
Featherweight Generic Ownership

Alex Potanin, James Noble, Dave Clarke1, and Robert Biddle2

{alex, kjx}@mcs.vuw.ac.nz, dave@cwi.nl, and
robert biddle@carleton.ca

Victoria University of Wellington, New Zealand
1 Centrum voor Wiskunde en Informatica, Amsterdam, Netherlands

2 Human-Oriented Technology Laboratory, Carleton University, Canada

Abstract. Object ownership is an approach to controlling aliasing in program-
ming languages. Proposals for adding ownership to programming languages do
not directly support type genericity. We present Featherweight Generic Owner-
ship — the first system to unify ownership and type polymorphism. Our type
system extends Featherweight Generic Java with locations to support ownership
and confinement invariants, as well as having full soundness proof. We hope that
our work will help bring full support for object encapsulation to the mainstream
programming world.

1 Introduction

Object ownership ensures that objects cannot be leaked beyond an object or collection
of objects which own them. There are two main approaches to object encapsulation in
the literature: enforcing coding conventions within an existing programming language,
or significantly modifying a language to allow ownership support. The first approach
is taken by Islands [12] and various kinds of Confined Types [21, 7]. Programs must
be written to follow a set of specific conventions that can be checked to see if they
provide containment guarantees [11]. The soundness of this approach has been recently
proven [22]. Support for generics is added on top of such collections of restrictions for
enforcing encapsulation [22].

The second approach is taken by languages such as Joe, Universes, Alias Java, and
Safe Java [6, 15, 1, 4]. Ownership parameterisation is added to the syntax and expressed
explicitly within the type system of these languages. All of these type systems are dis-
tinct: they all employ ownership parameterisation, but none has support for type gener-
icity.

This paper continues efforts to provide effective object encapsulation within practi-
cal programming languages. We present Featherweight Generic Ownership (FGO) that
uses a single parameter space to carry both generic type and ownership type informa-
tion. We build on the ideas of Featherweight Generic Confinement [18] (that showed a
way to achieve confinement guarantees, but not object ownership) to demonstrate a full
support for shallow ownership and type genericity in a simple and unified manner. We
show that starting with a type system with full support for type polymorphism allows
us to achieve ownership guarantees more straightforwardly than starting with non type
polymorphic type system.



2

Outline. We first present the ideas behind FGO in section 2. In section 3 we present
FGO type system and delve into the details that allow it to support ownership and con-
finement by carrying the ownership information as part of a type. We then state and
prove the soundness of FGO, as well as ownership and confinement invariants in sec-
tion 4. Finally, we conclude our presentation in section 5.

2 FGO Basics

The key idea behind FGO is to use generic type parameters to carry ownership informa-
tion as well as type information. Following the approach of Ownership Types [8], we
require that every pure FGO class has at least one type parameter to carry this ownership
information. We use the last type parameter to record an object’s owner, to promote up-
wards compatibility and because our implementation will allow ownership parameters
to be elided [17]. All FGO classes descend from a new parameterised root Object<O>
that has just one parameter; all of its subclasses must invariantly preserve this owner,
either by preserving the parameter, or by using manifest ownership.

The following declaration of a class called Main shows that the class is declared
with an owner parameter Owner that is bound to Object’s owner parameter.

class m.Main<Owner extends World> extends Object<Owner> {
m.Main() { super(); }
p.OwnedStack<Object<World>, World> publicStack() {

return new p.OwnedStack<Object<World>, World>;
}
p.OwnedStack<m.Main<World>, M> confinedStack() {

return new p.OwnedStack<m.Main<World>, M>;
}
p.OwnedStack<m.Main<M>, This> privateStack() {

return new p.OwnedStack<m.Main<M>, This>;
}

}

Note that all class names are prefixed by a package identifier, thus m.Main. This is a
convention to indicate the package within which each class is defined. Note also that
classes which extend class World are used to indicate ownership. We use lower case
letters such as m to denote packages and upper case letters such as M to denote owner
classes corresponding to these packages. Finally we use an owner class This to mark
instances that are going to be private to a particular instance of a class.

Within the Main class, three methods return OwnedStack objects; one of these
is public, another one is confined to package m, and the last one is private to a partic-
ular instance of class Main. The public stack stores Object<World> instances that
are accessible from anywhere (World is instantiating Object’s owner parameter);
the confined stack stores Main instances that are also globally accessible, however the
confined stack has owner M, meaning that it is only accessible within package m; the
private stack stores instances of Main accessible inside package m only, while the ac-
tual stack is only accessible by the particular instance of Main that created it. In each



3

case, the stack’s second parameter describes its ownership. These three stacks illustrate
that FGO provides both type polymorphism (the stacks hold different item types) and
ownership polymorphism (the stacks belong in different protection contexts).

The version of ownership supported by FGO is usually referred to as shallow own-
ership [9]: the access to objects is controlled without enforcing an object graph property
such as owners as dominators [5]. This is similar to the kind of ownership supported by
Alias Java [1]. This owner class marks types that are accessible only by a particular
object.

At the same time, FGO supports package-level ownership, more commonly known
as confinement [21, 22]. Package owner classes (e.g. M in the example above) are used
to mark types that are confined to particular packages.

