
Supervised Learning for State-Sponsored Malware
Attribution

Coen Boot∗, Alexandru C. Serban, Erik Poll
Radboud University,

Nijmegen, The Netherlands,
∗coen@cyber-resear.ch

Abstract—State-sponsored hackers have access to many (fi-
nancial) resources, which allows them to focus persistently on
advanced targets. This leads to frequent attacks with increased
sophistication. Detecting and protecting against such threats is
not sufficient; identifying the authors and pursuing legal or
political ways to stop them is an intrinsic part of fighting the
threats. However, the increased frequency of distinct cyber-
attacks demands automatic ways to detect and attribute a sample
to its authors. In this paper we investigate to what extent
supervised learning techniques are suitable for state-sponsored
malware attribution. In particular, we build and publish a dataset
with over 3,500 malware samples belonging to 6 countries and
12 APT groups. With this set, we extract dynamic behavior
data by running the samples in sandbox environments and
test two types of classifiers, namely Random Forest Classifiers
and a Deep Neural Networks. We show that Random Forest
Classifiers are better suited for the task, while also being more
interpretable. However, the data extracted from the classifier does
not provide irrefutable evidence, needed to accuse a state actor
of cyber-attacks. By publishing the dataset and the experimental
code we hope to encourage reproducible research on state-
sponsored malware attribution and the development of common
benchmarks.

I. INTRODUCTION

Cyber-threats have extended from individuals or small or-
ganized groups to state-sponsored groups of hackers pursuing
long term goals, also called Advanced Persistent Threat (APT)
groups. With access to more resources, the attack sophistica-
tion has also increased and raises new challenges for creating
defenses or attributing attacks to certain authors. In particular,
there are higher incentives to hide attack traces, since they
can have direct political and economical consequences. Con-
versely, cyber-attack attribution becomes more important to
governmental or intergovernmental organizations.

The increased sophistication of attacks, their relatively high
frequency and the intrinsic incentive to hide their traces makes
the authorship attribution problem ill-posed. In the simplest
terms, relating authors to attacks requires searching for partic-
ular traces of their provenience, such as IP addresses that can
be traced back to locations or instructions in specific languages
(e.g. Russian or Chinese). Nonetheless, the information that
can be extracted from traces is often complex and highly
dimensional, causing an increased need to automate (at least

WIFS 2019, December, 9-12, 2019, Delft, Netherlands. XXX-
X-XXXX-XXXX-X/XX/$XX.00 c© 2019 IEEE.

parts of) the analysis in order to discover common characteris-
tics between cyber-attacks. If any samples are available which
are known (with high confidence) to belong to certain authors,
the problem can be posed as finding similarities between such
samples and new examples.

Finding complex similarities, or patterns, between samples
is the crux of Machine Learning (ML) algorithms. In case the
samples are already annotated with labels (e.g. if a person
already labeled the attacks as belonging to one actor), the
problem can be formulated as a supervised learning prob-
lem. Whenever the labels are not available, the problem is
suitable for unsupervised learning - a class of algorithms that
discover similarities between samples without label attribution
(e.g. grouping samples together).

Indeed, using ML algorithms to perform software authorship
attribution has been studied over the last decade [1]. However,
many of the proposed methods cannot be used to classify
malware because the malware source code is not available and
because most malware is equipped with trace or intend hiding
techniques. From the few approaches which are able to cope
with (complex) malware, the benchmark datasets or the code
associated with the experiments are not publicly available,
impeding experiment replication and reuse by practitioners.

In this paper, we verify to what extent supervised learning
methods are suitable for malware authorship attribution. We
choose to explicitly focus on approaches which use sandbox
reports as input, since sandboxes are an easy way to gather
much information about a malware sample [2]. We test the
results from two of the most relevant publications which
tackle this problem from different angles: using ML algorithms
with higher capacity that are less interpretable and using ML
algorithms with lower capacity, but with interpretable results.
Being able to extract meaningful data from the algorithms
used increases their relevance for the attribution task. We can
imagine that accusing an actor of cyber-attacks on the basis of
algorithmic results is not possible. However, less interpretable
algorithms, with higher capacity, often give better results and
are worth investigating.

