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Abstract. In the early 2000s security began to receive serious attention in the IT com-
munity. This led to the birth of several methodologies for secure software development
(e.g. Microsoft SDL) and many other forms of security advice: Top N lists of common
vulnerabilities, secure coding guidelines, and various security frameworks and standards.
Now that twenty years later the cry for more secure software has reached policy documents
such as the US National Cybersecurity Strategy and the EU Cyber Resilience Act, this
paper reflects on developments in the field of software security over these past two decades.

1 Introduction

In the early 2000s there was a growing recognition in the IT community that security was
becoming a big problem and that the insecurity of software played a key role here. This led to
increased attention to software security, also called application security (or AppSec for short),
as field of study. In January 2002 Bill Gates wrote his by now famous email to all Microsoft
employees announcing that security was to be a key priority for Microsoft in the years to come
[17]. A year earlier, in 2001, OWASP had started as community initiative to improve security of
web applications. A few years later SAFEcode [50] followed as a collaboration between several
large corporations to improve software security.

Fast forward 20 years and the security of software has become an important focus of US and
EU policies. The US National Cybersecurity Strategy [40] released in 2023 explicitly mentions
secure software development; it even announces plans to introduce legislation for software liability,
with a ‘safe harbour’ exemption for companies that adhere to some baseline standard for secure
software development. Also in 2023, the EU introduced the Cyber Resilience Act (CRA) [11] that
sets cybersecurity rules for software and products containing software: it requires manufacturers
to ensure that software in products is free from ‘known exploitable security vulnerabilities’ at the
moment they are placed on the market. The EU Radio Equipment Directive (RED) [10], which
is narrower in scope than the CRA but which comes into effect sooner, also requires this.

With all this legislation more organisations will have to pay attention – or more attention
– to the security of software they use or produce in the years to come, so this is good occasion
to look back on developments in the field of software security over the past two decades. There
is a lot of information around about how to make software more secure – so much so, that it
can be confusing for newcomers to the field, even experienced software engineers and computer
scientists who never had to deal with security before. One aim of this paper is to provide an
overview for such newcomers to the field of software security.

Process vs product Some security guidelines focus on the process of developing software: they
propose activities that can be done in the development process to produce more secure software.
Some of these guidelines aim to provide comprehensive methodology for all security activities in
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the entire software development lifecycle. The best known of these methodologies is Microsoft’s
SDL (Secure Development Lifecycle) but there are many others, as we discuss in Section 2.

Other forms of security advice focus more on the product. There is a huge variety here, as we
discuss in Section 4, including lists of common security vulnerabilities such as the OWASP Top
10, secure coding guidelines, and standards prescribing security requirements and/or security
controls.

The distinction between process and product is useful to keep an overview of different kinds
of security advice, but the two perspectives are related. Security activities in the development
process may need to be fed with security knowledge about the software product; for example,
all methodologies propose the use of tools to detect common security vulnerabilities as part of
the development process and such tools obviously need information about common problems in
software products. The two perspectives can even be mutually dependent; for example, doing vul-
nerability management as part of the software engineering process – with activities for handling
reported security flaws, triaging these, fixing important ones and rolling out security updates –
may require features in the software product – such as having the possibility to update, ideally
automated checks for updates, or crash reporting to help with detecting flaws.

Many security standards mix advice for the process and the product. For example, ISA/IEC 62443
for operational technology (e.g. in industrial control systems) [25] defines a secure development
process and also lists detailed security requirements to implement in systems. NIST’s cyberse-
curity standard for smart grids [41] even includes a discussion of common classes of software
vulnerabilities (so-called CWEs, discussed in Section 5). Some security standards and frame-
works, for instance ISA/IEC 62443 or NIST’s Cybersecurity Framework [43], have a broader
scope than just the (software) development process and also consider the wider deployment and
organisational issues. More generally, any secure software development process will have to in-
teract with security practices at organisational level, for which the ISO/IEC 27000 family of
standards for information security is the most widely used.

2 Security guidelines for the software engineering process

The growing attention to software security in the early 2000s led to several proposals for software
engineering methodologies that take security into account, also called secure SDLC (Software
Development Life Cycle) frameworks.

Gary McGraw, one of the founding fathers of the field of software security, proposed the
‘Building Security In’ methodology [34], later known as Cigital Touchpoints. Microsoft came
with its Secure Development Lifecycle (SDL) [23]. OWASP initially came with CLASP (Com-
prehensive Lightweight Application Security Process), which no longer exists, and then with
SAMM (Software Assurance Maturity Model) [6], which still does.

