
Transactions and non-atomic API methods in Java Card:
specification ambiguity and strange implementation behaviours

Engelbert Hubbers and Erik Poll

SoS Group, NIII, Faculty of Science, Radboud University Nijmegen
{hubbers,erikpoll}@cs.ru.nl

Abstract. This paper discusses an ambiguity in Sun’s specification of the Java CardTM

platform, which we noticed in the course of developing the precise formal description of
the Java Card transaction mechanism presented in [HP03]. The ambiguity concerns the
Java Card transaction mechanism, more in particular the interaction of the transaction
mechanism and two Java Card API methods, the methods arrayCopyNonAtomic and array-
FillNonAtomic in the class javacard.framework.Util.
The paper also describes the experiments we performed with smartcards of two different
manufacturers to find out the behaviour actually implemented on these card. Interestingly,
these experiments revealed some unexpected (and unexplainable) behaviour of these two
methods on some cards.

Update (November 2005)

Sun’s specification of the non-atomic methods has been updated, as of version 2.2, and the JCRE
specification now explicitly states that

“The contents of an array component which is updated using the Util.arrayCopyNon-
Atomic method or the Util.arrayFillNonAtomic method while a transaction is in progress,
is not predictable, following a tear or reset during that transaction.”

With this specification some of the strange behaviour discussed in this report can no longer
be considered as a bug: when the strange behaviour occurs due to card tears during calls to
Util.arrayCopyNonAtomic inside transactions this is no longer a bug, because the specification
now explicitly allows any behaviour under these circumstances. In particular, this means means
that examples 7 and 11 can no longer be said to demonstrate bugs.

However, as mentioned on page 13, we observed the same strange behaviour if we did card
tears during calls to Util.arrayCopyNonAtomic outside transactions. This behaviour does still
constitute a violation of the official Java Card specification by these cards.

The new Java Card specification does leave open the question of how to implement uncondi-
tional state changes during transactions, e.g. how to implement a PIN counter that is decremented
unconditionally even inside transactions. It seems that the new specification makes it impossible
to implement something like this that will work on all Java Card smartcards. It is possible if we
rely on the behaviour that some specific Java Card implementation have in addition to the official
platform specification, i.e. we rely on the fact that the behaviour is not completely unpredictable
in the cases above, as seems to be the case in some of the cards we tested.

1 Introduction

The Java Card programming language for smartcards is usually presented as a subset of Java.
However, Java Card has several features not present in standard Java, which are specific to smart-
cards. One of these features is the distinction between persistent memory (EEPROM or Flash) and
transient memory (RAM): data stored in transient memory is lost as soon as the card loses power,
whereas data stored in persistent memory is preserved. Another of these features is the transaction

2

mechanism, which is provided to cope with the possibility of so-called card tears, i.e. the sudden
loss of power that occurs when a smartcard is torn from the reader. The transaction mechanism
can be used to ensure that transactions will be rolled back in the event they are interrupted by a
card tear.

In the course of developing the formal semantics of the transaction mechanism presented in
[HP03], we noticed a potential ambiguity in Sun’s API specification [Jav99]. This Java Card API
specification states for two methods in the javacard.framework.Util class, the methods array-
CopyNonAtomic and arrayFillNonAtomic, that they “do not use the transaction mechanism”, in
that the effect of these methods will not be roll-backed in the event of a card tear. However, as
we explain in Section 2.2, this leaves room for interpretation in case the methods are combined
with methods that do use the transaction mechanism. Of course, finding such ambiguities is an
important point of developing formal descriptions.

We should note that this ambiguity only occurs in some rather contrived examples, which are
highly unlikely to occur in ‘normal’ Java Card programs. Still, the language specification should
be unambiguous for any legal Java Card program, especially since malevolent programmers are
likely to try out contrived examples of code in an attempt to by-pass or break security of the
platform.

The ambiguity is essentially an instance of “feature interaction”: it is the interaction of the
transaction mechanism with the methods arrayCopyNonAtomic and arrayFillNonAtomic that
is not unambiguously specified. The transaction mechanism is tricky to specify precisely because
it interacts with other API methods. The fact that the transaction mechanism is fundamentally
hard to specify is witnessed by the fact that even in the most recent release of the Java Card
specification, version 2.2, the specification of the API class which interacts with the transaction
mechanism, javacard.framework.PIN, has been improved.

To resolve the ambiguity in the Java Card we carried out experiments on smartcard to see how
these implement the Java Card standard. These experiments demonstrate that we can observe
differences between implementations of the transaction mechanism on different smartcards. More
interesting is that the experiments demonstrate some very strange behaviour, which we cannot
explain. We have not been able to exploit this strange behaviour to by-pass or attack platform
security, though.

The overall structure of the paper is as follows: Section 2 briefly explains the Java Card
transaction mechanism, Then 2.2 explains the ambiguity in the specification of the methods
arrayCopyNonAtomic and arrayFillNonAtomic, and Section 3 gives the details of the experiments
we carried out on physical smartcards.

