Radboud University %?_

o, W
OmiNes©

Inductive types

CPDT reading group

Dan Frumin
December 7, 2016

Overview for today

Introducing inductive types

Recursive types

Reflexive types & the positivity restriction
Parametrized inductive types

Induction principles in depth

Introducing inductive types

Enumerations

Inductive unit : Set := tt : unit.
Check tt. (x tt : unit *)
Theorem unit_singleton : V (x : unit), x = tt.

Proof. induction x. (* the goal is [tt = tt] *)
reflexivity. Qed.

Why does this work and what does the “induction” tactic do?

Induction principle for unit

Check unit_ind.
(* unit_ind : V P : unit — Prop, P tt
— (V u : unit, P u) *)

Taking P(u) := u = tt we can prove unit_singleton.

Generally, if we have an enumeration T = E; | Ex | --- | E,, you
would get an induction principle

T_ind : VP : T — Prop,
P E1l —
P E2 —
P En —
(Wt :T, Pt)

Booleans

Inductive bool : Set :=

| true : bool

| false : bool.

Check bool_ind.

(x V P : bool — Prop, P true — P false
— VY b : bool, P b %)

Definition negb : bool — bool :=
fun b = match b with
| true = false
| false = false
end.

There is a special syntax for a match with exactly two clauses:

Definition negb' : bool — bool :=
fun b = if b then false else true.

Constructors are injective!

Theorem negb_ineq : V b : bool, negb b # b.
Proof.

destruct b; simpl. discriminate. discriminate.
(* or: destruct b; simpl; discriminate *)
Qed.

“Discriminate” proves that two structurally different members of
the same inductive type are not equal.

The empty type

Inductive Empty : Set := .
(* Empty_ind
: V (P : Empty — Prop), V (e : Empty), P e *)

Theorem emptyl : Empty — (2 + 2 = 5).
Proof. induction 1. Qed.

Definition empty2 (e : Empty) : 2 + 2 =5
:= match e with end.

Recursive types

Natural numbers & trees

Inductive nat : Set :=
| 0 : nat
| S : nat — nat.
Check nat_ind.
(* nat_ind
: VP : nat — Prop,
PO— (Wn:nat, Pn —- P (Sn)) - Vn : nat, P n %)
Check S.
(* S : nat — nat *)

Inductive nattree : Set :=

| L : nat — nattree

| N : nattree — nattree — nattree.

(* V1 P : nattree — Prop,
(Vn, P(Lnn)—
(V t1 t2, Pt1 — P t2 — P (N t1 t2)) —
vV t, Pt) %)

Recursive functions

We can pattern match on the elements of nat and define
(terminating) functions by recursion:

Fixpoint plus (n m : nat) : nat :=
match n with
| 0= m
| Sn' = S (plus n' m)
end.
(* plus is recursively defined (decreasing on 1st argument) *)

Theorem O_plus_n : V n : nat, plus 0 n = n.
Proof.

intro; reflexivity.
Qed.

Using induction on natural numbers

Theorem n_plus_ 0 : V n : nat, plus n 0 = n.
Proof.

induction n.

- reflexivity.

- simpl. rewrite IHn. reflexivity.
Qed. (* or: induction n; crush *)

Injection and congruence

One of the main differences between nat and the types that we

have seen before is the presence of the constructor S : N — N.
Theorem S_inj : Vnm : nat, Sn=Sm — n =nm.
Proof. intros n m H. injection H. intros ?. assumption.

(* or: injection 1; auto. *)
Qed.

10

Injection and congruence

One of the main differences between nat and the types that we
have seen before is the presence of the constructor S : N — N.

Theorem S_inj : Vnm : nat, Sn=Sm — n =nm.
Proof. intros n m H. injection H. intros ?. assumption.
(* or: injection 1; auto. *)

Qed.

There is an easier way! The tactic congruence generalizes
injection, discriminate, and some other stuff.

10

Congruence

Rules for congruence:

m Fx=x

s - Cix # Gy where C; and G, are different constructors
s x=Cykx=y

= x=ykF Px— Py

» x=y,y=zFx=zandx=yFy=x

“congruence is a complete decision procedure for the theory of
equality and uninterpreted functions, plus some smarts about

inductive types”

11

Reflexive types & the positivity
restriction

Reflexive types & HOAS

We that a type T is reflexive if one of its constructors takes as an

argument a function that returns T. Most prominent example:
HOAS.

Inductive formula : Set :=

| Eq : nat — nat — formula

| And : formula — formula — formula

| Neg : formula — formula

| Or : formula — formula — formula

| Forall : (nat — formula) — formula.

Example univ_refl : formula := Forall (fun x = Eq x x).
Example nat_deceq : formula :
Forall (fun x =
Forall (fun y =

Or (Eq x y) (Neg (Eq x y)))).

12

Interpreting formulae

Fixpoint formulaDenote (f : formula) : Prop :=

match £ with
| EQ n1 n2 = nl = n2
| And f1 f2 = formulaDenote f1 A formulaDenote f2
| Or f1 f2 = formulaDenote f1 V formulaDenote f2
| Neg £' = not (formulaDenote f')
| Forall f' = V n : nat, formulaDenote (f' n)

end.

Example univ_refl_proof : formulaDenote univ_refl.
Proof. simpl. crush. Qed.

Exercise: prove formulaDenote nat_deceq.

13

Positivity condition

Inductive term : Set :=

| App : term — term — term
| Abs : (term — term) — term.

(* Error: Non strictly positive occurrence of
"term" in "(term — term) — term". *)

The term type fails the positivity check. An occurrence of x is

strictly positive if it's “on the right side of the arrow” in one of the
arguments.