All these methodologies propose activities (or practices) to be carried at various stages in
the software development lifecycle to improve security. A basic tenet in all methodologies is that
security should be considered throughout the development lifecycle. The activities are usually
grouped by the stages of the development lifecycle, such as design, coding, testing and incidence
response, alongside overarching activities for education and training and for governance of the
entire process. Some of these activities are very specific to software and software engineering,
for instance the use of static or dynamic analysis to check code for flaws, nowadays commonly
referred to as SAST (Static Application Security Testing) and DAST (Dynamic Application
Security Testing). Other activities are generic security activities that are not specific to software
or software engineering, for example threat modelling as a first step (using techniques such as
attack trees [33]) or having a process to handle security incidents.
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As several large IT organisations began to roll out software security initiatives, using one
of these approaches or a home-grown variant, BSIMM (Building Security In Maturity Model)
was introduced as a maturity model to measure and compare such initiatives. The first edition
of BSIMM from 2009 compared software security initiatives at nine large organisations [36].
BSIMM still exists and is periodically updated1. OWASP SAMM is another maturity model.
Unlike BSIMM, SAMM is not just meant for measuring maturity: SAMM can also be used as
framework to introduce or improve a secure software development process; the checklist used by
BSIMM is far too long and detailed to be used for that.

Many more secure software development methodologies have been proposed over the years. A
survey from 2009 compared the three well-known methodologies at the time [13] – SDL, CLASP
and Touchpoints – but a more recent survey from 2023 found 28 secure software development
methodologies to compare [29].

The key ingredients of all these methodologies are very similar but there are differences in
emphasis, in level of detail, and in the way that activities are grouped. For example, OWASP
SAMM (version 2) lists 15 security activities grouped in 5 ‘business functions’, while BSIMM
(version 14) has 12 practices across 4 ‘domains’, with a further breakdown of these 12 prac-
tices into 126 activities. Microsoft SDL has been reorganised several times: the initial version
had 12 stages, each corresponding to a phase in the development lifecycle, plus ‘Education and
Awareness’ as a special initial stage [23]. The 2012 version had 5 phases – Requirements, Design,
Implementation, Verification, Release – with 3 practices per phase, plus ‘Training’ and ‘Execut-
ing an incident response plan’ as practices in the pre- and post-SDL phase [38]. In the latest
edition of SDL this has been reorganised and trimmed down to 10 practices [45].

One of the more recent methodologies is NIST’s Secure Software Development Framework
(SSDF [42]). It lists 20 practices in four groups, with a further breakdown of these 20 practices into
43 actions. These practices and actions are taken from 25(!) earlier documents (incl. Microsoft
SDL, BSIMM and OWASP SAMM). This large number shows how messy the landscape of
security standards unfortunately is.

At least SSDF provides clear cross-references to these other standards. An interesting initia-
tive to cope with the growing set of security standards is OWASP OpenCRE (Open Common
Requirement Enumeration [16]): it aims to provide mappings between security requirements in
different standards. NIST even produced a report documenting their standard approach on how
to define mappings between different security standards, frameworks and guidelines [44].

2.1 SAST & DAST tools

All methodologies mention the use of SAST & DAST tools as practices to improve software
security. Many such tools have appeared over the year.

A popular technique in DAST tools is fuzzing aka fuzz testing. The basic idea here is to
send lots of (semi)automatically generated malformed inputs to an application and then see if
it crashes due to bugs (notably memory corruption bugs). Fuzzing is a very old idea: it was
used in the late 1980s to find memory corruption bugs in UNIX utilities [39]. Fuzzing techniques
have improved a lot in the past decades. Commercial fuzzing tools for specific protocols and
file formats came on the market in the early 2000s (for instance Codenomicon [58]), but these
needed to be tailored to specific protocols or formats. Microsoft’s SAGE fuzzer avoid this by using
symbolic execution to find inputs that trigger obscure code paths; SAGE successfully found many

1 BSIMM is a commercial activity of Synopsys (formerly of Cigital, which was acquired by Synopsys).
Detailed public information about the latest versions (e.g. BSIMM14 [57]) can be hard to find, but the
BSIMM13 checklist is publicly available at https://github.com/rtxsecurity/bsimm13-parsable.
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bugs in Microsoft Office and in Windows 7 and its successors [19]. The biggest breakthrough in
fuzzing came with afl [64] in 2013 and its coverage-guided evolutionary approach (aka greybox
fuzzing) to find interesting test cases. The observation that fuzzing with afl could have prevented
high-profile security problems such as the HeartBleed bug in OpenSSL led Google to launch the
OSS-Fuzz initiative [54] to fuzz open source project at scale: since 2016 this has discovered over
36,000 bugs in over 1,000 open source projects.