There is prior research into using machine learning for
malware attribution. The most promising research here is by
Aman et al. [3] using Random Forest Classifiers (RFCs) and
by Rosenberg et al. [4] using Deep Neural Networks (DNNs),
which both make use of sandbox reports. However, this earlier
work leaves some things to be desired. The papers use different



datasets, so a precise comparison is hard. Moreover, the dataset
used by Rosenberg et al. is not public, so we cannot replicate
their experiments. Of course, having a good labeled dataset is
often a bottleneck in using machine learning, and here state-
sponsored malware is no exception. Finally, in one experiment
Rosenberg et al. use the same data in both training and in the
subsequent evaluation, which undermines the validity of the
results.

The two approaches mentioned above, using DNNs and
RFCs, provide the starting point for our research, where we
make two main contributions. Firstly, since no public dataset
is available, an initial contribution is the construction and
publication of a malware dataset (with over 3,500 samples
by 12 different APTs), which can be used for future bench-
marks. We focus on state-sponsored malware because it has a
richer hierarchy of authorship; ranging from country-level to
different APT groups. It is often hard to distinguish between
individual authors and APT groups. An author can be part of
an APT group, but can also be one individual. In the latter
case, authorship attribution is not easy.

Using this dataset, we replicate the most notable exper-
iments for malware authorship attribution and present the
results (we also make the code available). This marks the
second contribution of the paper.

The presentation develops along the following lines: In
Section II we describe the task and introduce related work.
In Section III we present the dataset, followed by the exper-
imental results in Section V and a discussion in Section VI.
Conclusions and future research can be found in Section VII.

II. BACKGROUND AND RELATED WORK

The problem of malware authorship attribution raises several
concerns. Firstly, since the source code of malware samples is
not available, the data is limited to binary executables. This is
a concern because compilation removes many stylistic features
that can hold valuable information about the authors [5].

Secondly, many malware binaries are processed using
origin-hiding or intent-hiding techniques, such as packers, ob-
fuscators or techniques which hinder active analysis (e.g. sand-
box detection and evasion) [1], [5]. This makes automated
attribution on binary malware samples more difficult, since
multiple authors may e.g. use the same packer, making their
binaries look more similar.

Lastly, malware authors try to trick malware analysists
into drawing erroneous conclusions by adding fake traces of
authorship, like changing the timezone of the machine they
are working with, using foreign languages in their code or
re-using attacks from different authors [6].

Running the malware samples in sandbox environments can
reveal more information than analyzing the binaries statically,
because of two reasons. Firstly, some obfuscation methods
are removed during runtime (due to malware unpacking). Sec-
ondly, the information that can be extracted is more sensible
and easier to interpret. This information can be extracted
using automated malware analysis software, which runs the
samples and outputs a verbose report about their behavior. In

literature, there are two ways to use these reports: using all
the information contained in the reports or using only the API
calls to the operating system.

Below we present supervised and unsupervised classifica-
tion methods using either binary data or sandbox reports.

a) Supervised Methods: One of the first supervised learn-
ing methods for classifying malware [7] creates a general
profile for each malware family using n-grams of the machine
codes extracted using IDA Pro [8]. N-grams exploit static
structure in the machine code. However, for complex malware
behavior, which spans many instructions, n-grams have limited
impact. Moreover, obfuscation techniques can also affect the
results.

David and Netanyahu [9] feed the full report content to
a DNN autoencoder which compresses the data to a smaller
representation, which can be used for classification as well.
Later, Rosenberg, Sicard and David [4] use a fully con-
nected DNN for classification. The difference between the
two is that autoencoders are trained to reconstruct the initial
data from the internal representation (similar to compression
and decompression) while fully connected networks are only
trained to minimize the classification error. However, one
disadvantage of using neural networks is that their results are
hard to interpret. Several methods for post-hoc interpretation
(e.g. sensitivity analysis) have been proposed. Unfortunately,
they provide no guarantees that the same extracted data is
used every time, for each class. An interpretable alternative to
DNNs was presented by Aman et al. [3], which uses a RFC
on the sandbox reports.