FGO supports both confinement and shallow ownership, and our current work is ex-
tending it to also support deep ownership — the kind of ownership enforcing owner’s
position in program’s object graph as dominators. Deep ownership is provided by lan-
guages such as Joe [6] and Safe Java [3]. Well established restrictions on the nesting of
owner parameters can be enforced to acheive deep ownership in FGO (e.g. owner of a
given type should always be inside other owner parameters present in the type).

We adopt the concept of manifest ownership [5] to allow classes without explicit
owner type parameters. We distinguish two different categories of FGO classes by call-
ing the classes with explicit owner parameters pure FGO classes, and the ones with
an implicit owner parameter — manifest FGO classes. A manifest FGO class does not
have an explicit owner parameter, rather the class’s owner is fixed and all the objects
of that class have the same owner. To demonstrate manifest ownership, consider the
following alternative to creating a public stack:

class p.PublicStack extends p.OwnedStack<World> { ... }

In this case, the owner of class PublicStack is World, and thus all of its instances
are owned by World, while any use of class PublicStack requires no owner type
parameter.

Manifest ownership allows us to fit all of the FGJ’s classes into FGO class hierarchy
by simply making FGJ’s root class into an FGO manifest class 1:

class Object extends Object<World> { ... }

With this definition Object and every FGJ class under it has a default owner parame-
ter World (thus making them publically accessible). For example, it becomes possible
to have the following familiar declaration of a public Stack object, which is indistin-
guishable from that of FGJ:

class Stack extends Object { ... }

The important difference is that in FGO, class Stack has an owner World coming
from Object’s super class Object<World>.

1 To avoid name conflict, FGO can choose a different name for its root, such as
OObject<World> for owned object.



4

Object

World

Object<O>

pure FGO classes

manifest FGO classes

p.PublicStack

FGJ classes

Stack

p.OwnedStack<O>

P

owner classes

This

Fig. 1. FGO Classes and Owner Classes. Pure FGO classes have an explicit owner type pa-
rameter. Manifest FGO classes have an owner fixed when subclassing a pure FGO class. Owner
classes lie outside the FGO class hierarchy because they cannot be instantiated in FGO programs;
pure FGO classes use them to bind their owner type parameters (as shown by the dashed arrow
on the diagram).

Figure 1 shows the relationship between owner classes and program classes in FGO.
Owner classes inherit from the class World, and there is one owner class correspond-
ing to each FGO package, as well as a special owner class This described above. The
owner class hierarchy lies outside the Object<World> hierarchy of pure and man-
ifest FGO classes. Manifest FGO classes have an owner class corresponding to their
owner, which is not written out explicitly but rather is found among its superclasses in
the FGO class hierarchy. Vanilla FGJ classes form a subset of manifest FGO classes.

3 FGO Type System

Featherweight Generic Ownership (FGO) builds on Featherweight Generic Java (a type
system describing a functional subset of Java [13]), Featherweight Generic Confine-
ment (a type system describing a way to provide confinement and type polymorphism
in a unified manner, utilising manifest ownership [19]), and Featherweight Domains
Java (a type system describing a way to support ownership domains with locations and
store to describe the references [2]). FGO presents a provably sound type system pro-
viding ownership, confinement, and type polymorphism in a unified manner. FGO also



5

Syntax:
T ::= X | N e ::= es | l | l > e

N ::= C<T> S ::={l : N(v)}
L ::= class C<X / N> / N{T f; K M} v, l ∈ locations
K ::= C(Tcp fcp) { super(fcp); this.f = initfieldT(Tcp fcp) } Γ ::= {x : T}
M ::= <X / N>T m(T x){return e; } Σ ::= {l : T}
es ::= x | e.f | e.m<T>(e) | new N(e) | (N) e ∆ ::= {X : N}
Functions:
initfieldT(Tcp fcp) Initialises a field of type T using constructor parameters.
πC Package owner class corresponding to class C.
thisl(e) Provides replacement for This keyword in method or field

type which are executed on expression e while at location l.
owner∆(T) Determines owner of type T.
visible∆(O, C) Owner O is visible in class C.
visible∆(T, C) Type T is visible in class C.
Judgements:
∆; Σ ` T OK Type T is OK.
∆; Σ ` T<: U Type T is a subtype of type U.
∆; Γ ; Σ; P ` e : T Expression e is well typed.
∆; Γ ; Σ; P ` visible(e) Expression e is visible with respect to

permission P (a type at static time).
∆ ` Σ OK and ∆; Σ ` S Store (heap) is well-formed.
<Y / P> T m(T x){return e0; } FGO IN C<X / N> Method m definition is OK.
class C<X / N> / N {T f; K M} FGO Class C definition is OK.

Fig. 2. FGO Syntax, Functions, and Judgements

builds on the confinement and genericity ideas of Confined Featherweight Java [23],
ownership typing of Joe [6], the concept of phantom types [10], and utilising type poly-
morphism to its full potential [14].

In this section we briefly present the important points of FGO type system as well
as revealing a full set of rules in the figures. We assume that the reader is familiar with
Featherweight Generic Java (FGJ) [13].

3.1 Syntax and Judgements

Figure 2 presents FGO syntax, useful functions, and judgements used throughout the
type system. The syntax is very close to FGJ, except for locations (l, v) and store (S).
Every time an object is created, a unique location l is associated with it and stored
in store S. This location is then used to track which object’s field or method is being
accessed during the execution. Additionally, we had to change the constructor syntax to
allow initialisation of fields inside the class, rather than only outside. This allows field’s
owners to be private to the instance creating them.