Most SAST tools use data flow analysis be to detect if user input can end up in dangerous
places, as for instance happens in injection attacks (discussed in Section 5.5). This requires
detailed information about the APIs involved. When there is a rapid evolution or turnover in
platforms, as is for instance the case in JavaScript frameworks for web application, keeping tools
up to date requires constant investment. Most SAST tools can be configured with rules (or
queries) for specific bug patterns. Some of the newer SAST tools, notably CodeQL and Semgrep,
(aka query-based SAST tools [31]) just provide generic search capabilities and then always need
to be used in combination with some rule-set; sharing such rule-sets may be a way around the
need to update tools.

With ever more SAST and DAST tools choosing the right one can be tricky. Unfortunately
is not much research into comparing tools: commercial tool vendors are not keen to participate
and it is hard to decide on a good set of benchmarks to base any comparison on. Already in
2005 NIST started the SAMATE initiative to evaluate and compare tools [3], but unfortunately
it never produced the clear insights into the relative performance of tools that were hoped for.

2.2 Shifting Left

Adopting a secure software development methodology is not something that can be done overnight.
Introducing and then improving it will take time and be an ongoing process. The way that most
organisations evolve to a more mature security process is by gradually moving security activities
and knowledge to earlier development stages, moving from a reactive to a more proactive stance.
This is known as shifting left. For example, a typical first step to improve software security is
to have applications pen-tested, but ideally security problems would be caught earlier by shift-
ing left: e.g. by deploying DAST or SAST tools during development, by improved training for
developers, or doing risk analyses when the software architecture is being designed.

2.3 Shifting Down

The ultimate way to shift left is to shift down by addressing security risks in underlying technology
stacks, e.g. with the safer APIs or safer programming languages as discussed in Section 5. This
can eliminate entire classes of vulnerabilities, a goal that is highlighted in CISA’s security-by-
design guidance [8]. It can be regarded as the ultimate form of security-by-design, discussed
below, as security is then already considered in the design of technology stacks before the design
of an individual application that runs on these stacks even begins2.

2.4 Security by Design

All the methodologies mentioned in Section 2 stress the importance of taking security into account
right from the start. The slogan secure by design has become popular to express this idea. Long
before the slogan security-by-design became popular McGraw used the slogan ‘building security

2 One could argue that shifting down should be called shifting up, as the outcome is that developers
can focus on issues higher up in the software stack.
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in’ as opposed to ‘bolting security on’ to express the idea that security should be considered in
all stages of the development lifecycle [34].

Beware that people can interpret the term security-by-design differently, as pointed out by
Del Real et al. [14]: some people use a narrow interpretation where it only refers to the initial
design phase of a system, whereas others take a broad interpretation where it applies to all
the stages of the software development lifecycle. The ‘Secure by Design’ white paper by CISA
and other national cybersecurity agencies [8] clearly takes a broad interpretation of the term. For
example, it mentions having a vulnerability management program as a secure-by-design practice.
In fact, it mentions documented adherence to a secure software development methodology as a
secure-by-design practice, which implies that security-by-design spans the entire development life
cycle.

2.5 Shifting Right and Resilience

All the talk of shifting left should not overshadow the fact that shifting right can also be im-
portant. No matter how much we try to shift left, some security flaws may be missed and some
security threats that were overlooked altogether. Processes to deal with incidents will always be
necessary: ideally to mitigate the impact when incidents occur, but at least to investigate inci-
dents after the fact and discover and address root causes. In fact, many good security solutions,
not just in software in general, rely more on detection and response than on prevention.

Here we can still benefit from shifting left by building in possibilities for monitoring and
response from the start (as argued for by Etalle [15]), which could be considered an instance of
security-by-design. An example of this is the use of RASP (Runtime Application Self-Protection)
in mobile apps [22]: here the software is instrumented to detect suspicious behaviour at runtime.
Building in such monitoring is an example of shifting left, using it can be seen as an example of
shifting right.

The term resilience has become more popular in recent years to refer to the ability of sys-
tems or organisations to cope with security incidents. While the term may be useful to stress
the importance of detection and recovery, we would argue that good security always includes
resilience.

