Radboud University

Inductive types

CPDT reading group

Dan Frumin
December 7, 2016

Overview for today

Introducing inductive types

Recursive types

Reflexive types \& the positivity restriction

Parametrized inductive types

Induction principles in depth

Introducing inductive types

```
Inductive unit : Set := tt : unit.
Check tt. (* tt : unit *)
Theorem unit_singleton : }\forall\mathrm{ (x : unit), x = tt.
Proof. induction x. (* the goal is [tt = tt] *)
    reflexivity. Qed.
```

Why does this work and what does the "induction" tactic do?

Induction principle for unit

Check unit_ind.

```
(* unit_ind : }\forall\textrm{P}:\mathrm{ : unit }->\mathrm{ Prop, P tt
    (}\forall\textrm{u}: unit, P u) *
```

Taking $P(u):=u=t t$ we can prove unit_singleton.
Generally, if we have an enumeration $T=E_{1}\left|E_{2}\right| \cdots \mid E_{n}$ you would get an induction principle

$$
\begin{aligned}
& \text { T_ind }: \forall \mathrm{P}: \mathrm{T} \rightarrow \text { Prop, } \\
& \mathrm{P} \text { E1 } \rightarrow \\
& \mathrm{PE} \mathrm{E} 2 \rightarrow \\
& \ldots \mathrm{E} \rightarrow \\
& \mathrm{P} \text { En } \rightarrow \\
& (\forall \mathrm{t}: \mathrm{T}, \mathrm{P} \mathrm{t})
\end{aligned}
$$

```
Inductive bool : Set :=
| true : bool
| false : bool.
Check bool_ind.
(* \(\forall \mathrm{P}:\) bool \(\rightarrow\) Prop, P true \(\rightarrow \mathrm{P}\) false
    \(\rightarrow \forall \mathrm{b}: \mathrm{bool}, \mathrm{P} \mathrm{b} *)\)
Definition negb : bool \(\rightarrow\) bool :=
    fun \(\mathrm{b} \Rightarrow\) match b with
    | true \(\Rightarrow\) false
    | false \(\Rightarrow\) false
    end.
```

There is a special syntax for a match with exactly two clauses:
Definition negb' : bool \rightarrow bool := fun $b \Rightarrow$ if b then false else true.

Constructors are injective!

```
Theorem negb_ineq : }\forall\textrm{b}: bool, negb b \not= b
Proof.
    destruct b; simpl. discriminate. discriminate.
(* or: destruct b; simpl; discriminate *)
Qed.
```

"Discriminate" proves that two structurally different members of the same inductive type are not equal.

```
Inductive Empty : Set := .
(* Empty_ind
    : }\forall\mathrm{ (P : Empty }->\mathrm{ Prop), }\forall\mathrm{ (e : Empty), P e *)
```

Theorem empty1 : Empty $\rightarrow(2+2=5)$.
Proof. induction 1. Qed.
Definition empty2 (e : Empty) : $2+2=5$
:= match e with end.

Recursive types

Natural numbers \& trees

```
Inductive nat : Set :=
| 0 : nat
| S : nat \(\rightarrow\) nat.
Check nat_ind.
(* nat_ind
    \(: \forall P\) : nat \(\rightarrow\) Prop,
    \(\mathrm{P} 0 \rightarrow(\forall \mathrm{n}:\) nat, \(\mathrm{P} \mathrm{n} \rightarrow \mathrm{P}(\mathrm{S} \mathrm{n})) \rightarrow \forall \mathrm{n}:\) nat, \(\mathrm{P} \mathrm{n} *)\)
Check S.
(* S : nat \(\rightarrow\) nat *)
Inductive nattree : Set :=
| L : nat \(\rightarrow\) nattree
| N : nattree \(\rightarrow\) nattree \(\rightarrow\) nattree.
(* \(\forall 1\) P : nattree \(\rightarrow\) Prop,
    \((\forall \mathrm{n}, \mathrm{P}(\mathrm{L} \mathrm{n})) \rightarrow\)
    \((\forall\) ti th, P ti \(\rightarrow \mathrm{P}\) th \(\rightarrow \mathrm{P}(\mathrm{N}\) ti th)) \(\rightarrow\)
    ( \(\forall\) t, Pt) *)
```

We can pattern match on the elements of nat and define (terminating) functions by recursion:

```
Fixpoint plus (n m : nat) : nat :=
    match n with
        | 0 m m
        | S n' }=>\mathrm{ S (plus n'm)
    end.
    (* plus is recursively defined (decreasing on 1st argument) *)
    Theorem O_plus_n : }\forall\textrm{n}: nat, plus 0 n = n.
Proof.
    intro; reflexivity.
Qed.
```


Using induction on natural numbers

```
Theorem n_plus_0 : }\forall\textrm{n}\mathrm{ : nat, plus n O = n.
Proof.
    induction n.
    - reflexivity.
    - simpl. rewrite IHn. reflexivity.
Qed. (* or: induction n; crush *)
```