FGO also introduces a set of visibility functions and rules that allow us to look at the
types involved and decide based on their owner information whether they are “visible”
with respect to each other. πC gives an owner class corresponding to a package where



6

Initialise Field:
initfieldT(Tcp fcp) = f′, T′ f′ ∈ Tcp fcp and T′ = T

= new N(f), f ⊆ fcp and N = T
(FGO-INIT-FIELD)

Constructor Parameters Lookup:
cparams(Object<O>) = • (CP-OBJECT)

K ::= C(Tcp fcp) { super(fcp); this.f = initfieldT(fcp) }
class C<X / N> / N {S f; K M} cparams([T/X]N) = U g

cparams(C<T>) = U g, [T/X]Tcp fcp

(CP-CLASS)

Owner Lookup:
owner∆(X) = owner∆(bound∆(X))
owner∆(C<T, O>) = O

owner∆(C<T>) = owner∆(N[T/X]), where
CT (C) = class C<X / N> / N{T′ f; K M}

(FGO-OWNER)

Fig. 3. FGO-Specific Auxiliary Functions

class C is declared. The function this allows us to preserve unique owners per each
object location to be able to ensure that objects with This owner are private to a correct
instance location.

To simplify our presentation, we assume that owner classes are syntactically distin-
guishable. Owners have the syntax:

O ::= OVar | OCon

where O ranges over all owners, OVar ranges over owner variables, and OCon ranges
over concrete owners such as World and This, as well as the πC owner classes corre-
sponding to packages. Pure FGO types and classes are written to include an owner class
as their last type parameter or argument, which can be distinguished using the following
syntax:

Npure ::= C<T, O>
Lpure ::= class C<X / N, OVar / OCon> / N {T f; K M}.

We use CT (class table) to denote a mapping from class names C to class decla-
rations L and P (permission) to denote a current location to be able to correctly type
this.

3.2 Auxiliary Functions

The extra FGO auxiliary functions are the initfield, cparams, and owner functions
shown in figure 3. The other auxiliary functions are presented in figure 4 are the same
as those of FGJ, given the new root class.

The initfield function is part of the FGO syntax to allow two kinds of field initiali-
sation — either using the explicit constructor parameter (as is in FGJ) or by creating a



7

Bound of Type:
bound∆(X) = ∆(X)
bound∆(N) = N

Subclassing:

C E C
C E D D E E

C E E

class C<X / N> / D<T>{. . .}
C E D

Field Lookup:
fields(Object<O>) = • (F-OBJECT)

class C<X / N> / N {S f; K M} fields([T/X]N) = U g

fields(C<T>) = U g, [T/X]S f
(F-CLASS)

Method Type Lookup:
class C<X / N> / N {S f; K M}
<Y / P> U m(U x){ return e; } ∈ M

mtype(m, C<T>) = [T/X](<Y / P>U→ U)
(MT-CLASS)

class C<X / N> / N {S f; K M} m /∈ M

mtype(m, C<T>) = mtype(m, [T/X]N)
(MT-SUPER)

Method Body Lookup:
class C<X / N> / N {S f; K M}

<Y / P> U m(U x){ return e0; } ∈ M

mbody(m<V>, C<T>) = x.[T/X, V/Y]e0

(MB-CLASS)

class C<X / N> / N {S f; K M} m /∈ M

mbody(m<V>, C<T>) = mbody(m<V>, [T/X]N)
(MB-SUPER)

Constructor Parameters Lookup:
cparams(Object<O>) = • (CP-OBJECT)

K ::= C(Tcp fcp) { super(fcp); this.f = initfieldT(fcp) }
class C<X / N> / N {S f; K M} cparams([T/X]N) = U g

cparams(C<T>) = U g, [T/X]Tcp fcp

(CP-CLASS)

Fig. 4. Other FGO Auxiliary Functions

new instance of an object stored in a field inside the constructor, using the constructor
parameters (marked cp) if necessary to initialise a new object. This allows FGO classes
to initialise fields with owner Thiswhich are inaccessible outside the object. The func-
tion cparams works in the same way as the field lookup function, except that it looks
up constructor parameters for a given class.

The owner function is given a type for which it establishes the nonvariable bound
and checks if the corresponding class type instance has an owner. In case of a manifest
class, a superclass making the owner fixed is found by traversing the class hierarchy.
This owner is then returned by the function.



8

3.3 This Function

The this function, presented in figure 5, forms the foundation for object ownership in
FGO. It is used both to verify the validity of class declarations inside a FGO program
and to ensure that during reduction, every This owner is appropriately converted into
location-unique Thisl owner class.

This Function:
thisC(this) = This

thisl(l
′) = Thisl

thisP (. . .) = ⊥
(FGO-THIS)

Fig. 5. FGO This Function

The first use of this is during the validation of class declaration. Every expression
containing a method call or a field access is checked to see if any of the types involved
contain This as an owner class. If they do, then the method call or field access is only
allowed on this, not on another object. At this time, the permission P given to this is
the type of the current FGO class being validated.

The second use of this is during reduction, when locations become part of the typing
rules. In this case, the permission P given to this is the current location l. Any occur-
rence of the owner class This is now replaced by a more appropriate location-specific
Thisl, just like in reduction rule R-METHOD.