3 Changes in Software Engineering

Software development has changed a lot over the past two decades. Some of these changes com-
plicate the adoption of a more secure software development methodologies, others introduce new
risks which then require special attention, as discussed below.

3.1 Agile and DevOps

The methodologies discussed in Section 2 all use the classical stages of the waterfall model
as frame of reference to position security activities. But software engineering has moved away
from this model in the past decades, with Agile and DevOps as popular trends. This has led to
proposals on how to integrate security practices in Agile or DevOps approaches. For example,
Microsoft published guidance on how to carry out SDL activities in an Agile setting [18] and the
term DevSecOps was coined for ways to incorporate security practices into the DevOps process3.

3 DevSecOps was started by a group of security practitioners, see https://www.devsecops.

org). Microsoft publishes information about it (at https://www.microsoft.com/en-us/

securityengineering/devsecops), as does OWASP (at https://devsecops.owasp.org); here
there is even also a proposal for a DevSecOps maturity model.
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Adopting an Agile or DevOps way of working does not mean that the security activities
proposed by the original secure development methodologies should no longer be used, or that
different activities are needed. But incorporating these activities in the shorter and more frequent
development and release cycle does pose an extra challenge. For example, when Agile or DevOps
approaches lead to many incremental changes in a product it is hard to decide when to have
it pen-tested: you cannot do a pen-test after every sprint or for every release. This means that
shifting left becomes more important. It also means that automation of activities becomes more
important, so that e.g. SAST or DAST can be integrated in CI/CD pipelines.

3.2 Supply-chain risks

Another big change in software development in the past decades has been the dramatic rise in
the use of open source components, enabled by code repositories such as github, Sourceforge,
PyPi for Python, NPM for JavaScript, or Maven for Java. Most proprietary software products
nowadays contain large amounts of open source code.

Using such third-party, often open-source, components comes with security risks: risks of
accidental security flaws (such as the Log4J vulnerability discovered in 2021 [12]) and risks of
deliberate security flaws or backdoors (such as the SolarWinds incident in 2020 [60]) Sonatype
reported a 742% increase in supply chain attacks on open source software in 2022 [55].

All this has led a new popular type of static analysis tool, namely SCA (Software Composition
Analysis) tools, to analyse the dependencies of software projects.

Another measure to manage software supply chain risks is the SBOM (Software Bill of Mate-
rials). An SBOM is a machine-readable listing of the software components of a product. CISA’s
website 4 provides extensive documentation about SBOMs. For a discussion of benefits of SBOMs
and challenges in adopting them see Zahan et al. [63]. A report by Idaho National Lab from 2023
gives insight into current adoption [56].

Software supply chain concerns have also led to new standards. For instance, OWASP’s
Software Component Verification Standard (SCVS) [47] proposes measures to reduce software
supply chain risks; some of these are included in NIST’s SSDF. More recent is the P-SSCRM
framework for managing supply chain risk [62]; it includes mappings to another 10 standards (incl.
SCVS, SSDF and BSIMM). The latest version of Microsoft SDL also stresses the importance of
securing the software supply chain by making this one of the ten SDL practices.

3.3 Risks of leaking credentials

Several trends in software development have increased the risks of leaking credentials (or se-
crets). There are ever more credentials around, in the software development process or in the
software itself. For instance, Service-Oriented Architectures (SOAs), which have become more
popular, involve credentials: to use external services an application will often need API keys to
authenticate. Source code repositories, cloud storage solutions, automated build and deployment
processes in CI/CD pipelines, cloud services to support this such as Azure DevOps all come with
logins and credentials – and with ways of leaking them [37], for instance in logs. Secrets can also
be leaked via Jira, Slack, Confluence, Microsoft Teams, etc. The trend of ‘process as code’ also
contributes to more code that needs to use credentials.

These risks have led to a new type of security tools, namely secret scanning tools; for a
comparison of such tools see Basak et al. [2]. The popularity of SaaS, SOAs and micro-services
has led to proposals for SaaS Bill of Materials or SaaSBOMs [24]. Just like an SBOM lists the

4 https://www.cisa.gov/sbom
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software components used in an application, a SaaSBOM would list the SaaS services used by
an application. After all, just like software components can pose security risks, so do software
services.