2 Transactions in Java Card

This section briefly explains the transaction mechanism of Java Card. For a more complete expla-
nation, see [Che00] or the Java Card Runtime Environment (JCRE) specification [Sun00] and the
Java Card API specification [Jav99].

2.1 The Java Card transaction mechanism

Java Card provides a distinction between persistent memory (EEPROM or Flash) and transient
memory (RAM). A smartcard does not have its own power supply, but relies on the card reader for
its power supply. This means that whenever a smartcard is removed from the reader, all data stored
in transient memory (RAM) is lost, and only data stored in persistent memory is preserved. By
default, in Java Card all objects and their fields are allocated in persistent memory, and transient
data is only used for the stack and for specially designated fields that serve as ‘scratch pad’
memory. The special scratch pad fields are always arrays, and are called transient arrays. NB it is
the contents of such a transient array that is transient, the reference to such a transient array is
(typically) persistent.

3

In many card readers it is possible to tear the smartcard out of the reader while it is in operation.
Such a so-called card tear results in a sudden loss of power. Clearly, a card tear occurring in the
middle of some operation, could cause problems and possibly leave the smartcard in an inconsistent
state. E.g., a card tear during the debit operation on an electronic purse could result in electronic
money disappearing or being created.

To cope with card tears, the Java Card API offers a so-called transaction mechanism. This can
be used to ensure that several updates to persistent memory are executed as a single atomic oper-
ation, i.e. either all updates are performed or none at all. The Java Card API offers three methods
for this: beginTransaction, commitTransaction and abortTransaction. After a beginTrans-
action all changes to persistent data are executed conditionally. To quote the JCRE specification
[Sun00, Section 7.5]:

“If power is lost (tear) or the card is reset or some other system failure occurs while
a transaction is in progress, then the JCRE shall restore to their previous values all
[persistent] fields and array components conditionally updated since the previous call to
JCSystem.beginTransaction.”

Note that changes to transient data, including local variables, are executed unconditionally. The
transaction is ended by commitTransaction or abortTransaction; in the former case the up-
dates are committed, in the latter case the updates are discarded. If a card tear occurs during a
transaction, any updates to persistent data done during that transaction are discarded.

For example, suppose that u and t are two arrays with the same length, allocated in EEPROM
(which is the default). Then the following code fragment

JCSystem.beginTransaction();
for(int i=0; i++; i<t.length) t[i] = u[i];

JCSystem.endTransaction();

will copy the contents of u to t in a single atomic operation. I.e. if a card tear occurs during
execution of the code fragment, then either all array elements will be copied or none will be
copied.

The Java Card API in fact provides an atomic array copy method, in the class Util; the
invocation

Util .arrayCopy(u,0,t,0,t .length);

is equivalent to the code fragment above.
So any updates of persistent memory during a transaction are only done conditionally, and all

these conditional updates are committed in one atomic action at the very end of the transaction.
To implement the transaction mechanism, the Java Card platform performs some special clean-
up operations every time the card powers up, to undo the effects of any unfinished transaction.
Different techniques to implement this are discussed in [Oes99].

2.2 The methods arrayCopyNonAtomic and arrayFillNonAtomic

The class javacard.framework.Util provides several methods for manipulating byte arrays. Byte
arrays are heavily used in Java Card programs; all communication between a Java Card smartcard
and the outside world is done using byte arrays. For two of these methods in javacard.framework-

.Util;

• arrayCopyNonAtomic
• arrayFillNonAtomic

the Java Card API specification [Jav99] says that they “do not use the transaction mechanism”.
For arrayCopyNonAtomic the specification says that

“This method does not use the transaction facility during the copy operation even if a
transaction is in progress. Thus, this method is suitable for use only when the contents of
the destination array can be left in a partially modified state in the event of a power loss
in the middle of the copy operation.”

4

The text for the arrayFillNonAtomic is similar. In other words, if a card tear occurs during
invocations of these operations, the state of the destination array can be only partially modified,
even if the invocation occurs in a transaction. For example, the following code fragment

JCSystem.beginTransaction();
Util .arrayCopyNonAtomic(u,0,t,0,t.length);

JCSystem.endTransaction();

can leave the array u partially copied when a card tear occurs, despite the fact that the invocation
of arrayCopyNonAtomic occurs inside a transaction.

Not surprisingly, both these methods are declared as native; it would be impossible to imple-
ment this behaviour in Java Card.