In either case, if the use of owner class This violates the this constraint, the expres-
sion type becomes undefined (⊥). FGO type soundness guarantees that any validated
FGO class will not incur an invalid access to a location-specific instance (marked by
Thisl owner) during reduction.

3.4 Subtyping and Type Well-formedness

Figure 6 shows FGO’s subtyping rules. They are generally taken verbatim from FGJ,
except for the addition of subtyping for owner classes.

World forms the top of owner class hierarchy, which any package owner class ex-
tends directly from it. This also lies directly below World, while location-specific
version Thisl extends This. The latter is important for the subject reduction proof.
Finally, FGO’s type well-formedness rules shown in figure 7 are the same as FGJ, ex-
cept that the root of class hierarchy is parameterised.

3.5 Visibility

Another important addition that FGO makes to FGJ are a set of visibility rules similar
to the ones used by Featherweight Generic Confinement [19]. While a subset of our
visibility rules for terms is similar to the ones used by ConfinedFJ [23], the owner and
type visibility form the essential foundation of FGO.



9

Subtyping:

∆; Σ ` T<: T ∆; Σ ` X<:∆(X)
(S-REFL) and (S-VAR)

∆; Σ ` S<: T ∆; Σ ` T<: U
∆; Σ ` S<: U

(S-TRANS)

class C<X / N> / N {. . .}
∆; Σ ` C<T><:[T/X]N

(S-CLASS)

∆; Σ ` World<: World ∆; Σ ` This<: World
(S-OWNER)

class C<X / N> / N {. . .}
∆; Σ ` πC <: World

l ∈ dom(Σ)

∆; Σ ` Thisl <: This

Valid Downcast:
class C<X / N> / D<T> {. . .}

dcast(C, D) dcast(D, E)

dcast(C, E)

X = FV (T)

dcast(C, D)
FV (T) is the set of type variables in T.

Valid Method Overriding:
mtype(m, N) = <Z / Q>U→ U0

⇒ P, T = [Y/Z](Q, U) and Y<: P ` T0 <:[Y/Z]U0
override(m, N, <Y / P>T→ T0)

Fig. 6. FGO Subtyping Rules

Well-Formed Types:

X ∈ dom(∆)

∆; Σ ` X OK
∆; Σ ` O<: World

∆; Σ ` Object<O> OK
(WF-VAR) and (WF-OBJECT)

class C<X / N> / N {. . .}
∆; Σ ` N<: Object<O> ∆; Σ ` O<: World

∆; Σ ` T OK ∆; Σ ` T<:[T/X]N

∆; Σ ` C<T> OK

(WF-CLASS)

Fig. 7. FGO Type Well-Formedness Rules

Figure 8 shows owner visibility rule that checks if an owner O is visible inside a
nonvariable type C. This is the case if the owner is World, belongs to the same package
as C, or is an owner used by one of the generic parameters used when instantiating the
type of C. The last part is important, since by supplying a class with a generic parameter
with a completely unrelated owner context, we allow the class to have access to that
unrelated owner context so that it can use its own type parameter. This, for example,



10

Owner Visibility:
visible∆(O, C) = O ∈ owners(C) ∪ {This, πC, World} (V-OWNER)

where owners(C) =

8>><>>:
{owner∆(N′) | N′ ∈ N, N},

if CT (C) = class C<X / N> / N{. . .}
{OVar} ∪ {owner∆(N′) | N′ ∈ N},

if CT (C) = class C<X / N, OVar / OCon> / N{. . .}

Fig. 8. FGO Owner Visibility

can allow a type polymorphic class to have private access to more than one package.
This issue was discussed in ConfinedFJ [23].

Finally, we allow a complete visibility of This owner on its own and rely on this
function described in an earlier subsection to stop illegal uses of This.

FGO visibility rules are shown in figure 9. Type visibility simply checks the owner
of a given type for visibility. Term visibility recursively checks all the types involved
in the five possible expressions of FGO to make sure that they are visible in a given
nonvariable type C. Since these checks are performed on class declarations, locations
are not present in these expressions.

Type Visibility:

visible∆(T, C) = visible∆(owner∆(T), C) (V-TYPE)

Term Visibility:
∆; Γ ; Σ; C ` x : T visible∆(T, C)

∆; Γ ; Σ; C ` visible(x)
(V-VAR)

∆; Γ ; Σ; C ` visible(e) ∆; Γ ; Σ; C ` e.fi : T visible∆(T, C)

∆; Γ ; Σ; C ` visible(e.fi)
(V-FIELD)

∆; Γ ; Σ; C ` e.m(e) : T visible∆(T, C)
∆; Γ ; Σ; C ` visible(e) ∆; Γ ; Σ; C ` visible(e)

∆; Γ ; Σ; C ` visible(e.m(e))
(V-METHOD)

∆; Γ ; Σ; C ` visible(e) visible∆(N, C)

∆; Γ ; Σ; C ` visible(new N(e))
(V-NEW)

∆; Γ ; Σ; C ` visible(e) visible∆(N, C)

∆; Γ ; Σ; C ` visible((N) e)
(V-CAST)

Fig. 9. FGO Visibility Rules

The expression typing rules are standard FGJ rules with support for locations, sim-
ilar to the rules of Featherweight Domains Java [2].