An advantage of services over components is that it is not the responsibility of the application
maker to do security updates of any services it uses. Downside is that it may involve credentials
that can be leaked. Also, for all their problems, CVEs do provide insight in security issues in
components, whereas for some services there may be less transparency about security issues.

4 Security guidelines for the software product

The methodologies and tools discussed in Section 2 still need to be fed with more concrete
information about common security problems and ways to avoid them. There is a broad range of
such information, some of which is specific to a particular programming language, API, or type
of application (e.g. web applications).

Top N list of standard security vulnerabilities, such as the OWASP Top 10 and CWE Top 25,
are crucial for awareness and training and provide starting point for improved detection – or
better still prevention.

Coding guidelines can help to reduce security problems or more generally improve software
quality. Well-known examples are the SEI/CERT coding guidelines for C, C++, Java, Perl and
Android [53].

Downside of Top N lists is that they tend to focus on flaws introduced in the coding phase
so that design flaws may not get the attention they deserve. There are also lists of common
mistakes in the design phase [1] which provide a starting point for design principles to avoid these.
The seminal article by Saltzer and Schroeder [51] already provided general design principles for
building secure systems back in the 1970s.

There are also documents that propose standard security requirements – or security controls
to implement to meet such requirements. One of the oldest and more mature examples is the
OWASP ASVS (Application Security Verification Standard) [48], currently in its 4th edition.
The ASVS aims to provide a comprehensive list of security requirements to ensure and security
controls to implement to achieve this. Simply put, whereas the OWASP Top 10 provides a list
of dont’s, the ASVS provides a list of dos. The ASVS can be used in different ways: as guidance
during design, implementation and testing; as metric when assessing security; or as standard in
procurement. The awkward acronym has probably not helped the ASVS in getting the attention
it deserves.

Alongside the ASVS for web applications, OWASP also published a similar MASVS standard
for mobile apps [49] and, as already mentioned in Section 3.2, the SCVS standard [47] aimed at
tackling the software supply chain security. More standards with security requirements will be
produced for the latest EU cybersecurity regulation. E.g., work is underway on a standard with
security requirements for equipment covered by the EU Radio Equipment Directive (RED) [5].

5 Common security vulnerabilities and ways to avoid them

Most people will start to learn about software security through examples of common security
vulnerabilities such as buffer overflows or SQL injection. Knowledge about such common problems
is crucial; without it you do not stand any chance to produce secure software. The OWASP Top 10
and the CWE Top 25 are the best known lists of common classes of security vulnerabilities (aka
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‘bug categories’)5. Changes in these Top N lists over the years can also shed light on progress in
improving software security – or the lack thereof.

Any Top N list should be taken with a serious pinch of salt: it is hard to get accurate
statistics about security vulnerabilities, hard to classify them into categories, and hard to weigh
impacts to pick the most important ones. Moreover, any Top N list is only an incomplete list
of potential problems, as it will not include application-specific risks6 Indeed, there are already
several OWASP Top 10s by now: in addition to the original Top Ten of Web Application Security
Risks, there is also an Mobile Top Ten, an API Top Ten and most recently a Top Ten for Large
Language Model Applications.

The full CWE classification7 has ballooned to around a thousand categories of security flaws.
This may be useful to record very detailed statistics (though the very fine-grained nature makes
accurate classification hard: plenty of bug categories overlap) but it is clearly far too long for
developers to use, say as a checklist.

5.1 The big three

It is easy to be overwhelmed by long lists of common security flaws, especially when looking
through the entire CWE list. Fortunately, there are only three important families of problems
make up the large majority of problems. In no specific order, these are:

1. access control flaws, incl. authentication problems;
2. memory corruption flaws; and
3. input handling flaws, notably injection attacks.

If you look at any of the OWASP Top 10s or CWE Top 25s from the past decades you will find
that nearly all entries belong to one of these three families.

There are overlaps between these three families. Exploitable memory corruption flaws often
arise in input handling, so these could also be regarded as input handling flaws. Injection attacks,
where some user input ends up in an API or back-end service that then can be abused, can be seen
as access control problems because they involves by-passing access control by tricking a privileged
victim application into performing actions (aka the Confused Deputy problem) and tighter access
control can mitigate the impact. CSRF and SSRF (client-side and server-side request forgeries)
are usually regarded as access control problems, as weak or implicit authentication is to blame,
but they can also be viewed as injection attacks.

5.2 Access control

Access control in the broad sense involves not just authorisation but also authentication, as well
as logging and monitoring8. Security problems commonly arise in all these aspects: authentication
mechanisms can be too weak, authorisation can be misconfigured or may be missing, and there
can be insufficient logging and monitoring.

