
LangSec revisited:
input security flaws of the second kind

Erik Poll
erikpoll@cs.ru.nl

Digital Security group, Radboud University, Nijmegen, the Netherlands

Abstract—We consider a simple classification of input flaws in
two categories: (1) flaws in processing input, with buffer overflows
in parsers as the classic example, and (2) flaws in forwarding input
to some other system, aka injection flaws, with SQL injection
and XSS as classic examples. The LangSec approach identifies
common root causes for both categories of flaws, but much of the
LangSec literature and efforts focus on the first category of flaws,
especially on techniques to eliminate parser bugs. Therefore we
take a look at some existing approaches to tackling the second
category of flaws, to identify (anti)patterns and place these in the
LangSec perspective.

I. INTRODUCTION

The LangSec approach gives excellent insights in the secu-
rity problems in input handling that plague our software: into
the root causes behind these problems, anti-patterns that are
likely to result in security flaws, and remedies that can help
to prevent them.

Broadly speaking, two categories of input problems can
be distinguished: processing flaws and forwarding flaws (aka
injection attacks). Some of same root causes are at play, but
some of ways forward to tackle these two categories of flaws
are different. Most of the efforts inspired by the LangSec
approach, and indeed nearly all the work presented at the
annual LangSec workshop, focus on the first category, with
the aim to root out parser bugs and parser differentials.

To redress the balance, this paper considers the second
category and looks at existing ideas and (anti)patterns in
tackling injection flaws.

This paper does not present any new results or implemen-
tation efforts. It is more of an attempt at Systemisation of
Knowledge (SoK). The category of flaws we consider is hardly
new; indeed, injection flaws go back to phone phreaking in the
1950s. Some of the patterns in tackling these flaws are also
ancient; for instance, the use of types for information flow
goes back to the 1970s [1]. For the sake of completeness, but
at the risk of boring some readers, we also include infamous
anti-patterns such as PHP’s magic_quotes and the by now
established countermeasure of parameterised queries.

Less familiar to a wider audience might be the coun-
termeasures proposed in programming language design, no-
tably in Wyvern [2], and in the ongoing efforts to root out
XSS (especially DOM-based XSS) at Google with improved
language-support and APIs [3], [4]. One motivation for writing
this paper was the observation that these approaches fit very
neatly in the language-theoretic view on the root causes of
the security flaws, if you take a wider view to consider not

just parsing bugs also forwarding flaws. Another motivation
was the observation that many of the anti-patterns that cause
forwarding flaws and remedies to prevent them are missing
in the taxonomy of LangSec errors and remedies by Momot
et al. [5]. Hopefully this paper can provide a step towards
extending this taxonomy to also cover forwarding flaws, to
provide a more comprehensive account of how we can tackle
input flaws.

II. PROCESSING VS FORWARDING FLAWS

In a typical attack on an application, the attacker crafts some
malicious input that causes the software to go off the rails,
with all sorts of nasty consequences. When we are faced with
a creative attacker,

‘Garbage In, Garbage Out’
quickly descends into

‘Garbage In, Evil Out’ [6].
Here we can distinguish (at least) two kinds of flaws in input
handling, as discussed below.

A. Buggy processing.

Many input problems arise from buggy parsing of input.
Classic examples here are buffer overflows in parsers for
complex input formats such as Flash or PDF. The program
containing this buggy parser then provides some weird be-
haviour – a weird machine, in LangSec terminology [7] –
when it is fed malformed input (or sometimes even when fed
correctly formed input) and the attacker can try to (ab)use this
weird functionality in interesting ways.

Buffer overflows and other memory-related bugs make up a
large share of these attacks, but any kind of logical flaw in the
parsing or subsequent processing of input, may provide weird
functionality for an attacker to exploit. Differences between
parsers for the same language, so-called parser differentials
[8], can also provide wriggling room for an attacker.

Note that the weird functionality that the attacker abuses
here has been introduced by accident in the code.

