.

10

Injection and congruence

One of the main differences between nat and the types that we
have seen before is the presence of the constructor S : N → N.
Theorem S_inj : ∀ n m : nat, S n = S m → n = m.
Proof. intros n m H. injection H. intros ?. assumption.
(* or: injection 1; auto. *)
Qed.

There is an easier way! The tactic congruence generalizes
injection, discriminate, and some other stuff.

10

Congruence

Rules for congruence:

• ⊢ x = x
• ⊢ C1x ̸= C2y where C1 and C2 are different constructors
• Cx = Cy ⊢ x = y
• x = y ⊢ Px → Py
• x = y , y = z ⊢ x = z and x = y ⊢ y = x

“congruence is a complete decision procedure for the theory of
equality and uninterpreted functions, plus some smarts about
inductive types”

11

Reflexive types & the positivity
restriction

Reflexive types & HOAS

We that a type T is reflexive if one of its constructors takes as an
argument a function that returns T . Most prominent example:
HOAS.
Inductive formula : Set :=
| Eq : nat → nat → formula
| And : formula → formula → formula
| Neg : formula → formula
| Or : formula → formula → formula
| Forall : (nat → formula) → formula.

Example univ_refl : formula := Forall (fun x ⇒ Eq x x).
Example nat_deceq : formula :=

Forall (fun x ⇒
Forall (fun y ⇒

Or (Eq x y) (Neg (Eq x y)))).

12

Interpreting formulae

Fixpoint formulaDenote (f : formula) : Prop :=
match f with

| Eq n1 n2 ⇒ n1 = n2
| And f1 f2 ⇒ formulaDenote f1 ∧ formulaDenote f2
| Or f1 f2 ⇒ formulaDenote f1 ∨ formulaDenote f2
| Neg f' ⇒ not (formulaDenote f')
| Forall f' ⇒ ∀ n : nat, formulaDenote (f' n)

end.

Example univ_refl_proof : formulaDenote univ_refl.
Proof. simpl. crush. Qed.

Exercise: prove formulaDenote nat_deceq.

13

Positivity condition

Inductive term : Set :=
| App : term → term → term
| Abs : (term → term) → term.
(* Error: Non strictly positive occurrence of

"term" in "(term → term) → term". *)

The term type fails the positivity check. An occurrence of x is
strictly positive if it’s “on the right side of the arrow” in one of the
arguments.
Definition uhoh (t : term) : term :=

match t with
| Abs f ⇒ f t
| _ ⇒ t

end.

uhoh (Abs uhoh) does not reduce

14

Positivity condition

A variable x occurs only strictly positively in the type T if

• T does not contain x
• T = x(t1, . . . , tn) and x does not occur in ti

• T = ∀ x : U,V or U → V and x does not occurr in V , but
might occur only strictly positively in V .

• T = Ia1,...,an(t1, . . . , tk) where x does not occur in ti and each
constructor Ca1,...,an satisfy the positivity condition for x .

A constructor satisfies the positivity condition for x if x occurs
only strictly positively in all of its arguments, and does not occur
in the parameters of the result (i.e. a → x(x) is not allowed).

15

Parametrized inductive types

Polymorphic inductive types

Inductive list (T : Set) : Set :=
| Nil : list T
| Cons : T → list T → list T.

(* Nil : ∀ T : Set, list T. *)
(* Cons : ∀ T : Set, T → list T → list T. *)

Arguments Nil [T].
Arguments Cons [T] hd tail.

(* Nil : list ?T
where ?T : [|- Set] *)

About Cons.
(* Cons : ∀ T : Set, T → list T → list T

Argument T is implicit
Argument scopes are [type_scope _ _]. *)

16

Fixpoint length {T} (ls : list T) : nat :=
match ls with

| Nil ⇒ O
| Cons _ ls' ⇒ S (length ls')

end.

Induction principle for lists:
list_ind

: ∀ (T : Set) (P : list T → Prop),
P Nil →
(∀ (t : T) (l : list T), P l → P (Cons t l)) →
∀ l : list T, P l

17

Sections

The Section keyword allows us to abstract away from the
parameters shared by lots of pieces of code.
Section list.