5 See https://owasp.org/Top10 and https://cwe.mitre.org/top25.
6 These may be instances of broad and vague categories in the CWE classification (e.g. CWE-435,
‘Improper Interaction Between Multiple Correctly-Behaving Entities’) but such categories usually do
not come with actionable advice on how to prevent them.

7 https://cwe.mitre.org
8 A useful mnemonic for this is AAAA: Authentication, Authorisation, Auditing and Action. The AAAA
quartet often provides more actionable guidance than the more widely known CIA triad (Confiden-
tiality, Integrity and Availability).
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Fig. 1: Evolution of the OWASP Top 10 over the period 2003-2021, with access control problems
are marked in green and input handling problems in yellow. These colours and the arrows in-
dicating inclusions between categories are only approximate. For instance, the broad categories
‘Insecure Design’ and ‘Security Misconfiguration’ mainly include access control issues, but also
some that can be regarded as injection problems.

Some changes over time simply reflect the popularity of certain technologies: as XML became
more popular XXE attacks became a bigger risk and entered the Top 10; SSRF made its ap-
pearance with the rising popularity of service-oriented architectures. Some changes are due to
improved knowledge of attackers. For example, possibilities for insecure deserialisation had been
around for decades but only entered the Top 10 in 2017 when attackers became aware of this.

There are some positive signs of improvements of the years. Buffer overflows disappeared after
the first edition because web applications are mostly written in memory safe languages (though
they remain a concern in browsers or graphics libraries used by web applications.) CSRF has
dropped over the years because modern platforms for web applications provide good built-in ses-
sion mechanisms CSRF; so this is thanks to shifting downing, as discussed in Section 2.2. The
authors of the 2021 edition make the conjecture that injection attacks dropped from the top spot
due to improvements in platforms such as safer APIs.

Most changes in the OWASP Top 10 over the years are due to changes in the way that bug
categories are organised. This highlights the difficulty in making a taxonomy of security vulnera-
bilities. As bug categories have been broadened, the OWASP Top 10 has become less specific to
web applications: apart from the absence of memory corruption bugs, the 2021 edition of OWASP
Top 10 is probably a good guide for just about any piece of software.

The 2021 edition saw a big shake-up in the categories: it is now a mixture of very broad cate-
gories, such as ‘Insecure Design’ (included to highlight the importance of shifting left) alongside
very narrow ones, such as SSRF. Inclusion of ‘Insecure Design’ means it is encroaching on the
territory of the methodologies discussed in Section 2. Indeed, the authors of the OWASP Top 10
suggest that organisations just beginning with efforts to improve software security could use the
Top 10 as a starting point [46].
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Access control flaws are fundamentally different from the other two families because we
deliberately introduce access control to provide security; in fact, it is the most important security
control that there is. Whereas we can hope to get rid of memory corruption or injection problems
by improved platforms, we will always need access control, so flaws in it – esp. misconfiguring or
forgetting it – will always remain a risk.

This is not to say that better platforms or better design of applications cannot make a
difference. For instance, having a robust mechanism for session management built into platforms
can help in reducing CSRF flaws.

5.3 Memory corruption

For software written in memory-unsafe programming languages it is hard to overstate the im-
portance of memory corruption bugs. Both Microsoft and Google’s Chrome team report that
around 70% of all their security flaws are memory corruption bugs [59,21]. Of the 130 critical
security flaws in Chrome up to 2019 only 5 were not clearly due to memory corruption [20].

Many countermeasures against memory corruption attacks have been introduced over the
years. Most platforms now come with countermeasures to detect flaws (e.g. stack canaries, shadow
stacks or more advanced forms of control flow integrity) or make exploitation harder (e.g.. ASLR,
non-executable stacks and pointer encryption). There are coding guidelines for C(++) [53], im-
proved libraries that are less error-prone9, and many SAST and DAST tools that look for memory
corruption flaws.

While the measures above will catch some memory corruption bugs or make them hard to
exploit, it is clear that they only offer limited protection. In fact, what is amazing about the
statistics from Microsoft is that the percentage of memory corruption bugs has remained around
70% and not changed over the years (at least from 2006 to 2018 [59]) despite huge investments
in training, coding guidelines, improved libraries, and SAST and DAST tools.