B. Careless forwarding.

In other input attacks, the problem is not so much buggy
processing of input, but rather careless forwarding of input
to some external system or back-end service or API, so that
malicious input can propagate to do damage there. Classic ex-
amples are SQL injection, command injection, path traversal,
and XSS (Cross Site Scripting). These flaws are collectively



known as injection flaws1. We prefer the term forwarding flaws
because in some sense all input attacks are injection attacks;
the forwarding aspect is what sets these input attacks apart
from the others.

The external system or service that is abused could be a
separate application, some OS service, or an internal API of
some component inside the application, but that does not make
any difference for most of the discussion in this paper.

Forwarding attacks do not rely on any parser bugs: the
back-end service, say the SQL database, parses and processes
its inputs correctly. (Of course, there could also be parser
bugs in this service for an attacker to abuse, but we ignore
that possibility for now to not confuse the discussion.) So
the problem is not that this functionality is buggy, but rather
that it is exposed to attackers, without proper constraints.
Consequently, the weird machine that attackers can abuse
with forwarding attacks is often not quite so weird, as it
provides normal functionality of say a SQL database or the
underlying OS. The attackers abuse functionality has been
introduced deliberately, but that is exposed accidentally.

Attacks due to in-band signalling, with Blue Boxes for
phone phreaking as the classic example, are also injection
attacks. But these are (generally) not ‘forwarding’ attacks, as
they do not involve any forwarding of the malicious input
to some external service; instead, the interface of the service
being abused is directly accessible to the attacker. So one could
argue that forwarding attacks are only a subset of all injection
attacks.

C. Example: malicious email attachments

An interesting type of attack to compare the two categories
of input problems above are phishing campaigns where at-
tackers add a malicious attachment to emails. These attacks
are different from other input attacks in that they require a
human user to click on the attachment, which is probably why
they are (undeservedly) missing in some lists of standard input
attacks.

Microsoft Office documents with malicious macros are a de-
servedly popular choice here for attackers to use. This has led
to countermeasures, such as opening untrusted documents in
a protected mode with macros disabled, aka ‘Protected View’,
but a bit more social engineering can typically easily overcome
that. Note that such an attack is just another forwarding attack:
a Word document with a PowerShell macro is just another way
of doing OS command injection.

Attackers can also exploit parser bugs in phishing attacks,
e.g. using malicious PDF attachments that exploit some buffer
overflow in the parser of a PDF viewer. But that has the
disadvantage of depending on a specific flaw in a specific
PDF viewer. Moreover, it is typically harder to craft payloads

1The definition of injection flaws used in the OWASP Top 10 [9], where
injection flaws occupy the number 1 spot, and have done for many years,
excludes XSS. The importance of scripting on the web, and the extra
difficulties in rooting out XSS compared to say SQL injection, justify XSS
getting its own spot in the OWASP Top 10, but it is fundamentally just another
injection flaw like the others.

to exploit buffer overflows than it is to write macros: so
exploiting a feature of Microsoft Office can be much more
attractive than exploiting a bug in a PDF viewer.

D. Common root causes

Some of the same root causes are at play in both parsing and
forwarding attacks. One root cause is the expressivity of input
languages used by back-end services. E.g. one can question
the wisdom in having such a powerful feature as macros in
a document input format, and indeed the LangSec literature
warns about the expressive power of input languages. A second
root cause is the sheer number of such languages, which may
include SQL, OS commands, path names, LDAP, XML, . . . ,
which creates a large attack surface.

E. Input or output problem?

A fundamental complication with a forwarding flaw is that
it involves two systems – the front-end application and a back-
end service – and that it involves both input and output, as the
input language of the back-end is the output language of the
front-end. In a SQL injection attack on a web application, the
web server the front-end and SQL database is the back-end.
In a XSS attack, the web browser is the back-end and the web
server the front-end. (To make matters more complicated, in
reflected XSS attacks the web browser is also acts as front-end
to the server, namely in the first step of the attack.)