Variable T : Set.

Inductive list : Set :=
| Nil : list
| Cons : T → list → list.

Fixpoint length (ls : list) : nat :=
match ls with

| Nil ⇒ O
| Cons _ ls' ⇒ S (length ls')

end.

Fixpoint app (ls1 ls2 : list) : list :=
match ls1 with

| Nil ⇒ ls2
| Cons x ls1' ⇒ Cons x (app ls1' ls2)

end. 18

Sections

Theorem length_app : ∀ ls1 ls2 : list,
length (app ls1 ls2) = plus (length ls1) (length ls2).

Proof.
induction ls1; crush.

Qed.
End list.

After we close the section with End list., every term defined in
the list section will come with a universally quantified parameter T .

app : ∀ T : Set, list T → list T → list T

19

Induction principles in depth

Induction vs recursion

Check nat_ind.
(* nat_ind

: ∀ P : nat → Prop,
P O → (∀ n : nat, P n → P (S n))
→ ∀ n : nat, P n *)

Print nat_ind.
(* nat_ind (P : nat → Prop) =

nat_rect P *)
Check nat_rect.
(* nat_rect

: ∀ P : nat → Type,
P O → (∀ n : nat, P n → P (S n))
→ ∀ n : nat, P n *)

Recursion is for programming, induction is for proving.

20

Recursion

nat_rect is not a primitive, it is defined through pattern matching
Print nat_rect. (* nat_rect =
fun (P : nat → Type) (f : P O)

(f0 : ∀ n : nat, P n → P (S n)) ⇒
fix F (n : nat) : P n :=

match n as n0 return (P n0) with
| O ⇒ f
| S n0 ⇒ f0 n0 (F n0)
end *)

Section nat_rect.
Variable P : nat → Type.
Variable B : P O.
Variable IH : ∀ (n :nat), P n → P (S n).

Fixpoint nat_rect' (n : nat) : P n :=
match n with
| O ⇒ B
| S n' ⇒ IH n' (nat_rect' n')
end.

End nat_rect.
21

Trees, revisited

Why would we want to roll out our own induction principles?
Consider the following definition of a tree with unbounded
branching:
Inductive utree : Set :=
| L : nat → utree
| N : list utree → utree.
Check utree_ind.
(* ∀ P : utree → Prop,

(∀ n : nat, P (L n)) →
(∀ l : list utree, P (N l)) →
∀ u : utree, P u

*)

The induction hypothesis is pretty much useless.

22

utree induction

Open the text editor, navigate to Section utree_ind.

23

Other stuff

Things to ponder about

In the logical framework Twelf you can represent the
lambda-calculus type directly, i.e. (T → T) → T is a valid
constructor. How come?

24

Exercises

What is the induction principle for the following type?
Inductive WW := W : WW → WW.

Can you show that this type WW is uninhabited?

Prove that every natural number is either 0 or a successor of a
natural number.

25

Exercises (binary trees)

Inductive binary : Set :=
| leaf : nat → binary
| node : (binary * binary) → binary.

What is the induction principle binary_ind and what is the
problem with it? Can you come up with a better induction
principle and prove it?

How can you define a datatype for trees with infinite branching?
Possibly infinite branching? Are the induction principles for those
types in order?

26

Implementing discriminate and injection

Try to prove that true <> false without discriminate using a
type family
f : bool -> Prop := fun b => if b then True else False.

Try to prove that S n = S m -> n = m without injection using
the predecessor function.

27

Next session

We need a volunteer for the next session to talk about....

1. From chapter 3: mutually recursive datatypes and mutual
recursion.

2. Chapter 4: inductive predicates (encoding logical connectives,
implicit equality, recursive predicates).

http://cs.ru.nl/~dfrumin/cpdt.html

28

http://cs.ru.nl/~dfrumin/cpdt.html

	Introducing inductive types
	Recursive types
	Reflexive types & the positivity restriction
	Parametrized inductive types
	Induction principles in depth