Definition uhoh (t : term) : term :=
match t with
| Abs f = f ¢t
| _ = t
end.

uhoh (Abs uhoh) does not reduce

14

Positivity condition

A variable x occurs only strictly positively in the type T if

= T does not contain x
» T =x(t1,...,t,) and x does not occur in t;

= T=Vx:U,VorU— V and x does not occurr in V, but
might occur only strictly positively in V.

» T =1, a,(t1,...,t) where x does not occur in t; and each
constructor C,, . 5, satisfy the positivity condition for x.

A constructor satisfies the positivity condition for x if x occurs
only strictly positively in all of its arguments, and does not occur
in the parameters of the result (i.e. a — x(x) is not allowed).

15

Parametrized inductive types

Polymorphic inductive types

Inductive list (T : Set) : Set :=
| Nil : 1list T
| Cons : T — list T — list T.

(* Nil : V T : Set, list T. *)
(* Cons : VT : Set, T — 1list T — 1list T. %)

Arguments Nil [T].
Arguments Cons [T] hd tail.

(* Nil : list ?T
where 7T : [|- Set] *)

About Comns.
(* Cons : VT :Set, T — 1list T — 1list T

Argument T is implicit
Argument scopes are [type_scope _ _]. *)

16

Fixpoint length {T} (1s : list T) : nat :=
match 1s with
| Nil = O
| Cons _ 1s' = S (length 1s')
end.

Induction principle for lists:

list_ind
: V (T : Set) (P : list T — Prop),
P Nil —

(Wt :T) (1 :1ist T), P1 — P (Cons t 1)) —
V1:1ist T, P 1

17

The Section keyword allows us to abstract away from the
parameters shared by lots of pieces of code.

Section list.
Variable T : Set.

Inductive list : Set :=
| Nil : list
| Cons : T — list — list.

Fixpoint length (ls : list) : nat :=
match 1s with
| Nil = O

| Cons _ 1s' = S (length 1s')
end.

Fixpoint app (1s1l 1s2 : list) : list :=
match 1sl with

| Nil = 1s2

| Cons x 1lsl' = Cons x (app 1lsl' 1s2)
end. 18

Theorem length_app : V 1sl 1s2 : list,
length (app 1s1 1s2) = plus (length 1ls1) (length 1s2).
Proof.
induction 1s1; crush.
Qed.
End list.

After we close the section with End list., every term defined in
the list section will come with a universally quantified parameter T.

app : V T : Set, list T — list T — list T

19

Induction principles in depth

Induction vs recursion

Check nat_ind.
(* nat_ind
: VP : nat — Prop,
PO — (Mn :nat, Pn — P (S n))
— ¥V n : nat, P n %)
Print nat_ind.
(* nat_ind (P : nat — Prop) =
nat_rect P *)
Check nat_rect.
(* nat_rect
: VP : nat — Type,
PO — (Vn : nat, Pn — P (S n))
— V n : nat, P n *)

Recursion is for programming, induction is for proving.

20

Recursion

nat_rect is not a primitive, it is defined through pattern matching

Print nat_rect. (* nat_rect =
fun (P : nat — Type) (f : P 0)

(f0 : Vn : nat, Pn — P (S n)) =
fix F (n : nat) : Pn :=

match n as n0 return (P n0) with

| 0 = f

| S n0 = fO0 n0 (F no0)

end %)

Section nat_rect.

Variable P : nat — Type.

Variable B : P 0.

Variable IH : V (n :nat), Pn — P (S n).

Fixpoint nat_rect' (n : nat) : P n :=
match n with

| 0= B
| Sn' = IHn' (nat_rect' n')
end.

21
End nat_rect.

Trees, revisited

Why would we want to roll out our own induction principles?

Consider the following definition of a tree with unbounded
branching:

Inductive utree : Set :=

| L : nat — utree

| N : list utree — utree.

Check utree_ind.

(x V P : utree — Prop,
(Vn : nat, P (L n)) —
(V1 : list utree, P (N 1)) —
¥V u : utree, P u

*)

The induction hypothesis is pretty much useless.

22

utree induction

Open the text editor, navigate to Section utree_ind.

23

Other stuff

Things to ponder about

In the logical framework Twelf you can represent the
lambda-calculus type directly, i.e. (T — T) — T is a valid
constructor. How come?

24

Exercises

What is the induction principle for the following type?
Inductive WW := W : WW — WW.

Can you show that this type WW is uninhabited?

Prove that every natural number is either 0 or a successor of a
natural number.

25

Exercises (binary trees)

Inductive binary : Set :=
| leaf : nat — binary
| node : (binary * binary) — binary.

What is the induction principle binary_ind and what is the
problem with it? Can you come up with a better induction
principle and prove it?

How can you define a datatype for trees with infinite branching?

Possibly infinite branching? Are the induction principles for those
types in order?

26

Implementing discriminate and injection

Try to prove that true <> false without discriminate using a
type family
f : bool -> Prop := fun b => if b then True else False.

Try to prove that S n = S m -> n = m without injection using
the predecessor function.

27

Next session

We need a volunteer for the next session to talk about....

1. From chapter 3: mutually recursive datatypes and mutual

recursion.

2. Chapter 4: inductive predicates (encoding logical connectives,
implicit equality, recursive predicates).

http://cs.ru.nl/~dfrumin/cpdt.html

28

http://cs.ru.nl/~dfrumin/cpdt.html

	Introducing inductive types
	Recursive types
	Reflexive types & the positivity restriction
	Parametrized inductive types
	Induction principles in depth