11

Expression Typing:

∆; Γ ; Σ; P ` x : Γ (x) ∆; Γ ; Σ; P ` l : Σ(l)
(T-VAR) AND (T-LOC)

∆; Γ ; Σ; P ` e0 : T0
fields(bound∆(T0)) = T f T = [thisP (e0)/This]Ti ∆; Σ ` T OK

∆; Γ ; Σ; P ` e0.fi : T
(T-FIELD)

∆; Γ ; Σ; P ` e0 : T0 ∆; Σ ` T OK ∆; Σ ` V OK
mtype(m, bound∆(T0)) = <Y / P>U→ U

∆; Σ ` V<:[V/Y, thisP (e0)/This]P ∆; Γ ; Σ; P ` e : S

∆; Σ ` S<:[V/Y, thisP (e0)/This]U T = [V/Y, thisP (e0)/This]U

∆; Γ ; Σ; P ` e0.m<V>(e) : T
(T-METHOD)

∆; Σ ` N OK cparams(N) = T f ∆; Γ ; Σ; P ` e : S ∆; Σ ` S<: T
∆; Γ ; Σ; P ` new N(e) : N

(T-NEW)

∆; Σ ` N OK ∆; Γ ; Σ; P ` e0 : T0 ∆; Σ ` bound∆(T0)<: N
∆; Γ ; Σ; P ` (N)e0 : N

(T-UCAST)

∆; Σ ` N OK ∆; Γ ; Σ; P ` e0 : T0 ∆; Σ ` N<:bound∆(T0)
N = C<T> bound∆(T0) = D<U> dcast(C, D)

∆; Γ ; Σ; P ` (N)e0 : N
(T-DCAST)

∆; Σ ` N OK ∆; Γ ; Σ; P ` e0 : T0 N = C<T>
bound∆(T0) = D<U> C 5 D D 5 C stupid warning

∆; Γ ; Σ; P ` (N)e0 : N
(T-SCAST)

∆; Γ ; Σ; l ` e : T

∆; Γ ; Σ; P ` l > e : T
(T-CONTEXT)

Fig. 10. FGO Expression Typing Rules

3.6 Store, Method, and Class Typing

The store typing rules is standard and is similar to other type systems using locations
[6, 2]. The mapping Σ contains the types for each location and the FGO-STORE-WF rule in
figure 11 ensures that every one of the types is well-formed. The mapping S contains
the type instantiations with locations for each field. The main FGO-STORE rule ensures
that not only the types are well-formed, but also that each field location is valid and
is a correct subtype of the declared field type. It is interesting to note that our type
system doesn’t have any explicit containment constraints in the store rule — the benefit
of ownership information being part of the type — the subtyping ensures that all the
containment constraints are not broken.

Finally, the class and method declarations are checked to contain well-formed, vis-
ible types and expressions as shown in figure 12. There are rules for pure and manifest



12

Store Well-Formedness:

∀l ∈ dom(Σ) : ∆; Σ ` Σ(l) OK
∆ ` Σ OK

(FGO-STORE-WF)

Store Typing:

dom(S) = dom(Σ) S[l] = N(v) ⇐⇒ Σ[l] = N ∆ ` Σ OK
(S[l,i] = l′) ∧ (fields(Σ[l]) = T f) =⇒ ∆; Σ ` Σ[l′]<: Ti (FGO-STORE)

(S[l, i] = l′) =⇒ ∆; Σ ` Σ(l′) OK
∆; Σ ` S

Fig. 11. FGO Store Typing Rules

Method Typing:

∆; Σ ` X<: N, Y<: P⇒ T, T, N, P OK class C<X / N> / N {. . .}
visible∆(T, C) visible∆(T, C) visible∆(P, C)

∆, x : T, this : C<X> ; Γ ; Σ; C<X / N> ` visible(e0)
∆, x : T, this : C<X> ; Γ ; Σ; C<X / N> ` e0 : S
∆; Σ ` S<: T override(m, N, <Y / P>T→ T)

<Y / P> T m(T x){ return e0; } FGO IN C<X / N>

Class Typing (Manifest and Pure):

cparams(N) = U g K = C(U g, Tcp fcp){super(g); this.f = initfieldTfcp; }
visible∆(N, C) visible∆(T, C) visible∆(N, C)
∆; Σ ` X<: N⇒ N, T, N OK M FGO IN C<X / N>

class C<X / N> / N {T f; K M} FGO

cparams(N) = U g K = C(U g, Tcp fcp){super(g); this.f = initfieldTfcp; }
visible∆(OCon, C) visible∆(T, C) visible∆(N, C)

N = C′<T′, OVar> ∆; Σ ` X<: N, OVar<: OCon⇒ N, T, N OK
M FGO IN C<X / N, OVar / OCon>

class C<X / N, OVar / OCon> / N {T f; K M} FGO

Fig. 12. FGO Methods and Classes Rules

FGO classes distinguished only by the fact that the owner may be explicit or must be
looked up from a superclass. Both of the class rules check that (1) the constructor dec-
laration is valid and initialises all the required fields; (2) all the types involved (types of
fields and type parameters) are visible within the context of the owner of the class being
declared or its superclass; (3) all the types are well formed FGO types; and finally (4)
all the methods declarations are valid.