The code fragment below, loosely based on the reference implementation of the Java Card API
class OwnerPIN, illustrates why and how one might want to use arrayCopyNonAtomic:

Example 1. An OwnerPIN object records a PIN code in pin and records the number of attempts
that are left to guess the correct PIN code triesLeft[0].

package javacard.framework;
public class OwnerPIN implements PIN{

private byte[] pin; // array of length 4 storing the PIN code
private byte[] triesLeft , temps; // arrays of length 1

...

private void decrementTriesRemaining(){
temps[0] = (byte)(triesLeft[0]−1);
Util .arrayCopyNonAtomic(temps, 0, triesLeft, 0, 1);

}

public boolean check(byte[] guess){
if (triesLeft [0] == 0) return false;
decrementTriesRemaining();
if (Util .arrayCompare(guess, 0, pin, 0, 4)==0) {

triesLeft [0] = 3;
return true;

}
else return false;

}
}

The method check checks if a supplies PIN code is correct, and resets the value of triesLeft[0] to
3 if it is corrects. The invocation of decrementTriesRemaining in check will decrease triesLeft[0];
the way in which this is done, using arrayCopyNonAtomic, guarantees that this reduction of
triesLeft[0] cannot be rolled-back, in case check is called within a transaction. Implementing
decrementTriesRemaining as

triesLeft[0] = triesLeft[0]-1;

might allow an infinite number of guesses of the PIN code in case check was called during a
transaction, by an attacker that generates a card tear after each incorrect guess of the PIN code.

(The only reason for using a byte array of length 1 rather than a byte field to record the number
of tries that are left is that unconditional updates are only possible using arrayCopyNonAtomic

and are therefore only possible for array entries.)

2.3 The problem

The problem with the specification of arrayCopyNonAtomic above is that it is not clear what
should happen if in a transaction both one of these non-atomic methods and normal assignments
are used to update the same (persistent) field.

Example 2. Consider the following program fragment

5

for (int i = 0; i < t.length ; i++) t[i]=0;
for (int i = 0; i < t.length ; i++) u[i]=2;
JCSystem.beginTransaction();

for (int i = 0; i < t.length ; i++) t[i]=1;
arrayCopyNonAtomic(u,0,t,0,t.length); // assigns 2 to all t [i]

JCSystem.commitTransaction();

Here both arrayCopyNonAtomic and normal assignments are used to update the same persistent
array t.

What is not clear in this situation is what should happen if a card tear occurs during, say,
just before the invocation of commitTransaction, i.e. after completion of the invocation of array-
CopyNonAtomic. There are two possible interpretations of the Java Card specs:

• One could argue that the t[i] should keep their values 2 assigned to them by arrayCopy-
NonAtomic, because this method “does not use the transaction mechanism”, so the effects of
arrayCopyNonAtomic should not be undone.

• On the other hand, one could argue that the t[i] should be reset to their “previous values”,
i.e. the value 0 they had upon entering the transaction, because the assignments to them in
the for loop do use the transaction mechanism.

In experiments on actual cards we found that t[i] are reset to the value 0 they had upon entering
the transaction. More details about these experiments are given in Section 3.

The example above first performs a normal update on t and then uses arrayCopyNonAtomic.
the same issue arises if we reverse this:

Example 3. Consider the following program fragment, where again both arrayCopyNonAtomic

and normal assignments are used to update the same persistent array t.

for (int i = 0; i < t.length ; i++) t[i]=0;
for (int i = 0; i < t.length ; i++) u[i]=2;
JCSystem.beginTransaction();

arrayCopyNonAtomic(u,0,t,0,t.length); // assigns 2 to all t [i]
for (int i = 0; i < t.length ; i++) t[i]=1;

JCSystem.commitTransaction();

What should happen if a card tear occurs during, say, just before the invocation of commitTransaction?
Here in experiments on cards it turned out that the t[i] are reset 2.

So, on the cards we experimented with, in Example 2 the effects of arrayCopyNonAtomic are
undone, but in Example 3 the effects of arrayCopyNonAtomic are not undone. More details about
these experiments are given in Section 3. This suggests that in the following quote from the JCRE
specification [Sun00, Section 7.5]

“If power is lost (tear) or the card is reset or some other system failure occurs while
a transaction is in progress, then the JCRE shall restore to their previous values all
[persistent] fields and array components conditionally updated since the previous call to
JCSystem.beginTransaction.”

we should read “their previous values” as

“the values they had directly prior to the first conditional update after the previous call to
JCSystem.beginTransaction.”

where a “conditional update” is any assignment that is not the effect of arrayCopyNonAtomic or
arrayFillNonAtomic.

So, as Example 3 illustrates, we should not read “their previous values” as

“the values they had upon entering the transaction.”

6

as this interpretation would mean that the t[i] are reset to 0 and not to 2 in Example 3.

Implementing a transaction mechanism involves some shadow bookkeeping: for any persistent
data that is altered during a transaction, both the new and the old value have to be recorded; the
former is needed in case the transaction is successfully completed, the latter is needed in case of
a roll-back. The results of the examples above suggest that in the cards we tested, back-up copies
of old values of fields are made directly prior to the first conditional update in the transaction.

We cannot determine whether these cards implement the transaction mechanism using the
so-called ‘optimistic’ approach or the ‘pessimistic’ approach as described in [Oes99].

Of course, the code fragments above are very contrived. The specification is only unclear in
transactions in which both the non-atomic methods and normal assignments are used to update the
same (persistent) field, something one would not expect to happen in normal Java Card code. Still,
the language specification should be unambiguous for any legal Java Card program. Malevolent
programmers are likely to try out contrived examples of code in an attempt to by-pass or break
security of the platform.