This raises the question of who is to ‘blame’, and who can or
should prevent the problem: is the application at fault for being
careless in invoking the back-end service, or is the back-end
service at fault for expressing a too powerful interface? Rather
than a matter of blame for either party it is more a matter of
not understanding the ramifications of a design choice in the
interface between them: if one chooses to use a very powerful
generic interface here, say for arbitrary SQL queries, then it
is the responsibility of the front-end to ensure that malicious
inputs cannot subvert queries to express something beyond
what was intended.

The fact that there is a front-end and a back-end also
introduces a well-known dilemma in where do to do input
validation, especially when it comes to sanitisation, discussed
in more detail in Section III-B below.

III. ANTI-PATTERNS

Several anti-patterns can be recognised that cause or con-
tribute to forwarding flaws.

A. Anti-pattern: shotgun parsing

The well-known LangSec anti-pattern of shotgun parsing
is present in forwarding flaws, as noted in [5]: some of the
parsing is not done in the main application but in the external
back-end that it relies on. However, it is not so clear that
this anti-pattern is really avoidable here: after all, the back-
end service is meant to process some data, and doing some
parsing for that may be unavoidable.

2



B. Anti-pattern: input sanitisation

There are different kinds of operations that can be done as
part of input validation. A validation routine can simply filter
out the invalid inputs from valid ones, rejecting the invalid
ones, but it can also try to sanitise data, also called escaping
or encoding. The typical example is escaping dangerous char-
acters that have a special meaning in the back-end, by adding
backslashes or quotes, to prevent forwarding flaws.

To explicitly distinguish these two options, the first can be
called filtering and the second sanitisation, but beware that the
terms input validation and input sanitisation are often treated
as synonyms2.

A complication with forwarding flaws is that ideally one
would like validate input at the point where the input enters
the application, because at that program point it is clear that
it is untrusted input. However, at that point you may not yet
know in which context the input will be used, and different
contexts may require different forms of escaping. E.g. the same
input string could be used in a path name, a URL, an SQL
query, and a piece of HTML text, and these contexts may need
different forms of escaping.

Because escaping is context-sensitive in this way, it is well
known that using one generic operation to sanitise all input
is highly suspect, as one generic operation is never going to
provide the right escaping for a variety of different back-end
systems. Moreover, doing input sanitisation, i.e. sanitisation at
the point of input rather than at the point of output, is suspect,
as the context typically is not known there.

The classic example here is the infamous PHP
magic_quotes setting, which caused all incoming data to
be automatically escaped (by pre-pending certain characters
with a backslash). It took a while for people to come to the
agreement that this was a bad idea: magic_quotes were
depreciated in PHP 5.3.0 and finally removed in PHP 5.4.0
in 20123.

C. Anti-pattern: String concatenation for dynamic queries

Another well-known anti-pattern in forwarding attacks is the
use of string concatenation to combine user input with other
strings to construct a parameter that is fed to some API call,
as is done in dynamic SQL queries.

Given that the LangSec approach highlights the importance
of parsing, it is interesting to note that string concatenation is a
form of unparsing. Indeed, the whole problem with forwarding
attacks is that the back-end service may parse query strings in
a different way than intended.

An early effort investigating the essence of injection attacks
proposed a runtime countermeasure which traces user input as
it propagates through an application to then detect if it corrupts
the way queries are parsed [10]. Here a query is deemed to be
corrupted if the shape of the resulting parse tree has changed.
This uses a negative security model: it aims to identify and

2Canonicalisation is a third aspect of validation, and an important one, but
we ignore it here, as it is not relevant to our discussion.

3See http://php.net/manual/en/security.magicquotes.php.

stopping unsafe cases. Of course, the better way to prevent
SQL injection is to use parameterised queries, as discussed in
Section IV-A. Note that this uses a positive security model: it
tries to prevent unsafe SQL calls, and at compile time, rather
than weeding them out at runtime.

D. Anti-pattern: Strings considered harmful

We would argue that a more general anti-pattern than the
use of string concatenation for dynamic queries is the use of
strings at all. There are several reasons why the use of strings
can lead to problems and heavy use of strings can be a sign
of trouble:

• Strings can be used for all sorts of data: email ad-
dresses, file names, URLs, fragments of HTML, pieces of
JavaScript, etc. This makes it a very useful and ubiquitous
data type, but the downside is that using the same type
for different kinds of data can cause confusion: from the
type we cannot tell what the intended use of the data is,
or indeed whether it has been validated.