13

Reduction Rules:

l /∈ dom(S) S′ = S[l 7→ N(v)]

new N(v), S → l, S′ (R-NEW)

S[l] = N(v) fields(N) = T f

l.fi, S → vi, S
(R-FIELD)

S[l] = N(v) mbody(m<V>, N) = x.e0
l.m<V>(v), S → l > [v/x,l/this, Thisl/This]e0, S

(R-METHOD)

S[l] = N(v) N<: P
(P)l, S → l, S

(R-CAST)

l > v, S → v, S
(R-CONTEXT)

Fig. 13. FGO Reduction Rules

The method typing rule checks that all the types involved are well formed FGO types
that are visible within the class that contains the method. It also recursively checks the
method’s expression to ensure that all the subexpressions are visible with respect to
the current class. Finally, in exactly the same manner as FGJ, the validity of method
overriding (if applicable) is verified.

3.7 Reduction and Congruence Rules

Figure 13 and 14 provide reduction and congruence rules that are standard FGJ rules
with location-specific additions. Again, these are similar to the ones used by Feather-
weight Domains Java [2].

4 FGO Theorems

Theorem (Preservation). If ∆;Γ ;Σ;P ` e : T and ∆;Σ ` S and e, S → e′, S′,
then ∃Σ′ ⊇ Σ and ∃T′ <: T such that ∆;Γ ;Σ;P ` e′ : T′ and ∆;Σ′ ` S′.

Proof. Using structural induction on five reduction rules in figure 13.

l /∈ dom(S) S′ = S[l 7→ N(v)]
new N(v), S → l, S′ (R-NEW)

Expression: By T-NEW we have e = new N(v): T where T = N. By T-LOC e′ =l: T′ where
T′ =Σ′(l). By FGO-STORE, Σ′(l)= N if and only if S′(l) = N(v), but the latter holds by
definition in R-NEW. Therefore T′ = N<: N = T as required.



14

Congruence Rules:

e, S → e′, S′

e.f, S → e′.f, S′ (RC-FIELD)

e0, S → e′
0, S

′

e0.m<T>(e), S → e′
0.m<T>(e), S′ (RC-INV-RECV)

ei , S → e′
i , S

′

e0.m<T>(. . . , ei , . . .), S → e0.m<T>(. . . , e′
i , . . .), S

′ (RC-INV-ARG)

ei , S → e′
i , S

′

new N(. . . , ei , . . .), S → new N(. . . , e′
i , . . .), S

′ (RC-NEW-ARG)

e, S → e′, S′

(N)e, S → (N)e′, S′ (RC-CAST)

e, S → e′, S′

l>e, S → l>e′, S′ (RC-LOC)

Fig. 14. FGO Congruence Rules

Store: Define Σ′ = Σ[l → N]. We show that ∆;Σ′ ` S′ using FGO-STORE rule. By
definition of Σ′ and S′: dom(S′) = dom(S) ∪ {l} = dom(Σ) ∪ {l} = dom(Σ′) and
S′[l] = N(v) and Σ′[l] = N. By T-NEW ∆;Σ ` N OK and by definition Σ′(l) = N, and
hence ∆;Σ ` Σ′(l) OK and by FGO-STORE-WF ∆ ` Σ′ OK.

Consider any field i in fields(Σ′(l)) = fields(N) = T f. By T-NEW and initfieldT
definition (where e = v and S = Σ(v)) ∆;Σ ` Σ(vi)<: Ti and Σ′(vi) = Σ(vi) by
definition. But vi = S′[l, i] by definition of S′ and hence: (S[l, i] = l′)∧(fields(Σ′[l]) =
T f) ⇒ ∆;Σ′ ` Σ′[l′]<: Ti.

Finally, by FGO-STORE-WF, ∆;Σ′ ` Σ′(l′) OK since if l′ 6= l, then l′ ∈ Σ and
∆;Σ ` S makes Σ(l′) OK and Σ′(l′) = Σ(l); and for l′ = l, we already established
that Σ′(l) OK. Therefore ∆;Σ′ ` S′ as required.

S[l] = N(v) fields(N) = T f
l.fi, S → vi, S

(R-FIELD)

Expression: By T-FIELD we have e =l.fi : T where T = [thisP (e0)/This]Ti. By T-LOC,
e′ = vi : T′ where T′ = Σ′(vi). By FGO-STORE and since Σ′ = Σ, we have Σ′(vi)<: Ti.
But by S-OWNER ∆;Σ ` Thisl <: This and this function at dynamic time will provide
us with Thisl for some location l. Therefore T′ = Ti <:[thisP (e0)/This]Ti = T as
required.

Store: Define Σ′ = Σ ⊇ Σ, to show that ∆;Γ ;Σ′ ` S′, we need ∆;Γ ;Σ ` S, which
already holds.



15

S[l] = N(v) mbody(m<V>, N) = x.e0
l.m<V>(v), S → l > [v/x,l/this, Thisl/This]e0, S

(R-METHOD)

Expression: By T-METHOD we have e = l.m<V>(v) : T where T = [V/Y, thisP (l)/This]U
and mtype(m, bound∆(Σ(l)) = <Y / P>U→ U and for some class C such that N<: C
method m is declared in it (by MT-CLASS). By method typing rule, e0 : U and hence by T-

CONTEXT we have ∆;Γ ;Σ; l ` [v/x,l/this, Thisl/This]e0 : [l/this, Thisl/This]U =
T′. Finally, since P = l, our this function expands thisP (l) into [l/this, Thisl/This]
substitution and T′ <: T as required.

Store: Define Σ′ = Σ ⊇ Σ, to show that ∆;Γ ;Σ′ ` S′, we need ∆;Γ ;Σ ` S, which
already holds.