3 Experiments

We carried out some experiments with test applets executing on physical smartcards to see how
these smartcards behave for the cases like the ones discussed in the previous section. We have
tested this applet on three different cards. Two different types of cards by manufacturer A, both
implementing Java Card 2.1.1, and one type of card by manufacturer B, implementing Java Card
2.1. Since the two types of cards from the first manufacturer showed the same behaviour, we will
treat them as one type of card from here.

3.1 Generating card tears

Carrying out these experiments is not completely trivial, as it is hard to generate a card tear at
exactly the right moment.

A trick we used to be able to generate card tears at a specific program point was to include
non-terminating repetitions in the code. For example, the code fragment

1 JCSystem.beginTransaction();
2 for (i = 0; i < t.length ; i++) { t[i]++; }
3 while (true) {}
4 arrayCopyNonAtomic(u,0,t,0,t.length);
5 JCSystem.commitTransaction();

contains an infinite loop in line 3, which allows us to tear out the card after execution of the
statements in line 2 and before the arrayCopyNonAtomic in line 4. After waiting a few seconds
(depending on the length of the array) you can be quite sure that the applet is in the loop.1

An alternative would be to replace this non-terminating repetitions by an invocation of abort-
Transaction. This only works since we are only looking at persistent memory. The difference
between a card tear and an abortTransaction can only be distinguished by looking at the tran-
sient memory.

Making sure that a card tear takes place during execution of an invocation of arrayCopyNon-
Atomic is more difficult. For this one cannot use the tricks mentioned above. One possibility would
be to use special hardware, such as a card reader which can produce a card tear at a precise time,
and count CPU cycles or observe power consumption (as in DPA attacks) to see when copying
starts. Instead, we used the following trick of putting calls to arrayCopyNonAtomic inside an
infinite loop, as in Example 5.

1 Note that you can’t wait too long to tear out the card, because most readers will have some kind of
‘time out’ system.

7

1 JCSystem.beginTransaction();
2 for (i = 0; i < t.length ; i++) { t[i]++; }
3 while (true) {
4 arrayCopyNonAtomic(u,0,t,0,t.length);
5 arrayCopyNonAtomic(v,0,t,0,t.length);
6 }
7 JCSystem.commitTransaction();

By executing the arrayCopyNonAtomic within the infinite loop we know that the card will almost
certainly be executing an arrayCopyNonAtomic operation during the card tear. You might be
unlucky that the system just finished one and has not started yet on the next one. We don’t know
how we could exclude this possibility completely. But by running this test scenario several times
at least statistically you should get a lot of card tears during the arrayCopyNonAtomic operation.

Note that we have to introduce a third array v here. Otherwise it will not be possible to
distinguish between a card tear half way during the third iteration or a card tear exactly after the
first arrayCopyNonAtomic has completed.

3.2 Test scenarios

All test scenarios are carried out using the persistent byte arrays t, u, and v, initialised as follows

final static short len = 0x15;

byte[] t = new byte[len];
byte[] u = new byte[len];
byte[] v = new byte[len];

Util .arrayFillNonAtomic(t,(short)0,len,(byte)0);
Util .arrayFillNonAtomic(u,(short)0,len,(byte)2);
Util .arrayFillNonAtomic(v,(short)0,len,(byte)7);

So when each test scenario is started, t contains all 0’s, u contains all 2’s, and v contains all 7’s.
After each scenario we describe the result. I.e. we describe the contents of the persistent array

t. If we cannot explain these results we show them in italics. A dash in one of the columns means
that the corresponding outcome in the other column does not occur for this card.

3.3 First conditional, then unconditional assignments

In examples 4 and 5 below we consider we consider a transaction which first modifies t using
normal assignments, and then modifies t using arrayCopyNonAtomic.

Example 4 (ID 01, 02, 03, 04). 2

1 // Initially t [i] = 0, u[i] = 2
2 JCSystem.beginTransaction();
3 for (i = 0; i<len; i++) t[i]++; // t[i] becomes 1
4 Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len); // t[i] becomes 2
5 for (i = 0; i<len; i++) t[i]++; // t[i] becomes 3

Values of t[i] when we get a card tear

A B

ID 01 (after line 2) all 0’s all 0’s
ID 02 (after line 3) all 0’s all 0’s
ID 03 (after line 4) all 0’s all 0’s
ID 04 (after line 5) all 0’s all 0’s

Example 5 (ID 08). To consider what happens when a card tear occurs during the call of array-
CopyNonAtomic, we consider the following variant of Example 4, where line 4 and 5 are replaced
by an infinite repetition:

2 These IDs refer to the parameter bytes being used in the applet to trigger a scenario.

8

1 // Initially t [i] = 0, u[i] = 2, v[i] = 7
2 JCSystem.beginTransaction();
3 for (i = 0; i<len; i++) t[i]++; // t[i] becomes 1
4 while (true) {
5 Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len); // t[i] becomes 2
6 Util .arrayCopyNonAtomic(v,(short)0,t,(short)0,len); // t[i] becomes 7
7 }

By executing this code and producing card tears a number of times we will sometimes interrupt
the calls to arrayCopyNonAtomic. The table below shows the contents of t we observed after
several card tears:

A B

ID 08 all 0’s all 0’s
some 0’s, some 1’s, then 0’s

So on the card of brand A the array t always contained all 0’s, which was what we would expect
on the basis of Example ex:a, but on the card of brand B we sometimes found different contents.