Two publications use DNNs on the extracted API calls with
similar results [10], [11].

b) Unsupervised Methods: Unsupervised methods do not
require that data are labeled and can be used to group similar
samples. Further analysis can uncover which groups belong
to an author. One of the first publications was presented by
Konrad et al. [12], who use sandbox reports in order to cluster
malware samples based on families. Later, the US Cyber
Genome program developed a more advance approach, which
uses clustering in order to identify different building blocks
inside a malware binary [13].

In our experiments we use two supervised learning ap-
proaches using reports extracted from different sandbox en-
vironments. Firstly, we investigate an approach using Random
Forests [3], which is an algorithm based on ensembles of
decision trees with the advantage of being easier to interpret.
Secondly, we investigate an approach based on DNNs [4]; an
algorithm based on chaining linear and non-linear transforma-
tions on data, with the advantage of being more expressive
at the cost of being less interpretable. Moreover, we run the
experiments using both full reports and API calls only.

III. DATASET OF STATE-SPONSORED MALWARE

Since no public dataset of state-sponsored malware is avail-
able, we first construct and publish our benchmark dataset. We
note again that supervised learning requires labels associated
with malware samples and that our focus is on state-sponsored



TABLE I
CHARACTERISTICS OF THE COLLECTED DATASET

Country APT Group Family Request Download
China APT 1 1007 405
China APT 10 i.a. PlugX 300 244
China APT 19 Derusbi 33 32
China APT 21 TravNet 118 106
Russia APT 28 ’Bears’ 230 214
Russia APT 29 ’Dukes’ 281 281
China APT 30 164 164
North-Korea DarkHotel DarkHotel 298 273
Russia Energetic Bear Havex 132 132
USA Equation Group Fannyworm 395 395
Pakistan Gorgon Group Different RATs 1085 961
China Winnti 406 387
Total 4449 3594

malware because it has a richer hierarchy which enables us to
distinguish between state actors and APT groups.

State-sponsored malware samples can be extracted from
threat intelligence reports published by companies like Fire-
Eye, F-Secure or Kaspersky (e.g. [14], [15], [16]). Such
reports often include appendices with so-called Indicators of
Compromise (IoCs), which consist of file hashes of malware
samples or network traces identifying a specific piece of
malware. In this way, IoCs are used as a reference to an unique
malware sample or family.

By collecting threat intelligence reports, we can create an
aggregated list of file hashes of malware samples and use it
to download the samples from any large malware database.

We use an overview of APT groups by Fire-Eye [14] and
the spreadsheet ’APT Groups and Operations’ by Florian
Roth [17] as starting point for finding threat intelligence
reports. We investigate numerous sources of knowledge, but
many of them fail in substantiating claims to which family or
actor a sample belongs and are therefore neglected in order
to maintain a high level of trustworthiness. Moreover, we
only consider families which contain more than 30 malware
samples.

For every trustworthy source, we collect all available hashes
that are found and store them labeled by the concerning APT
group. Using the hashes, the samples are downloaded from
VirusTotal [18] - a malware database and analysis platform
where any user can upload samples to - using their API.
In total, we request 4,449 samples from VirusTotal, from
which 3,594 unique samples are available for download. The
samples allegedly originate from 12 different state-sponsored
APT groups spread over 5 countries, namely China, North-
Korea, Pakistan, Russia and the USA. All retrieved samples
and an overview of all requested samples and the sources
from which their file hashes are obtained can be found online
at [19]. In order to avoid duplicates, after downloading the
malware samples, we also computed the SHA-256 hash of all
samples and removed any resulting duplicates.