S[l] = N(v) N<: P
(P)l, S → l, S

(R-CAST)

Expression: By one of T-UCAST or T-DCAST or T-SCAST we have e = (P)l : T where
T = P. By T-LOC e′ = l : T′ where T′ = Σ(l) = N by FGO-STORE since S[l] = N(v).
T′ = N<: P = T as required.

Store: Define Σ′ = Σ ⊇ Σ, to show that ∆;Γ ;Σ′ ` S′, we need ∆;Γ ;Σ ` S, which
already holds.

l > v, S → v, S
(R-CONTEXT)

Expression: Given that e = l > v : T if and only if v : T by T-CONTEXT, we have e′ =
v : T as required.

Store: Define Σ′ = Σ ⊇ Σ, to show that ∆;Γ ;Σ′ ` S′, we need ∆;Γ ;Σ ` S, which
already holds. �

Theorem (Progress). Suppose e is a well-typed expression. Then either e is a value
(location or a variable) or there is a reduction rule that contains e on the left hand
side.

Proof. Based on all the possible expression types, either e is a variable or location (T-

VAR and T-LOC) or one of the reduction rules applies. We need to check that each of the
reduction rules is satisfied. The only rules that require additional conditions are R-FIELD

and R-METHOD - in the case of R-CAST the program gets stuck if the downcast is impossible
(similar to FGJ).

In case of R-FIELD, well-typedness of N ensures that fields(N) is well defined and fi

appears in it. In case of R-METHOD, the fact the mtype looks up the type for m, ensures that
mbody will succeed too and will have the same number of arguments (since MT-CLASS

and MB-CLASS are defined in the same way).�

Type soundness is then immediate from preservation and progress theorems.

Lemma (Ownership Invariance). If ∆;Σ ` S <: T and ∆;Σ ` T <: CObject<O>,
then owner∆(S) = owner∆(T) = O.



16

Proof. By induction on the depth of the subtype hierarchy. By FGO class typing rules a
FGO class has the same owner parameter as its superclass. �

Theorem (Confinement Invariant). Let e be a subexpression appearing in the body
of a method of a well-formed FGO class C. Then: If e →∗ new D<TD>(e), then
visible∆(D<TD>, C).

Proof. Because the class is a well-formed FGO class, its methods are well-formed
FGO methods. This, plus the standard subformula property, implies that, for appropriate
∆;Γ ;Σ;P , both ∆;Γ ;Σ;P ` e : T and visible∆(e, C) hold. From this we can derive
visible∆(T, C), and hence visible∆(owner∆(T), C). By FGO’s subject reduction prop-
erty, there is a T′ such that ∆;Γ ;Σ;P ` new D<TD>(e) : T′, where ∆;Σ ` T′ <: T.
Furthermore, we have that ∆;Γ ;Σ;P ` new D<TD>(e) : D<TD>, and hence clearly
∆;Σ ` D<TD> <: T′, and ∆ ` D<TD> <: T. By the Ownership Invariance lemma,
owner∆(D<TD>) = owner∆(T), from which we deduce visible∆(owner∆(D<TD>), C),
and hence visible∆(D<TD>, C). �

Theorem (Ownership Invariant). Given any expression of the form l > e during the
reduction of any FGO program with variable to nonvariable types mapping ∆. If e, S →∗

v, S′, then there exist Σ and Σ′ such that ∆;Σ ` S and ∆;Σ′ ` S′ and visible∆(Σ′(v), Σ(l)).

Proof (sketch). By FGO subject reduction, Σ′(v)<:Σ(l) and Σ′ ⊇ Σ. By owner-
ship invariance, owner∆(Σ(l)) = owner∆(Σ′(l)) = owner∆(Σ′(v)). By V-OWNER,
visible∆(Σ′(v), Σ(l)). �

5 Discussion and Conclusion

The main contribution of FGO is providing ownership as an integral part of type poly-
morphism, rather than having two separate parameter spaces for ownership and gener-
icity [3]. This approach turns out to be simpler, with less rules and simpler proofs, due
to the existing type polymorphic framework. FGO also turns out to be easier to imple-
ment, as we have done by writing Ownership Generic Java compiler [16] on top of Java
5 compiler source [20], since the reuse of the existing type checking for generic types
saves huge amounts of programming effort. Finally, we argue that having a simple ad-
dition to the language (one additional generic parameter denoting the ownership of a
particular instance) makes it easier for the programmers to learn and adopt ownership
in their programs.

On the other hand, having two separate parameter spaces for ownership and gener-
icity may make programs more flexible. A number of limitations are present in FGO
in its current form. FGO only supports shallow ownership (there is no guarantee that
objects in an FGO program will form a dominator tree of the object graph based on
their ownership information). FGO doesn’t have assignment as part of the type system.
For simplicity, we chose to prohibit making a package-confined FGO class private to a
particular instance (since Thisl owner class is not a subclass of πC).

While the addition of assignment and extending the owner hierarchy are technicali-
ties that won’t affect the big picture of FGO, other than adding more rules and increasing
the size of the type system (e.g. verifying the heap well-formedness requires more work
if assignment is present), the addition of deep ownership is slightly harder to deal with.



17

At this stage, to achieve deep ownership, we plan to introduce checks similar to other
deep ownership type systems [6, 3] for how owner parameters can be nested in a type.