We cannot explain this behaviour of the card of brand B. Of course we are not sure which
of the two calls to arrayCopyNonAtomic we interrupt, or at which point in their execution it is
interrupted, but in Example 4 the roll-back of the unfinished transaction always restores t to its
state before the modification in line 3. Consequently, one would expect that in Example 5 the
roll-back of an unfinished transaction always to restore t to its state before the modification in
line 3.

3.4 First unconditional, then conditional assignments

In examples 6 and 7 below we consider a transaction which first modifies t using arrayCopyNon-
Atomic, and then modifies t using normal assignments:

Example 6 (ID 05, 06). Here we consider a transaction which first modifies t using arrayCopy-
NonAtomic, and then modifies t using normal assignments:

1 // Initially t [i] = 0, u[i] = 2, v[i] = 7
2 JCSystem.beginTransaction();
3 Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len); // t[i] becomes 2
4 for (i = 0; i<len; i++) t[i]++; // t[i] becomes 3

Contents of t after we produce a card tear

A B

ID 05 (after line 3) all 2’s all 2’s
ID 06 (after line 4) all 2’s all 2’s

So both cards restore t to the contents it had at the end of the call to arrayCopyNonAtomic.

Example 7 (ID 07). To find out what happens when a card tear occurs during the call of array-
CopyNonAtomic, we consider the following variant of Example 6, where line 3 and 4 are replaced
by an infinite repetition:

1 // Initially t [i] = 0, u[i] = 2, v[i] = 7
2 JCSystem.beginTransaction();
3 while (true) {
4 Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len); // t[i] becomes 2
5 Util .arrayCopyNonAtomic(v,(short)0,t,(short)0,len); // t[i] becomes 7
6 }

Values of t[i] we observed after card tears, in line 4 or 5:

9

A B

ID 07 some 2’s, then 7’s some 2’s, then 7’s
some 7’s, then 2’s some 7’s, then 2’s

only 2’s only 2’s
only 7’s only 7’s

some 2’s, then 0’s -
some 0’s, then 7’s -

- some 2’s, then gibberish
- some 7’s, then gibberish
- only gibberish
- some gibberish, then 2’s
- some gibberish, then 7’s

The first five outcomes are easy to explain The first four entries, which we observed on both
cards, can be expected from producing a card tear during the invocations in line 4 or 5 (which
should produce a mixture of 2’s and 7’s) or producing a card tear exactly between these invocations
(which should produce all 2’s or all 7’s). To get the fifth outcome – some 2’s, then 0’s – we
apparently produced a card tear when line 4 was being executed for the first time.

For the cards of brand A, we can not find any explanation on how we got the sixth outcome –
some 0’s, then 7’s.

For the card of brand B there is more unexplained behaviour. Here we observed that t contains
some apparently gibberish data, which included values other than 0, 2, and 7, which are the only
values ever assigned to the t[i].

Note that this data is not completely random. We keep observing the same sequence of unknown
values each time. However we did notice that this sequence is different for different cards of brand
B and sometimes changed if we modified the code and downloaded the new applet to the card.
E.g., running the code above with different length for t on one card of brand B, we observed the
following values for t after card tears

t = {30, 9E, B9, AA, 94, 3D, 57, 18, 9F, 64}
t = {30, 9E, B9, AA, 94, 3D, 57, 18, 9F, 64, 93, 27, 76, 49, 6 E, E7}
t = {30, 9E, B9, AA, 94, 3D, 57, 18, 9F, 64, 93, 27, 76, 49, 6 E, E7, 9A, A6, CA, 01, 55}

whereas on another card of brand Bwe observed the contents

t = {D0, C9, 74, 75, FF, C7, 2B, 6B, C6, 44}
t = {D0, C9, 74, 75, FF, C7, 2B, 6B, C6, 44, AD, 40, A2, 87, 3E, A4}
t = {D0, C9, 74, 75, FF, C7, 2B, 6B, C6, 44, AD, 40, A2, 87, 3E, A4, 81, 66, FF, D0, 06}

For C code such behaviour would not really be surprising, given the vague situations of initialisation
and pointer arithmetic, but for Java code, let alone for single-threaded Java Card code, which
should be completely deterministic, this behaviour is rather worrying!

3.5 First unconditional, then conditional and then some more unconditional
assignments

Example 8 (ID 09).

1 // Initially t [i] = 0, u[i] = 2, v[i] = 7
2 JCSystem.beginTransaction();
3 Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len); // t[i] becomes 2
4 for (i = 0; i<len; i++) t[i]++; // t[i] becomes 3
5 Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len); // t[i] becomes 2
6 // card tear

A B

ID 09 only 2’s only 2’s
- some 2’s, some 3’s, then 2’s

10

The only 2’s is understandable, since this is the value of t before the first conditional update.
However, the other behaviour of the cards of brand B here cannot be understood. What might
have been the case is that the card tear was too early and during the arrayCopyNonAtomic of line
5. At least that could explain a sequence of both 2’s and 3’s. However, since we have 2’s, then 3’s
and then again some 2’s, this could have only caused this result if the order of copying the data
need not be determined from left to right.