TABLE II
AVAILABLE PERMUTATIONS

Scenario A, B, C
Balancing Imbalanced, Random Oversampling, Random Undersampling
Data Cuckoo, Cuckoo*, VirusTotal, VMRay

IV. DATA PREPARATION

In order to obtain behavioral analysis reports we used the
VirusTotal, Cuckoo and VMRay sandbox solutions. Whereas
Cuckoo (open source) and VMRay (paid) perform dynamic
analysis themselves, VirusTotal sends malware to different
antivirus vendors and reports a summary of the results. The
experiments presented in Section II use only the reports from
Cuckoo. We also present the results using VirusTotal and
VMRay reports, without disclosing the content of the reports.

A. Preprocessing

Before processing, the sandbox reports are cleaned of data
originating from buffers or process dumps present in reports
from Cuckoo and VMRay. The reports from Cuckoo and
VMRay may also contain direct links to the authors, based
on information provided by antivirus vendors in case of
VirusTotal or a set of Yara-rules in case of VMRay. Any such
traces are removed before processing.

Finally, for every sandbox, the reports are converted to
bags of words using the CountVectorizer from scikit-
learn [20]. Each bag of words is limited to the 50,000
most common words, and contains numerical values1. This
approach is similar to the approaches described in [4], [3].
The characteristics of the collected dataset after preprocessing
can be found in Table I. We observe that some groups are
over-represented and others are under-represented. In the next
section we introduce two methods used to balance the dataset.

B. Training and Test Sets

Having labeled the malware samples on two levels - namely
APT level and country level - provides the possibility to come
up with 3 different scenarios, which we will call scenario A, B
and C. In Scenario A, we want to classify the malware samples
by APT group and divide the samples over the training and test
using random sampling. In Scenario B, we want to classify the
malware samples by country and divide the samples over the
training and test using random sampling. Scenario C focuses
on finding APT-transcending properties for malware related to
a country, and involves dividing the available samples over
the training and test set in such a way that no APT group
has samples in both the training set and the test set. In this
way, the ML algorithm cannot derive any information about
the country a malware sample belongs to by knowing to which
APT group the sample belongs. Note that only samples can be
used which allegedly belong to China and Russia, since these

1 Contrary to a bag of words which contains booleans, indicating that a
word is present in the data, whereas the numerical variant also indicated how
many times the word is present.



TABLE III
ACCURACY RESULTS SCENARIO A

Dataset Unbalanced Undersampling Oversampling

RFC

Cuckoo 0.94 (σ: 0.01) 0.83 (σ: 0.02) 0.93 (σ: 0.01)
Cuckoo* 0.92 (σ: 0.01) 0.75 (σ: 0.02) 0.92 (σ: 0.01)
VirusTotal 0.96 (σ: 0.01) 0.84 (σ: 0.02) 0.96 (σ: 0.01)
VMRay 0.92 (σ: 0.01) 0.77 (σ: 0.02) 0.92 (σ: 0.01)

DNN

Cuckoo 0.93 (σ: 0.01) 0.78 (σ: 0.02) 0.92 (σ: 0.01)
Cuckoo* 0.83 (σ: 0.01) 0.62 (σ: 0.05) 0.82 (σ: 0.02)
VirusTotal 0.97 (σ: 0.01) 0.74 (σ: 0.21) 0.97 (σ: 0.01)
VMRay 0.87 (σ: 0.02) 0.68 (σ: 0.03) 0.90 (σ: 0.01)

are the only two countries with malware from multiple APT
groups in the dataset.

As mentioned earlier, the collected dataset is imbalanced.
The imbalance may cause the classifier to be biased towards
some groups. In order to overcome this phenomenon, in
addition to doing our experiments without balancing, we also
repeat them using random undersampling and using random
oversampling [21].

The API calls can only be extracted from the Cuckoo
reports. When presenting the results, we will refer to the
filtered reports which contain the API calls only as Cuckoo*.

We test each permutation between the three scenarios
(A,B,C), the 3 sampling methods (unbalanced, undersampling
and oversampling) and each data source, resulting in 36 unique
variants of the dataset, as illustrated in Table II. The results
are presented in the next section.