Structural solutions: memory-safety & LangSec The obvious structural solution against
memory corruption is to switch to memory-safe programming languages. In 2023 CISA in the US,
in collaboration with other national cybersecurity agencies, launched an initiative to push for a
transition to memory safe programming languages10. With large industry players joining the Rust
Foundation there is some real momentum building behind Rust as memory-safe programming
language for low-level system programming.

The LangSec methodology [4,30,52] provides an interesting perspective on memory corruption
problems in input-handling. It highlights underlying root causes and suggests structural ways
to tackle these. LangSec stands for language-theoretic security. The languages it refers to are
not programming languages but input languages, i.e. the data formats, file formats or protocol
message formats that applications have to process. Key observation behind the methodology is
that important factors contributing to input handling problems are: (i) the complexity of input
languages, (ii) the large number of input languages, (iii) the sloppy definitions of these input
languages, and (iv) the expressivity of input languages. Hand-written parser code written in a
memory-unsafe programming language for a complex and poorly-specified input format is almost
guaranteed to contain exploitable security flaws. Having clearly defined and ideally simpler input
formats and using parser generators to produce parsers instead of hand-writing them can avoid
all this.

9 The notoriously insecure function gets() was removed in the 2011 edition of the ISO C standard.
10 https://www.cisa.gov/case-memory-safe-roadmaps
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5.4 Injection Attacks

In injection attacks input supplied by an attacker ends up being parsed and processed by some
back-end service of API which can be abused to trigger unwanted actions. There are many
variants of injection attacks: the CWE classification includes over 30.

The category of injection attacks is larger than most people realise: XSS is also an injection
attack (but only included as such in the OWASP classification since 2021), but so are uploading
files of a dangerous type, deserialisation attacks, XXE and SSRF (even though these are not
included as Injection Attacks in the classification used for the latest OWASP Top 10). For
example, in an SSRF attack malicious input to a server, often a URL, causes the server to make
inappropriate requests to other systems; conceptually this is no different than a SQL injection
or path traversal. Attacks with Office Word or Excel document that contain malicious macros,
a long-standing popular attack technique, are also examples of injection attacks.

Structural solutions against injection attacks An early initiative to provide structural
help in making web applications more secure was the OWASP ESAPI project11 to provide APIs
for various forms of validation and encoding needed in web applications. Important root cause
of security problems in web applications, notably XSS, is that web applications handle a set of
complex languages, namely HTTP, URLs and HTML, with JavaScript and CSS as sub-languages,
which can be nested and then require various encodings to prevent misinterpretation. Note that
this involves some of the root causes signalled by the LangSec approach, namely the large number
and complexity of input languages.

Safer APIs can reduce the risk of injection attacks. The classic example is the use of param-
eterised queries or prepared statements to prevent SQL injection. A generalisation of this idea
is the use of ‘safe builders’ to ensure proper output encoding [27]; here the type checker of the
programming language will catch insecure use of APIs. The Trusted Types API, an improved
version of the DOM API in web browsers, uses this idea to combat XSS; this approach has shown
to be very effective at Google to root out XSS, particular DOM-based XSS as the most complex
variant of XSS [61].

5.5 Improper use of ‘improper input validation’

The notion of input validation has proved to be a persistent source of misunderstanding both in
classifying and tackling input handling problems. It is telling that first edition of the OWASP
Top 10 had ‘Unvalidated Input’ as top entry but this category then disappeared in all subsequent
editions (see Fig. 1). This is not because the problem was solved, but because bug classification
was improved12.

The classic example of lack of input validation is an application accepting a negative number
when a positive number is expected. The only way to fix this is for the application to reject
such invalid inputs. Input validation can be used to prevent injection attacks, but it is not the
best solution and usually totally inappropriate: using output encoding is better and using a safer
API that is not injection-prone, as discussed in Sect. 5.4, is best. Similarly, input validation can
prevent memory corruption bugs from being exploited, by preventing malformed inputs from
reaching vulnerable parser code, but again this is not the best solution: validating input before
it is parsed means introducing yet another parser, for the validation process, which can again
be a source of problems. Instead of validating data it is better to parse data into an appropriate

11 https://owasp.org/www-project-enterprise-security-api
12 The OWASP Top 10 has come around full circle in the 2021 edition with ‘Improper Input Validation’

now being included – we would argue incorrectly and confusingly – in the category ‘Injection Attacks’.
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data structure to avoid problems with possible malformed or misinterpreted data once and for
all, as nicely expressed by the slogan ‘parse, don’t validate’ [28].