• Strings are by definition unparsed data. So if a program
uses strings, it will typically have to do parsing at
runtime, incl. parsing that could have been avoided if
more structured forms of data were used instead. The
extra parsing creates a lot of room for trouble, especially
in combination with the point above, which tells us that
the same string might end up in different parsers.

• String parameters in interfaces often bring unwanted
expressivity. Interfaces that take strings as parameter
often – implicitly or explicitly – introduce a whole new
language (e.g. HTML, SQL, the language of path names
or of OS shell commands), with all sorts of expressive
power that may not be necessary, and which only provides
a security risk.

In summary, the problem with using strings is that you use one
generic data type, for completely unstructured data, for many
kinds of data, hiding the fact that there are many different
languages involved, possibly very expressive ones, each with
their own interpretation.

The Top 10 Security Software Design Flaws by Arce et
al. [11] also warn about the use of strings as an anti-pattern.
However, there the warning is more narrowly focused on the
use of strings in APIs if these strings mingle data and control
information – i.e. the case discussed in the last bullet point
above. We would go one step further and argue that using
structured types instead of strings is preferable everywhere.

(For the disadvantages above it does not matter if the strings
we use are type-safe, memory-safe, and immutable String
objects in a language such as Java, string objects in C++,
without these nice guarantees, or C byte arrays and char*
pointers, which are even more error-prone. Of course, the more
safety guarantees we can get from our programming language,
and the less error-prone the data type, the better.)

IV. REMEDIES

Measures to structurally avoid forwarding flaws can be
taken at the level of API design, at the level of the type

3



system, or – more ambitiously – at level of the programming
language. Below we discuss the remedies we are aware of;
there may well be more, or more interesting examples of
them that deserve to be mentioned here. Many of the remedies
involve avoiding the use of strings.

A. Remedy: Reducing expressive power

An obvious way to prevent forwarding flaws, or at least
mitigate the potential impact, is to reduce the expressive power
exposed by the interface between the front-end and the back-
end.

For SQL injections this can be done with parameterised
queries (or with stored procedures, provided that these are
safe4). The use of parameterised queries reduces the expressive
power of the interface to the back-end database and it reduces
the amount of runtime parsing. So clearly this mechanism
involves key aspects highlighted in the LangSec approach,
namely expressivity and parsing.

This pattern also comes up in the Top 10 Security Software
Design Flaws proposed by Arce et al. [11], namely as the
principle to ‘strictly separate data and control instructions’ in
the design of APIs where strings are used as parameters.

B. Remedy: Using types to distinguish different languages

Types in the programming language (or more generally,
different forms of structured data) can be used to distinguish
the different input and output languages – or formats – that
an application has to handle. This reduces ambiguity, both
about the intended use of data and about whether or not it
has been parsed and validated. It also reduces the scope for
unintended interactions. For example, different types could be
used to distinguish fragments of HTML from other string-
like data, or to distinguish remote URLs and file URLs. The
expressivity and flexibility of the type system (e.g. support for
subtyping or polymorphism) may limit what is practical here.

C. Remedy: Using types for trust levels

Types (or so-called type qualifiers [12]) can also be used
for different trust levels. This then allows information flows
from untrusted sources in the code to be traced and restricted.
An example here is to use different types for trusted string
constants hard-coded in the application and untrusted aka
tainted strings that stem from user input.

The use of different trust levels for security goes back to
Denning’s seminal work on information flow [1]. It has been
used in many static and dynamic analyses over the years, incl.
many security type systems and source code analysers. Within
the field of language-based security [13], it has given rise to
a whole sub-field of language-based information-flow security
[14].