Injection and congruence

One of the main differences between nat and the types that we have seen before is the presence of the constructor $S: \mathbb{N} \rightarrow \mathbb{N}$.

```
Theorem S_inj : \forall n m : nat, S n = S m }->\textrm{n}=\textrm{m}
Proof. intros n m H. injection H. intros ?. assumption.
(* or: injection 1; auto. *)
Qed.
```


Injection and congruence

One of the main differences between nat and the types that we have seen before is the presence of the constructor $S: \mathbb{N} \rightarrow \mathbb{N}$.

```
Theorem S_inj : }\forall\textrm{n}m: nat, S n = S m -> n = m.
Proof. intros n m H. injection H. intros ?. assumption.
(* or: injection 1; auto. *)
Qed.
```

There is an easier way! The tactic congruence generalizes injection, discriminate, and some other stuff.

Rules for congruence:

- $\vdash x=x$
- $\vdash C_{1} x \neq C_{2} y$ where C_{1} and C_{2} are different constructors
- $C x=C y \vdash x=y$
- $x=y \vdash P x \rightarrow P y$
- $x=y, y=z \vdash x=z$ and $x=y \vdash y=x$
"congruence is a complete decision procedure for the theory of equality and uninterpreted functions, plus some smarts about inductive types"

Reflexive types \& the positivity restriction

Reflexive types \& HOAS

We that a type T is reflexive if one of its constructors takes as an argument a function that returns T. Most prominent example: HOAS.

```
Inductive formula : Set :=
\(\mid\) Eq : nat \(\rightarrow\) nat \(\rightarrow\) formula
| And : formula \(\rightarrow\) formula \(\rightarrow\) formula
| Neg : formula \(\rightarrow\) formula
| Or : formula \(\rightarrow\) formula \(\rightarrow\) formula
| Forall : (nat \(\rightarrow\) formula) \(\rightarrow\) formula.
Example univ_refl : formula := Forall (fun \(x \Rightarrow\) Eq x x).
Example nat_deceq : formula :=
    Forall (fun \(x \Rightarrow\)
    Forall (fun \(y \Rightarrow\)
        Or (Eq x y) (Neg (Eq x y)))).
```


Interpreting formulae

```
Fixpoint formulaDenote (f : formula) : Prop :=
match f with
    | Eq n1 n2 m n1 = n2
    | And f1 f2 }=>\mathrm{ formulaDenote f1 ^ formulaDenote f2
    | Or f1 f2 }=>\mathrm{ formulaDenote f1 V formulaDenote f2
    | Neg f' }=>\mathrm{ not (formulaDenote f')
    | Forall f' }=>|\mp@code{n : nat, formulaDenote (f' n)
    end.
```

Example univ_refl_proof : formulaDenote univ_refl.
Proof. simpl. crush. Qed.

Exercise: prove formulaDenote nat_deceq.

Positivity condition

```
Inductive term : Set :=
| App : term }->\mathrm{ term }->\mathrm{ term
| Abs : (term }->\mathrm{ term) }->\mathrm{ term.
(* Error: Non strictly positive occurrence of
    "term" in "(term -> term) -> term". *)
```

The term type fails the positivity check. An occurrence of x is strictly positive if it's "on the right side of the arrow" in one of the arguments.

```
Definition uhoh (t : term) : term :=
    match t with
    | Abs f = f t
    | _ = t
    end.
```

uhoh (Abs uhoh) does not reduce

A variable x occurs only strictly positively in the type T if

- T does not contain x
- $T=x\left(t_{1}, \ldots, t_{n}\right)$ and x does not occur in t_{i}
- $T=\forall x: U, V$ or $U \rightarrow V$ and x does not occurr in V, but might occur only strictly positively in V.
- $T=I_{a_{1}, \ldots, a_{n}}\left(t_{1}, \ldots, t_{k}\right)$ where x does not occur in t_{i} and each constructor $C_{a_{1}, \ldots, a_{n}}$ satisfy the positivity condition for x.

A constructor satisfies the positivity condition for x if x occurs only strictly positively in all of its arguments, and does not occur in the parameters of the result (i.e. $a \rightarrow x(x)$ is not allowed).

Parametrized inductive types

Polymorphic inductive types

```
Inductive list (T : Set) : Set :=
    | Nil : list T
    Cons : T }->\mathrm{ list T }->\mathrm{ list T.
(* Nil : }\forall\textrm{T}: Set, list T. *)
(* Cons : }\forall\textrm{T}: Set, T -> list T -> list T. *)
Arguments Nil [T].
Arguments Cons [T] hd tail.
(* Nil : list ?T
where ?T : [ |- Set] *)
About Cons.
(* Cons : }\forall\textrm{T}: Set, T -> list T -> list T
Argument T is implicit
Argument scopes are [type_scope _ _]. *)
```

```
Fixpoint length \{T\} (ls : list T) : nat :=
match ls with
    | Nil \(\Rightarrow\) O
    | Cons _ ls' \(\Rightarrow\) S (length ls')
end.
```