Example 9 (ID 0A).

1 // Initially t [i] = 0, u[i] = 2, v[i] = 7
2 JCSystem.beginTransaction();
3 Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len); // t[i] becomes 2
4 for (i = 0; i<len; i++) t[i]++; // t[i] becomes 3
5 for (i = 0; i<len; i++) u[i]++; // u[i] becomes 3
6 Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len); // t[i] remains 3
7 //card tear

A B

ID 0A only 2’s only 2’s
- some 2’s, some 3’s, then 2’s

As in Example 8, we cannot explain the behaviour of the B card.

3.6 EEPROM word issues

Writing to EEPROM typically goes in terms of words, not bytes. This seems to be the reason why
we see that the different blocks we get in our results are always of the same length.

Example 10 (ID 0B). The difference with Example 9 lies in the fact that here we do our conditional
updates in a different order. Probably the two arrays t and u are not in the same words on
EEPROM level and therefore the results might be different. Although it is more likely that we
notice different behaviour if the card tear occurs during one of the arrayCopyNonAtomic’s.

1 // Initially t [i] = 0, u[i] = 2, v[i] = 7
2 JCSystem.beginTransaction();
3 Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len); // t[i] becomes 2
4 for (i = 0; i<len; i++) {
5 t [i]++; // t[i] becomes 3
6 u[i]++; // u[i] becomes 3
7 }
8 Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len); // t[i] remains 3
9 //card tear

A B

ID 0B only 2’s only 2’s

Here the behaviour of both cards can be explained.

Example 11 (ID 0C). Here we do not modify the whole array conditionally, but only the first half
of it. This test is used to check whether only the bytes really modified are backed up and restored
or also the other bytes of the modified array.

1 // Initially t [i] = 0, u[i] = 2, v[i] = 7
2 JCSystem.beginTransaction();
3 for (i = 0; i< (short)(len/2); i++) t[i]++; // some t[i] become 1
4 while (true) {
5 Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len); // t[i] becomes 2
6 Util .arrayCopyNonAtomic(v,(short)0,t,(short)0,len); // t[i] becomes 7
7 }

11

A B

ID 0C only 0’s only 0’s
first half 0’s, then 2’s first half 0’s, then 2’s

first half 0’s, some 2’s, then 7’s first half 0’s, some 2’s, then 7’s
first half 0’s, some 7’s, then 2’s first half 0’s, some 7’s, then 2’s

first half 0’s, then 7’s first half 0’s, then 7’s
first half 0’s, some 0’s, then 7’s -
first half 0’s, some 2’s, then 0’s -

- first half 0’s, some 2’s, then gibberish
- first half 0’s, some 7’s, then gibberish
- first half 0’s, some gibberish, then 2’s
- first half 0’s, some gibberish, then 7’s
- first half 0’s, then gibberish

The first result of only 0’s can be explained by a card tear just before the arrayCopyNonAtomic.
The results where the first half are 0’s and the second half are filled with only 2’s or 7’s can be
explained by a card tear just between the arrayCopyNonAtomic’s. The results where the first half
are 0’s and the second half starts with 2’s and ends with 0’s can be explained by a card tear in the
first execution of the arrayCopyNonAtomic in line 5. The results where the first half are 0’s and
the second half starts with 2’s and ends with 7’s can be explained by a card tear in any execution
of the arrayCopyNonAtomicin line 5, except the first execution. The results where the first half
are 0’s and the second half starts with 7’s and ends with 2’s can be explained by a card tear in
any execution of the arrayCopyNonAtomicin line 6.

The result for brand A with the first half 0’s and the second half starting with 0’s and ending
with 7’s cannot be explained. The 7’s only appear after all 0’s in the second half have been replaced
by 2’s, hence no 0’s should appear! The only explanation we can think of is that the 2’s are first
replaced by 0’s before being replaced by 2’s, but we can’t believe that that is the way it is actually
done.

The results for brand B containing the gibberish cannot be explained. The outcome is very
similar to the one in example 5. In fact the strange bytes we see are exactly the same!

3.7 First conditional, then unconditional assignments, revisited

Examples 12 and 13 below are similar to examples 4 and 5: again we consider a transaction which
first assigns to t using normal assignments, and then assigns to t using arrayCopyNonAtomic. The
difference is that we replace t[i]++ by t[i]=t[i]. Clearly this assignment has no side-effect; in
fact, a compiler might optimise such assignments away. It turns out this affects the behaviour of
the transaction mechanism on the cards of brand A.

Example 12 (ID 0D, 0E).