Clearly the notion of information flow goes to the heart
of what forwarding flaws are about. A type system for in-
formation flow is precisely what can solve the fundamental
complication with forwarding flaws discussed in Section II-E,

4As discussed on https://www.owasp.org/index.php/SQL Injection
Prevention Cheat Sheet

as it can track whether data has been or should be validated or
sanitised. So the type system can enforce the security design
principles to ‘never process control instructions received from
untrusted sources’ and ‘define an approach that ensures all
data are explicitly validated’ [11].

Many language extensions to support some form of informa-
tion flow have been proposed. A well-known example is Jif5,
which extends Java with information flow types. A more recent
example is SPARTA [15], which uses the Checker framework6

for adding pluggable type systems to Java [16], an approach
enabled by the added expressivity in Java’s type system since
Java 7 by annotations on types.

Many approaches to support information flow target Java
or Java-like languages, but not all do: e.g. Microsoft’s
SAL7 (Standard Annotation Language) provides annotations
to add information flow information to C/C++ code, as the
SPARK/Ada approach does for Ada [17].

Of course, the two ways to use types – to distinguish differ-
ent kinds of data or different trust levels – are orthogonal and
can be combined, as discussed in the example in Section IV-E
below.

D. Beyond types: Programming language support

Instead of using the type system of a programming language
to distinguish the different input and output languages that an
application has to handle, one can go one step further and
provide native support for these languages in the programming
language. This approach is taken in the programming language
Wyvern8 [18], [19], called a type-specific language by the
designers.

Even if programmers are aware that the benefits of prepared
statements, they may still use dynamic SQL queries because
of the convenience. One of the design goals of Wyvern is
to provide a safe alternative that is just as convenient as the
unsafe dynamic SQL queries. By natively embedding the input
and output formats in the programming language is possible to
provide a safe mechanism where the program always handles
structured data rather than strings, but in a way that is just
as convenient for the programmer as using strings: the native
embedding allows all the notational convenience and syntactic
sugar that the programmer is used to (e.g. simple infix notation
for concatenation).

The idea is that a type-specific programming language does
not provide ad-hoc support for one output language like SQL,
but allows any number of languages to be embedded. In the
original use case, web programming, the embedded languages
would include SQL and HTML. These two languages then
show up as different types in the programming languages, with
all the convenient syntax support.

5https://www.cs.cornell.edu/jif
6https://checkerframework.org
7https://msdn.microsoft.com/library/ms182032.aspx
8https://github.com/wyvernlang/wyvern

4



E. Example: Security types for web applications

The ongoing efforts to prevent forwarding flaws in web
applications at Google, which have resulted in a recent pro-
posal for ‘Trusted Types for DOM Manipulation’ [4], [20],
provide interesting examples of the use of types for both
aspects discussed above.

Even if automatic input sanitisation built into the program-
ming language with a construct like PHP’s magic_quotes
cannot work, in some circumstances automated output sanitisa-
tion can be made to work, by making use of type information.
An example where this approach has been successfully used
is in web templating frameworks, where existing frameworks
have been adapted to automatically perform sanitisation in a
context-sensitive manner [21]. The approach was demonstrated
to be practicable with an implementation for Google’s Closure
Templates9. It uses type qualifiers [12], which for instance
distinguish string constants from unsanitised input variables,
so that type inference can trace which sanitisations have been
performed and, given a specific context in which a variable is
used, decide which additional sanitisations need to be inserted.

This approach has since evolved to a wider approach to
systematically combat XSS [3]. In addition to automatic
sanitisation in the template engine, the approach relies on
inherently safe APIs that acts as a wrapper around original
APIs that suffers from injection problems. Security types that
distinguish different formats and trust levels play a central
role here. For example, it uses a type SafeHtml for strings
that will not cause untrusted script execution when evaluated
as HTML in a browser, and that are therefore safe to use as
HTML or as HTML parameter in calls to the DOM APIs.
Only a limited set of constructions can be used to construct
elements of this type, which guarantees the soundness of the
assumptions captured by the type.