V. EXPERIMENTAL SETTINGS AND RESULTS

We evaluate the RFC [3] and the DNN [4] approach on
all permutations from Table II. The RFC approach only uses
the Cuckoo* dataset, while the DNN approach only uses the
Cuckoo dataset (as in Table II). We present the results from
for all scenarios and all datasets, including extra reports from
VirusTotal and VMRay.

We use a smaller fully connected DNN than in [4] because,
as will be discussed later, this is sufficient to achieve very
good results. Instead of 10 layers we only use 8, maintaining
the number of neurons in each layer and the ReLU activation
function. In order to avoid overfitting, we use dropout and
input noise with rates 0.5 and 0.2 respectively. The network is
trained with the Adam optimizer. We experiment with different
learning rates and find 0.001 to be the most useful value to
start with. The Adam optimizer adapts the learning rate during
new training epochs.

The amount of decision trees in the RFC (corresponding
to [3]) is kept at 100. For all other parameters, we used the
default values as implemented in scikit-learn [20].

We evaluate the results using 10-fold validation. Small
variations can be observed for DNNs due to the random weight
initialization. We present the accuracy averaged over 5 runs,
together with the standard deviation in the following tables,
ordered by the scenarios presented in the previous section. In
parallel, we explore other metrics such as precision and recall.

TABLE IV
ACCURACY RESULTS SCENARIO B

Dataset Unbalanced Undersampling Oversampling

RFC

Cuckoo 0.95 (σ: 0.00) 0.91 (σ: 0.01) 0.94 (σ: 0.01)
Cuckoo* 0.95 (σ: 0.00) 0.90 (σ: 0.01) 0.94 (σ: 0.00)
VirusTotal 0.96 (σ: 0.01) 0.94 (σ: 0.01) 0.97 (σ: 0.01)
VMRay 0.93 (σ: 0.01) 0.91 (σ: 0.02) 0.93 (σ: 0.01)

DNN

Cuckoo 0.94 (σ: 0.01) 0.89 (σ: 0.02) 0.92 (σ: 0.00)
Cuckoo* 0.89 (σ: 0.01) 0.81 (σ: 0.02) 0.88 (σ: 0.01)
VirusTotal 0.98 (σ: 0.01) 0.94 (σ: 0.01) 0.98 (σ: 0.00)
VMRay 0.93 (σ: 0.01) 0.86 (σ: 0.03) 0.93 (σ: 0.01)

However, due to space constraints we do not present the results
here. They can be accessed via the repository at [22].

Table III presents the accuracy and standard deviation for
Scenario A, namely classifying malware samples as belonging
to different APT groups.

We observe that, in all cases, the RFC has higher accuracy
than the neural network. This means the classifier exploits
some hierarchical structures that are not learned by the DNN.
We run a student-t significance test between the results from
the unbalanced, the undersampling and the oversampling and
find that whenever the oversampling method performs best,
the results are not statistically significantly when compared
to the unbalanced dataset. This means the classifier is able
to uncover a representation of the unbalanced data that can
clearly separate between the different APT groups This test
was selected because it fits the 10-fold valdiation technique.
We are aware that it may result in a higher type I error because
dependent samples are used for both tests. However, since
there is no silver bullet to check statistical significance of ML
experiments [23] we use the student-t test because it fits the 10-
fold cross validation method which is a common benchmark in
the literature. We advice to interpret the results as an indicator
and not a clear discriminant between the methods.

Table IV presents the accuracy results for Scenario B,
namely, classifying malware samples as belonging to different
countries. As can be observed in Table I, one country may
contain many APT groups. The dataset is unbalanced, with
China and Pakistan having many more samples than the others.
However, as can be seen in the results, oversampling or
undersampling does not improve the methods. When running
the same significance test described earlier, we discover the
increases to be non-significant. This result suggests that even
though the datasets are smaller for some classes (like North-
Korea), they have distinctive traits which can describe the
classes with high accuracy.

Once again, we observe that RFC performs marginally
better that DNNs in some cases. This means that less complex
representations are sufficient for country-level authorship at-
tribution, but can also be a consequence of the dataset. Using
unstructured representations, such as the bag of words used in
this case, might be better suited to algorithms which search
for simpler connections, such as small trees. This discussion
will be extended in Section VI.