Induction principle for lists:

```
list_ind
    : }\forall\mathrm{ (T : Set) (P : list T }->\mathrm{ Prop),
        P Nil }
    (\forall (t : T) (l : list T), P l }->\textrm{P}(\mathrm{ (Cons t l)) }
    | : list T, P l
```

The Section keyword allows us to abstract away from the parameters shared by lots of pieces of code.

```
Section list.
    Variable T : Set.
    Inductive list : Set :=
    | Nil : list
    | Cons : T }->\mathrm{ list }->\mathrm{ list.
    Fixpoint length (ls : list) : nat :=
        match ls with
        | Nil }=>\mathrm{ O
        | Cons _ ls' }=>\mathrm{ S (length ls')
    end.
Fixpoint app (ls1 ls2 : list) : list :=
        match ls1 with
        | Nil }=>\mathrm{ ls2
        Cons x ls1' }=>\mathrm{ Cons x (app ls1' ls2)
    end.
```

```
    Theorem length_app : \(\forall\) ls1 ls2 : list,
    length (app ls1 ls2) = plus (length ls1) (length ls2).
    Proof.
    induction ls1; crush.
    Qed.
End list.
```

After we close the section with End list., every term defined in the list section will come with a universally quantified parameter T.

$$
\text { app }: \forall \mathrm{T}: \text { Set, list } \mathrm{T} \rightarrow \text { list } \mathrm{T} \rightarrow \text { list } \mathrm{T}
$$

Induction principles in depth

```
Check nat_ind.
(* nat_ind
    : }\forall\textrm{P}: \mathrm{ nat }->\mathrm{ Prop,
    PO}->(\forall\textrm{n}: nat, P n ->P (S n)
    -> n : nat, P n *)
Print nat_ind.
(* nat_ind (P : nat }->\mathrm{ Prop) =
    nat_rect P *)
Check nat_rect.
(* nat_rect
    : }\forall\textrm{P}: nat -> Type
        PO}->(\forall\textrm{n}: nat, P n ->P (S n)
        -> n : nat, P n *)
```

Recursion is for programming, induction is for proving.
nat_rect is not a primitive, it is defined through pattern matching

```
Print nat_rect. (* nat_rect =
fun(P : nat }->\mathrm{ Type) (f : P 0)
    (f0 : }\forall\textrm{n}: nat, P n ->P (S n)) =>
fix F (n : nat) : P n :=
    match n as n0 return (P n0) with
    | 0 f f
    | S n0 = f0 n0 (F n0)
    end *)
```

Section nat_rect.
Variable P : nat \rightarrow Type.
Variable B : P 0.
Variable IH : \forall (n : nat), $\mathrm{P} \mathrm{n} \rightarrow \mathrm{P}$ (S n).
Fixpoint nat_rect' (n : nat) : P n :=
match n with
| $0 \Rightarrow B$
| $\mathrm{S} \mathrm{n}^{\prime} \Rightarrow$ IH n^{\prime} (nat_rect' n^{\prime})
end.

End nat_rect.

Why would we want to roll out our own induction principles?
Consider the following definition of a tree with unbounded branching:

```
Inductive utree : Set :=
| L : nat \(\rightarrow\) utree
| N : list utree \(\rightarrow\) utree.
Check utree_ind.
(* \(\forall \mathrm{P}\) : utree \(\rightarrow\) Prop,
    \((\forall \mathrm{n}:\) nat, \(\mathrm{P}(\mathrm{L} \mathrm{n})) \rightarrow\)
    \((\forall 1\) : list utree, \(P(N 1)) \rightarrow\)
    \(\forall \mathrm{u}\) : utree, P u
*)
```

The induction hypothesis is pretty much useless.

Open the text editor, navigate to Section utree_ind.

Other stuff

In the logical framework Twelf you can represent the lambda-calculus type directly, i.e. $(T \rightarrow T) \rightarrow T$ is a valid constructor. How come?

What is the induction principle for the following type?
Inductive WW := W : WW \rightarrow WW.

Can you show that this type $W W$ is uninhabited?
Prove that every natural number is either 0 or a successor of a natural number.

```
Inductive binary : Set :=
| leaf : nat }->\mathrm{ binary
| node : (binary * binary) }->\mathrm{ binary.
```

What is the induction principle binary_ind and what is the problem with it? Can you come up with a better induction principle and prove it?

How can you define a datatype for trees with infinite branching? Possibly infinite branching? Are the induction principles for those types in order?

Implementing discriminate and injection

Try to prove that true <> false without discriminate using a type family
f : bool -> Prop := fun b => if b then True else False.
Try to prove that $\mathrm{S} \mathrm{n}=\mathrm{S} \mathrm{m}->\mathrm{n}=\mathrm{m}$ without injection using the predecessor function.

Next session

We need a volunteer for the next session to talk about....

1. From chapter 3: mutually recursive datatypes and mutual recursion.
2. Chapter 4: inductive predicates (encoding logical connectives, implicit equality, recursive predicates).
http://cs.ru.nl/~dfrumin/cpdt.html