For example, we may want to prohibit types like p.OwnedStack<m.Main<This>,
World> since it would potentially allow pointers into the objects stored inside the stack
from outside of the object who intends to own the stack and thus to form a dominator
of the Stack object in the ownership tree of the program’s object graph.

Adding assignment and providing deep ownership support are all ongoing subjects
of our work in Featherweight Generic Ownership. We are also exploring the possibili-
ties provided by ownership inference and formulating a set of design patterns utilising
ownership support. The system we have presented here, however, is the first type system
providing object ownership support and type polymorphism in a unified manner.

Acknowledgments

This work is supported by the RSNZ Marsden Fund and Claude McCarthy Fellowship.



Bibliography

[1] J. Aldrich, V. Kostadinov, and C. Chambers. Alias Annotations for Program
Understanding. In Proceedings of ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), Seattle, WA, USA,
November 2002. ACM Press, New York, NY, USA.

[2] Jonathan Aldrich and Craig Chambers. Ownership Domains: Separating Alias-
ing Policy from Mechanism. In Proceedings of European Conference on Object-
Oriented Programming (ECOOP), Oslo, Norway, June 2004. Springer-Verlag,
Berlin, Heidelberg, Germany.

[3] Chandrasekhar Boyapati. SafeJava: A Unified Type System for Safe Program-
ming. PhD thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, February 2004.

[4] Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership Types
for Object Encapsulation. In Proceddings of ACM Symposium on Principles of
Programming Languages (POPL), New Orleans, LA, USA, January 2003. ACM
Press, New York, NY, USA. Invited talk by Barbara Liskov.

[5] Dave Clarke. Object Ownership and Containment. PhD thesis, School of Com-
puter Science and Engineering, University of New South Wales, Australia, 2002.

[6] Dave Clarke and Sophia Drossopoulou. Ownership, Encapsulation, and the Dis-
jointness of Type and Effect. In Proceedings of ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA), Seat-
tle, WA, USA, November 2002. ACM Press, New York, NY, USA.

[7] Dave Clarke, Michael Richmond, and James Noble. Saving the World from Bad
Beans: Deployment-Time Confinement Checking. In Proceedings of ACM Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Anaheim, California, USA, October 2003. ACM Press, New York,
NY, USA.

[8] David Clarke, John Potter, and James Noble. Ownership Types for Flexible Alias
Protection. In Proceedings of ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), Vancouver, Canada, October
1998. ACM Press, New York, NY, USA.

[9] David Clarke and Tobias Wrigstad. External Uniqueness is Unique Enough. In
Luca Cardelli, editor, Proceedings of European Conference on Object-Oriented
Programming (ECOOP), volume 2473 of Lecture Notes in Computer Sci-
ence (LNCS), pages 176–200, Darmstadt, Germany, July 2003. Springer-Verlag,
Berlin, Heidelberg, Germany.

[10] Matthew Fluet and Riccardo Pucella. Phantom Types and Subtyping. In Proceed-
ings of the 2nd IFIP International Conference on Theoretical Computer Science
(TCS), pages 448–460, August 2002.

[11] Christian Grothoff, Jens Palsberg, and Jan Vitek. Encapsulating Objects with Con-
fined Types. In Proceedings of ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), Tampa Bay, FL, USA,
2001. ACM Press, New York, NY, USA.



19

[12] John Hogg. Islands: Aliasing Protection in Object-Oriented Languages. In Pro-
ceedings of ACM Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), volume 26, pages 271–285, Phoenix, AZ,
USA, November 1991. ACM Press, New York, NY, USA.

[13] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a
Minimal Core Calculus for Java and GJ. ACM Transactions on Programming
Languages and Systems (TOPLAS), 23(3):396–450, May 2001.

[14] John Launchbury and Simon L. Peyton Jones. State in Haskell. Lisp and Symbolic
Computation, 8(4):293–341, December 1995.

[15] P. Müller and A. Poetzsch-Heffter. Programming Languages and Fundamentals of
Programming, chapter Universes: a Type System for Controlling Representation
Exposure. Fernuniversität Hagen, 1999.

[16] James Noble and Robert Biddle. Oh! Gee! Java! — Ownership Types (almost) for
Free. Technical Report VUW-CS-TR-03/9, School of Mathematics, Statistics, and
Computer Science, Victoria University of Wellington, New Zealand, May 2003.

[17] Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. Defaulting Generic
Java to Ownership. In Proceedings of the Workshop on Formal Techniques for
Java-like Programs in European Conference on Object-Oriented Programming
(FTfJP), Oslo, Norway, June 2004. Springer-Verlag, Berlin, Heidelberg, Ger-
many.

[18] Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. Featherweight
Generic Confinement. In Foundations of Object-Oriented Languages (FOOL11),
Venice, Italy, January 2004.

[19] Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. Featherweight
Generic Confinement. Journal of Functional Programming, 2005. Submitted
for publication.

[20] Sun Microsystems. Java Development Kit. Available at: http://java.sun.
com/j2se/, 2005.

[21] Jan Vitek and Boris Bokowski. Confined Types in Java. Software — Practice &
Experience, 31(6):507–532, May 2001.

[22] Tian Zhao, Jens Palsberg, and Jan Vitek. Lightweight confinement for Feather-
weight Java. In Proceedings of ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), October 2003.

[23] Tian Zhao, Jens Palsberg, and Jan Vitek. Type-Based Confinement. Journal of
Functional Programming, 2005. Accepted for publication.