Table V presents the results for Scenario C, namely, search-



ing for APT-transcending properties of malware by dividing
the Chinese and Russian samples in such a way that no APT
group has samples in both the training and test dataset. This
evaluation is meant to test the classifier’s power to generalize
outside the APT groups it was trained with and it is based
on the assumption that different APT groups share common
characteristics. This assumption is not unrealistically, given
that different APT groups belong to one country. However,
the drop in accuracy reported in Table V invalidates this
assumption when using supervised learning.

TABLE V
ACCURACY RESULTS SCENARIO C

Dataset Unbalanced Undersampling Oversampling

RFC

Cuckoo 0.43 (σ: 0.05) 0.45 (σ: 0.05) 0.47 (σ: 0.03)
Cuckoo* 0.57 (σ: 0.05) 0.51 (σ: 0.03) 0.58 (σ: 0.07)
VirusTotal 0.65 (σ: 0.06) 0.73 (σ: 0.02) 0.66 (σ: 0.06)
VMRay 0.52 (σ: 0.04) 0.37 (σ: 0.05) 0.50 (σ: 0.09)

DNN

Cuckoo 0.44 (σ: 0.04) 0.49 (σ: 0.11) 0.40 (σ: 0.03)
Cuckoo* 0.49 (σ: 0.07) 0.56 (σ: 0.04) 0.57 (σ: 0.05)
VirusTotal 0.69 (σ: 0.07) 0.72 (σ: 0.07) 0.72 (σ: 0.05)
VMRay 0.72 (σ: 0.03) 0.69 (σ: 0.06) 0.65 (σ: 0.03)

We can observe that the performance diminishes in all
cases when information about an APT group is removed
from the training set. In particular, the information from the
Cuckoo reports seems to be dropping faster than others. While
Cuckoo reports usually obtain higher accuracy than VMRay in
previous scenarios, it seems to be tightly linked to data specific
to particular APT groups and not sufficient to generalize.
Contrary, VirusTotal and VMRay are able to extract some
information which can help generalize between different APT
groups. However, they still experience severe loss of accuracy.

Another phenomenon which can be observed in this case is
that oversampling and undersampling can lead to better results.
In particular, when running the significance test mentioned
earlier we observe that VirusTotal performs significantly better
in the undersampling case. This means that the unbalanced
datasets lead to overfitting in Scenario C and poor generaliza-
tion.

VI. DISCUSSION

We question several assumptions about the dataset and
comment on the overall applicability of the methods presented.

Firstly, in order to reason about malware attribution, there
is an implicit assumption that a malware sample is used by at
most one actor, making it possible to assign a sample to one
APT group. However, in real-world scenarios multiple actors
may use (parts of) the same sample. For example, several core
elements of a piece of malware could have been bought on
the dark web or stolen from other actors [6]. The results from
Scenario C, presented in Table V, show that in the dataset
used not many samples which belong to different APT groups
share common characteristics (otherwise we would expect a
smaller drop in accuracy). Nevertheless, we advice to consider
this assumption when doing attribution.

Secondly, the labeling of the dataset used to benchmark the
two approaches is based on claims by anti-virus companies and

malware researchers. Although most claims about authorship
are substantiated in corresponding malware analysis reports,
they can not be proved with irrefutable evidence. We advice
that, in this case, the ground truth is based on beliefs or
reasons of the authors of malware analysis reports. Using such
evidence for state malware attribution is not recommended.

Thirdly, the bag of words approach removes context and
structure from the sandbox reports, which are in JSON format.
For example, the relationships between keys and values are
lost. One boolean belonging to a key will be separated from
that key, decreasing the overall information gain from the
report. Moreover, the bag of words involves a practical limit
to the number of words used. When this approach is used for a
long report, it can lead to loss of valuable information. In this
paper we tested the approaches from the literature because they
seemed to work unreasonably well using these assumptions.
The results presented in Section V are consistent with the
ones reported in literature, which means even interpretable
approaches with less capacity, such as RFC, can lead to good
results and suggests adding more structure to the features used
may increase the performance.