1 // Initially t [i] = 0, u[i] = 2, v[i] = 7
2 JCSystem.beginTransaction();
3 for (i = 0; i<len; i++) t[i] = t[i]; // t[i] remains 0
4 Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len); // t[i] becomes 2
5 for (i = 0; i<len; i++) t[i]++; // t[i] becomes 3

First we check what happens if the card tear occurs after line 4 or 5.

A B

ID 0D (after line 4) - only 0’s
only 2’s -

ID 0E (after line 5) - only 0’s
only 2’s -

12

Note that here the cards of brand A behave differently than in Example 4. Apparently the trans-
action mechanism on the cards of brand A notices that the assignments t[i]=t[i] have no effect,
so that it decides not to ‘back-up’ the values of t[i] to roll back when a card tear occurs.3

Example 13 (ID 0F). Now we check what happens if a card tear occurs during the call of array-
CopyNonAtomic. We consider the following variant of Example 12, where line 4 is replaced by an
infinite repetition:

1 // Initially t [i] = 0, u[i] = 2, v[i] = 7
2 JCSystem.beginTransaction();
3 for (i = 0; i<len; i++) t[i] = t[i]; // t[i] remain 0
4 while (b) {
5 Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len); // t[i] become 2
6 Util .arrayCopyNonAtomic(v,(short)0,t,(short)0,len); // t[i] become 7
7 }

Values of t[i] after card tear in line 4 or 5:

A B

ID 0F - only 0’s
only 2’s -
only 7’s -

some 7’s, then 2’s -
some 2’s, then 7’s -
some 2’s, then 0’s -
some 0’s, then 7’s -

random 7, 6, 3 and 2, then 7’s, then 2’s -

Here there is some unexplainable behaviour on the card of brand A. Some 2’s and then some 0’s
can be explained; apparently we produced a card tear the first time line 5 was executed. However,
we cannot explain how t could contain only 0’s and 7’s. The occurrence of numbers other than
0,2, and 7 in t observed can also not be explained.

The results of the card of brand B are understandable. The compiler doesn’t optimise and
hence this test starts with conditional updates which trigger the back-up system.

3.8 Some more experiments

Arrays of length 1 Due to the strange behaviour in certain test scenarios, we were interested
in knowing whether this behaviour could be reproduced in case the length of the array equals
one. This is an interesting case: in OwnerPIN implementations it is likely that checking a PIN code
involves an arrayCopyNonAtomic for adjusting the -called try counter, as illustrated in Example 1

A B

Ex. 7 ID 07 0 -
2 2
7 7
- D1

Ex. 5 ID 08 0 0
Ex. 8 ID 09 2 2
Ex. 9 ID 0A 2 2
Ex. 11 ID 0C 0 -

2 2
7 7
- D1

Ex. 13 ID 0F - 0
2
7

3 In order to rule out the fact that this difference was caused by a different compiler or cap converter, we
have installed the cap file generated by the A tools also on the card of brand B. This showed the same
behaviour as the cap file produced with Sun’s converter.

13

The results are similar to the results we have found using larger arrays. The card of brand A still
shows the 0 in ID 07 and ID 0C, which can only be explained by a card tear that occurred too
soon. The card of brand B still shows some strange D1 in these experiments on an entry that could
have only been 0, 2 or 7. Hence in particular this might indicate that these cards of brand B are
not safe with respect to their implementation of OwnerPIN!

Outside transactions Although the total work for this research was inspired by our formalisation
of the transaction mechanism, the results triggered us to perform some checks on the arrayCopy-
NonAtomic method outside transactions. A bit to our surprise the results are again similar! The
gibberish bytes for cards of brand B show up again in all tests where the card tear occurs during
the arrayCopyNonAtomic.These are the tests with ID 47, 48, 4C and 4F. The only remarkable
thing here is that the original test ID 08 with the transaction didn’t show the gibberish. The card
of brand A still shows the strange combination of 0’s and 7’s in with tests ID 47 and 4F. All other
results are normal.

Hence the conclusion might be that the problems are not really caused by the combination of
arrayCopyNonAtomic and the transaction mechanism, but are inherent to the implementation of
arrayCopyNonAtomic itself!

4 Conclusions

Below we summarise our main conclusions w.r.t. Sun’s specifications, our formalisation of the
semantics of the transaction mechanism, and the strange behaviour noticed during our experi-
mentation with actual smartcards.

Sun’s Java Card platform specification

A positive conclusion from our experiments is that, although the Java Card platform specification
by Sun leaves open room for interpretation, the cards we tried actually implement the same
behaviour here, and hence behave identical for examples 2 and 3 in Section 2.2. This means the
ambiguity we noted in Sun’s specification can be resolved. In particular, the existing specification

“If power is lost (tear) or the card is reset or some other system failure occurs while
a transaction is in progress, then the JCRE shall restore to their previous values all
[persistent] fields and array components conditionally updated since the previous call to
JCSystem.beginTransaction.”

can be improved by replacing it with

“If power is lost (tear) or the card is reset or some other system failure occurs while a
transaction is in progress, then the JCRE shall restore all [persistent] fields and array
components conditionally updated since the previous call to JCSystem.beginTransaction
to the values they had directly prior to the first conditional update after the previous call
to JCSystem.beginTransaction.”