The ongoing struggle against XSS attacks is by no means
finished. The latest forms of DOM-based XSS attacks using
script gadgets [22] highlight the fundamental difficulties in
rooting out XSS. (Of course, script gadgets are an excellent
example of yet another weird machine.) The recent proposal
‘Trusted Types for DOM Manipulation’ [4] aims to replace all
string-based APIs of the DOM with typed APIs in an effort
to get rid of DOM-based XSS. So this takes the pattern to get
rid of strings even further.

V. CONCLUSION

The distinction between processing flaws and forwarding
flaws is a very natural and obvious one when considering
security problems in input handling, but we are not aware
of this distinction having been discussed from a LangSec per-
spective before. The LangSec view is useful for both categories
of flaws: 1) input languages play a central role in both; 2)
there are common root causes, namely the large number of
input languages and the expressivity of these languages; and
3) shotgun parsers appear as anti-pattern for both, even if for
forwarding flaws this anti-pattern seems harder to avoid.

9https://developers.google.com/closure/templates

Many of the remedies suggested by the LangSec paradigm
focus on eradicating parser bugs (e.g. insisting on clear spec-
ifications of input languages, keeping these languages simple,
generating parsers from formal specs instead of hand-rolling
written parser code, and separating parsing and subsequent
processing in an attempt to avoid shotgun parsers). However,
these techniques are not sufficient to root out forwarding flaws.
Even if we can get rid of all parser bugs, there may still be
forwarding flaws, and some form of shotgun parsing seems
unavoidable with forwarding flaws.

Fortunately, there are ideas to remedy this, which already
appear in the literature and in practice. Important remedies
here, which we feel deserve to be added to those listed in [5],
are

• avoid using strings, and use more structured forms of data
instead;

• use types, not only to distinguish different input lan-
guages (e.g. distinguishing HTML from SQL) but also to
distinguish different trust assumptions about the data (e.g.
distinguishing tainted user input from sanitised values and
constants).

The anti-patterns and remedies discussed are not new and
are related to established security design patterns for software
[11]. The Wyvern programming language [2], Google’s ap-
proach to combatting XSS [3], as well as efforts to support
information flow in Jif [23] all put these remedies into practice.
One can argue that these approaches belong to the paradigm
of language-based security as much as to the paradigm of
language-theoretic security. (Beware of possible confusion
here: in the term language-based security, the word ‘language’
refers to the programming language, whereas in the term
language-theoretic security, it refers to the input languages.)

The anti-patterns and remedies for forwarding flaws we
observed all centre around the familiar LangSec themes of
parsing and the expressive power of input languages: the
remedies try to reduce expressive power, try to reduce the
potential for confusion and mistakes in (un)parsing, or try to
avoid (un)parsing altogether.

ACKNOWLEDGEMENT

Thanks to the reviewers for their comments and providing
concrete suggestions to structure this paper.

REFERENCES

[1] D. E. Denning and P. J. Denning, “Certification of programs for secure
information flow,” Communications of the ACM, vol. 20, no. 7, pp. 504–
513, Jul. 1977.

[2] D. Kurilova, C. Omar, L. Nistor, B. Chung, A. Potanin, and J. Aldrich,
“Type-specific languages to fight injection attacks,” in Symposium and
Bootcamp on the Science of Security (HotSos’14). ACM, 2014.

[3] C. Kern, “Securing the tangled web,” Communications of the ACM,
vol. 57, no. 9, pp. 38–47, 2014.

[4] “Trusted Types for DOM Manipulation,” 2017, see
https://github.com/WICG/trusted-types. The rationale and
design goals are discussed on https://discourse.wicg.io/t/
proposal-trusted-types-for-dom-manipulation/2360.

[5] F. Momot, S. Bratus, S. M. Hallberg, and M. L. Patterson, “The seven
turrets of Babel: A taxonomy of LangSec errors and how to expunge
them,” in Cybersecurity Development (SecDev). IEEE, 2016, pp. 45–52.

5



[6] D. McIlroy, “Buy/by the book or bye-bye the game,” in Third work-
shop on Language-Theoretic Security (LangSec’16), 2016, keynote talk.
Available at http://spw16.langsec.org/papers.html.