Although the classifiers reach high accuracy (and perform
well for other metrics presented in the repository [22]), the
information which can be extracted from the classifiers is far
from usable. We started with the assumption that RFC are
interpretable models and DNNs are only used as a comparative
benchmark. However, when manually analyzing the trees
generated by RFC we found them difficult to interpret and
reason about. Moreover, since the bag of words approach
does not involve any structure, in some cases the trees are
not consistent with the opinions of human analysts.

All in all, although the techniques can reach high accuracy
in the first two scenarios from Section V, their suitability
for malware attribution is questionable, especially given that
we want a high level of confidence in attributing malware.
We recall that accusing an actor of designing and deploying
malware against another actor, be it state related or not,
requires unquestionable and irrefutable evidence and so, we
advice caution when using supervised learning methods.

VII. CONCLUSIONS AND FUTURE WORK

Together with the growing number of cyber-threats there
is a growing need to automatically identify attacks and trace
them back to their authors. In this paper, we investigate to
what extent proposed supervised learning techniques can be
used for malware authorship attribution.

Since no dataset for this task is publicly available, a first
contribution of this paper is the creation and publication of a
dataset with over 3,500 unique samples belonging to 6 state
actors and 12 APT groups. This dataset can be used to support
future benchmarks and fair comparisons between different ML
models.

Using this dataset, we verified the performance of two
supervised learning methods (one based on a DNN and one on
a RFC) on a variety of scenarios, sampling methods and data
sources. Notably, we used textual data generated by sandbox



environment - which run the malware in a dynamic environ-
ment - in order to classify malware samples as belonging to
a country, an APT group or a malware family.

We discovered that RFCs work better in most of tested case.
Moreover, oversampling and undersampling generally do not
lead to significant improvements of the classification results.
The good results from the RFCs are encouraging because such
classifiers are easier to interpret and can lead to sustainable
evidence against attackers. We remind that accusing state-
sponsored APT groups of malware attacks needs serious,
irrefutable, evidence.

For future work, we suggest preprocessing strategies which
maintain semantic and contextual information. The bag-of-
words approach currently used, although leads to good results,
discards important information which makes result interpreta-
tion harder.

Apart from that, the dataset could be expanded with more
samples or new features for the current samples, e.g. adding
static information about the malware with the dynamic info,
using information from several reports, etc.

As mentioned earlier, substantiating the classifications done
by a RFCs is hard, let alone providing proofs about the fact
that the outcome of a DNNs is reliable enough to act upon.
Therefore, it would be of great benefit if new or improved
ways regarding the interpretations and substantiating of ML
algorithms could be found, since strong evidence is needed in
cases involving malware authorship attribution.

To conclude, we mention that supervised learning tech-
niques are efficient for state-sponsored malware authorship
attribution, but not yet suitable to be used in real contexts. The
difficult result interpretation limits their scope in supporting
malware analysts with direct evidence, however, the results
suggest such techniques can be used as prior information for
an analysis.

REFERENCES

[1] A. C. Islam, F. Yamaguchi, E. Dauber, R. E. Harang, K. Rieck, R. Green-
stadt, and A. Narayanan, “When coding style survives compilation: De-
anonymizing programmers from executable binaries,” 2018 Network and
Distributed System Security Symposium (NDSS), 12 2017.

[2] M. Vasilescu, L. Gheorghe, and N. Tapus, “Practical malware analysis
based on sandboxing,” in 2014 RoEduNet Conference 13th Edition: Net-
working in Education and Research Joint Event RENAM 8th Conference,
9 2014, pp. 1–6.

[3] N. Aman, Y. Saleem, F. H. Abbasi, and F. Shahzad, “A hybrid approach
for malware family classification,” in Applications and Techniques in
Information Security. Springer, 2017, pp. 169–180. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-981-10-5421-1 14

[4] I. Rosenberg, G. Sicard, and E. David, “End-to-end deep neural networks
and transfer learning for automatic analysis of nation-state malware,”
Entropy, vol. 20, no. 5, p. 390, 5 2018.