Sloppy use of terminology adds to the confusion about input validation. There is a funda-
mental difference between (i) rejecting invalid data (e.g., rejecting an email address that is not a
valid email address) (ii) sanitising or normalising data (e.g., removing trailing space characters
in a username or changing all characters to lower case) and (iii) encoding data because special
characters may cause problems in some back-end (e.g., HTML-encoding data to prevent XSS).
Unfortunately the terms ‘validation’ or ‘sanitisation’ are commonly loosely used for any of these
operations, or indeed any combination. The existence of many (near)synonyms – neutralising13,
quoting, escaping and filtering – adds to the confusion.

6 Conclusion

The good news is that we know a lot about software security, and a lot more than 20 years ago.
There are many methodologies for secure software engineering that broadly agree in the steps to
be taken. There are many SAST and DAST tools that can be used as part of these methodologies
– with fuzzing as a big success story – and standards proposing lists of security requirements.
We know what the common security vulnerabilities are, even though the business of classifying
them remains very messy, and we have insights into root causes for many and some ways to
structurally tackle these.

Secure-by-Design is a nice slogan for all this but, as discussed in Section 2.4, it may mis-
lead people into thinking that just sticking a ‘security by design’ phase in front of their usual
development process will take care of security. That would be a mistake, as all secure software
development methodologies stress that security requires attention throughout the development
lifecycle.

The bad news is that sheer number of standards, frameworks and tools makes it hard to see
the forest for the trees. In fact, there are several forests: there is a forest of secure development
methodologies, a forest of tools, a forest of standards proposing security requirements and the
forest of vulnerability categories provided by the CWE classification. A single methodology or
standard by itself can already be a mini-forest with dozens of activities or requirements.

Many methodologies and standards make very similar, if not identical, recommendations, but
differences in terminology or ways of grouping things can make that hard to spot. This is not a
new phenomenon: already in 2009 BSIMM was started as effort to provide a common frame of
reference for the first secure software development methodologies that had emerged at the time.
NIST even produced a report documenting their standard approach to map relations between
security standards [44].

A forest we have not even mentioned in this paper is the forest of vulnerabilities provided
by the CVE catalogue. One initiative to cope with that forest is the KEV (Known Exploited
Vulnerabilities) list, which was introduced by CISA in 2022 as a subset of the CVE list that
highlights the most important vulnerabilities to patch as they are know to be exploited in the
wild. Other initiatives are the new scoring systems, for instance EPSS [26], that have been
proposed as alternative to CVSS [32] to help with prioritising CVEs.

(Lack of) progress Looking back over the past two decades it is actually surprising how little
has changed: the basic ingredients of Microsoft’s SDL or McGraw’s Touchpoints are still the

13 The CWE classification uses the term ‘Improper Neutralisation’ for injection attacks; this terminology
is misleading as it suggests that better neutralisation is always the solution, whereas using a safe API
that does not require any neutralisation, as discussed in Sect. 5.4, is a better solution.
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main ingredients of the newer methodologies. Looking at the kind of vulnerabilities that cause
the bulk of security problems it is disappointing – not to say depressing – to see how little has
changed, as vulnerabilities that were common two decades ago are still common today.

For memory corruption vulnerabilities it can be probably be excused that they still dominate
the CWE Top 25. Getting rid of these bugs in memory-unsafe code is clearly a hopeless enterprise,
as discussed in Section 5.3. The only hope to get rid of memory corruption bugs is to move
to memory-safe languages. Here it is good to see the momentum building behind Rust as an
alternative.

For many of the common vulnerability types on the other hand, e.g. standard injection flaws
such as SQL injection or path traversal, there is no excuse why these should still be so prevalent.
These were already deemed to be unforgivable back in 2007 [7]. It is embarrassing for the pro-
fessional software engineering community that in 2024 government agencies still have to launch
appeals to get rid of such vulnerabilities [9].

Overall, it seems clear that shifting down – i.e. tackling security problems lower down tech-
nology stack – is the best way to get structural improvement in software security.

It is telling that in May 2024, 22 years after Bill Gates’s original email to highlight security
as a top priority, Microsoft was one of the companies to sign up to CISA’s Secure-by-Design
pledge 14. Clearly the job to improve software security is never done. Looking ahead, one big
unknown future is how AI will impact all this. AI can be a useful tool for attackers and for
defenders and it is not clear who has most to gain here. Moreover, the use of AI in software
products will give rise to new risks [35].
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