[7] S. Bratus, M. E. Locasto, M. L. Patterson, L. Sassaman, and A. Shubina,
“Exploit programming: From buffer overflows to weird machines and
theory of computation,” ;login:, pp. 13–21, 2011.

[8] D. Kaminsky, M. L. Patterson, and L. Sassaman, “PKI layer cake: New
collision attacks against the global X.509 infrastructure,” in International
Conference on Financial Cryptography and Data Security, ser. LNCS,
vol. 6054. Springer, 2010, pp. 289–303.

[9] OWASP, “OWASP Top 10 List,” 2017, available at https://www.owasp.
org/index.php/Category:OWASP Top Ten 2017 Project.

[10] Z. Su and G. Wassermann, “The essence of command injection attacks
in web applications,” in POPL’06. ACM, 2006, pp. 372–382.

[11] I. Arce, K. Clark-Fisher, N. Daswani, J. DelGrosso, D. Dhillon, C. Kern,
T. Kohno, C. Landwehr, G. McGraw, B. Schoenfield, M. Seltzer,
D. Spinellis, I. Tarandach, and J. West, “Avoiding the top 10 software
security design flaws,” IEEE Computer Society Center for Secure Design
(CSD), Tech. Rep., 2014.

[12] J. S. Foster, T. Terauchi, and A. Aiken, “Flow-sensitive type qualifiers,”
in ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’02). ACM, 2002, pp. 1–12.

[13] D. Kozen, “Language-based security,” in Mathematical Foundations of
Computer Science (MFCS’99), ser. LNCS, vol. 1672. Springer, 1999,
pp. 284–298.

[14] A. Sabelfeld and A. C. Myers, “Language-based information-flow se-
curity,” IEEE Journal on Selected Areas in Communications, vol. 21,
no. 1, pp. 5–19, Jan. 2003.

[15] M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner, F. Roesner,
K. Koscher, P. B. Barros, R. Bhoraskar, S. Han et al., “Collaborative
verification of information flow for a high-assurance app store,” in ACM
Conference on Computer and Communications Security (CCS). ACM,
2014, pp. 1092–1104.

[16] M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins, and M. D. Ernst,
“Practical pluggable types for Java,” in International Symposium on
Software Testing and Analysis (ISSTA’18). ACM, 2008, pp. 201–212.

[17] R. Chapman and A. Hilton, “Enforcing security and safety models with
an information flow analysis tool,” in ACM SIGAda Ada Letters, vol. 24,
no. 4. ACM, 2004, pp. 39–46.

[18] D. Kurilova, A. Potanin, and J. Aldrich, “Wyvern: Impacting software
security via programming language design,” in Proceedings of the 5th
Workshop on Evaluation and Usability of Programming Languages and
Tools. ACM, 2014, pp. 57–58.

[19] C. Omar, D. Kurilova, L. Nistor, B. Chung, A. Potanin, and J. Aldrich,
“Safely composable type-specific languages,” in European Conference
on Object-Oriented Programming (ECOOP’14), ser. LNCS, vol. 8586.
Springer, 2014, pp. 105–130.

[20] S. Lekies, “Don’t trust the DOM: Bypassing XSS mitigations via script
gadgets,” 2017, presentation at OWASP BeNeLux. Slides and video
available at https://www.owasp.org/index.php/OWASP BeNeLux-Day
2017.

[21] M. Samuel, P. Saxena, and D. Song, “Context-sensitive auto-sanitization
in web templating languages using type qualifiers,” in Computer and
Communications Security (CCS’11). ACM, 2011, pp. 587–600.

[22] S. Lekies, K. Kotowicz, S. Groß, E. A. Vela Nava, and M. Johns, “Code-
reuse attacks for the web: Breaking cross-site scripting mitigations
via script gadgets,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS’17). ACM, 2017, pp. 1709–1723.

[23] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and
X. Zheng, “Secure web applications via automatic partitioning,” in ACM
SIGOPS Operating Systems Review (SOPS’07), vol. 41, no. 6. ACM,
2007, pp. 31–44.

6