[5] S. Alrabaee, P. Shirani, M. Debbabi, and L. Wang, “On the feasibility of
malware authorship attribution,” in Foundations and Practice of Security.
Springer International Publishing, 2017, pp. 256–272.

[6] B. Bartholomew and J. A. Guerrero-Saade, “Wave your
false flags! deception tactics muddying attribution in targeted
attacks,” in Virus Bulletin Conference, 2016. [Online].
Available: https://media.kasperskycontenthub.com/wp-content/uploads/
sites/43/2017/10/20114955/Bartholomew-GuerreroSaade-VB2016.pdf

[7] A. Pektaş, M. Eriş, and T. Acarman, “Proposal of n-gram based
algorithm for malware classification,” in SECURWARE 2011 - 5th
International Conference on Emerging Security Information, Systems
and Technologies, 01 2011, pp. 14–18. [Online]. Available: https://pdfs.
semanticscholar.org/cdcf/c68ce8b6eaaf0d8964dffd99105c566b6027.pdf

[8] H. Rays. [Online]. Available: https://www.hex-rays.com/products/ida/
[9] O. E. David and N. S. Netanyahu, “Deepsign: Deep learning for

automatic malware signature generation and classification,” in 2015
International Joint Conference on Neural Networks (IJCNN), 7 2015,
pp. 1–8.

[10] W. Hardy, L. Chen, S. Hou, Y. Ye, and X. Li, “Dl4md: A deep learning
framework for intelligent malware detection,” in Proceedings of the
International Conference on Data Mining (DMIN). The Steering
Committee of The World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp), 2016, p. 61.

[11] W. Huang and J. W. Stokes, “Mtnet: A multi-task neural network for
dynamic malware classification.” Springer, 7 2016, pp. 399–418. [On-
line]. Available: https://www.microsoft.com/en-us/research/publication/
mtnet-multi-task-neural-network-dynamic-malware-classification/

[12] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic
analysis of malware behavior using machine learning,” J. Comput.
Secur., vol. 19, no. 4, pp. 639–668, 12 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2011216.2011217

[13] A. Pfeffer, B. E. Ruttenberg, L. Kellogg, M. Howard, C. Call,
A. O’Connor, G. Takata, S. N. Reilly, T. Patten, J. Taylor, R. Hall,
A. Lakhotia, C. Miles, D. Scofield, and J. Frank, “Artificial intelligence
based malware analysis,” arXiv preprint, 2017.

[14] “Advanced persistent threat groups.” [Online]. Available: https:
//www.fireeye.com/current-threats/apt-groups.html

[15] F-Secure, “Whitepaper: The dukes: 7 years of russian cyberespionage,”
2015. [Online]. Available: https://www.f-secure.com/documents/996508/
1030745/dukes whitepaper.pdf

[16] K. Lab, “Whitepaper: The nettraveler (aka ’travnet’),” 2013. [Online].
Available: https://kasperskycontenthub.com/wp-content/uploads/sites/
43/vlpdfs/kaspersky-the-net-traveler-part1-final.pdf

[17] F. Roth, “APT groups and operations.” [Online]. Available: http:
//apt.threattracking.com/

[18] “Virustotal.” [Online]. Available: https://www.virustotal.com/
[19] C. Boot, “APT Malware Dataset.” [Online]. Available: https://github.

com/cyber-research/APTMalware
[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[21] T. Mitchell, B. Buchanan, G. DeJong, T. Dietterich, P. Rosenbloom,
and A. Waibel, “Machine learning,” Annual review of computer science,
vol. 4, no. 1, pp. 417–433, 1990.

[22] C. Boot, “APT Malware Attribution.” [Online]. Available: https:
//github.com/cyber-research/APTAttribution

[23] T. G. Dietterich, “Approximate statistical tests for comparing supervised
classification learning algorithms,” Neural computation, vol. 10, no. 7,
pp. 1895–1923, 1998.