This makes precise what is meant by “their previous values”. This improved specification correctly
predicts the outcome of examples 2 and 3 in Section 2.2. (However, it still leaves open the issue
noted about the card of brand A in the end of Example 12, where updates that have no effect,
such as t[i]=t[i], are apparently ignored.)

Our formal semantics presented in [HP03]

A negative conclusion of our experiments is that the formal description of the semantics of the
transaction mechanism proposed in [HP03] is not quite right, as this assumes another interpretation
of what “previous values” means. The semantics described in [HP03] assumes that

14

“If power is lost (tear) or the card is reset or some other system failure occurs while a
transaction is in progress, then the JCRE shall restore all [persistent] fields and array
components conditionally updated since the previous call to JCSystem.beginTransaction
to the values they had directly at the moment of the previous call to JCSystem.beginTrans-
action.”

For instance, in examples 2 and 3 this will produce the wrong result. The formal semantics proposed
in [HP03] could be adapted, though the technical details will become trickier.

Strange behaviour of smartcards

A more important negative conclusion of our experiments concerns the strange behaviour of the
cards if card tears occur during calls to the non-atomic API methods arrayCopyNonAtomic and
arrayFillNonAtomic. The behaviour under these circumstances is essentially completely unpre-
dictable. Note that in the tables in Section 3 all the results written in italics are results we cannot
explain.

Especially the cards of brand B behave very strange in these cases, with completely random
data ending up in the destination array in examples 7 and 11. This strange behaviour is easy to
repeat, and we believe it is a bug in the platform implementation. It is intriguing that we get up
with the same sequence of apparently random data every time, but that this sequence changes if
we upload a different applet to the card. This suggests that we are in fact reading out the value
of some fixed page of the EEPROM here. This could be applet code, or data of the JCRE itself
or some an applet. We have checked whether the sequence of apparently random data occurs in
the hexadecimal representation of the unjarred cap file of our package, but this was not the case;
hence we think it is unlikely that the sequence of data is part of some applet’s code. Fortunately,
the random data are bytes and not references, as the API only provides the non-atomic methods
for byte arrays; if the random data were references, this might break type safety.

The cards of brand A clearly behave better when card tears occur during calls to arrayCopy-
NonAtomic or arrayFillNonAtomic. Although there are still some results we don’t understand,
we cannot get completely random data in the destination array. Also, the unexplained results were
hard to duplicate. In fact, in some cases it only occurred once and we never managed to repeat it.

Note that our experiments show that the implementation of the PIN code presented in Ex-
ample 1 could be attacked on a card of brand B if we would be able to generate card tears at
the precise moment arrayCopyNonAtomic is invoked: this would reset the try counter to some
random value, and there is a good chance that this will allow more guesses of the PIN code than
intended. However, this would require good timing of card tears, that will be hard to achieve
in practise. Still, an implementation of a PIN code which does not use arrayCopyNonAtomic to
cleverly by-pass the transaction mechanism, but which simply refuses the check of a PIN code if
a transaction is in progress (the Java Card API provides methods that can check this) might be
considered more secure.

At some stage during our experiments we came up with the following programming guideline
to avoid the strange behaviour that we noticed:

Never use arrayCopyNonAtomic or arrayFillNonAtomic to update a persistent array
during a transaction.

However, after doing also additional experiments with invoking these methods outside transactions
(reported in Section 3.8), we realised this programming guideline did not suffice to avoid all strange
behaviour, but it needed to be extended to:

Never use arrayCopyNonAtomic or arrayFillNonAtomic to update a persistent array.

This would avoid all the strange behaviour we noticed, but is of course a very strong restriction:
using these methods is pointless for transient arrays and only make sense for persistent arrays, so
this guideline would effectively mean that these methods should never be used.

15

4.1 Acknowledgements

Thanks to Marc Witteman of Riscure for his insights and Joachim van den Berg of TNO-ITSEF
for repeating some of our experiments and confirming our test results.

References

[Che00] Z. Chen. Java Card Technology for Smart Cards. The Java Series. Addison-Wesley, 2000.
[HP03] E.-M.G.M. Hubbers and E. Poll. Reasoning about Card Tears and Transactions in Java Card.

Technical Report NIII R0322, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The
Netherlands, October 2003. To appear in FASE’04 proceedings.

[Jav99] The Java Card 2.1 Application Programming Interface (API). Sun Microsystems, 1999.
[Oes99] M. Oestreicher. Transactions in Java Card. In 15th Annual Computer Security Applications

Conf. (ACSAC), pages 291–298, Phoenix, Arizona, Dec 1999. IEEE Comput. Soc, Los Alamitos,
California. http://www.acsac.org/1999/abstracts/thu-b-1500-marcus.html.

[Sun00] Sun. Java Card 2.1.1 Runtime Environment (JCRE) Specification. Sun Micro systems Inc, Palo
Alto, California, May 2000. http://java.sun.com/products/javacard/.

[VR03] L. Victor and L. Rousseau. scriptor.pl: text interface to send APDU commands to a smart card.
2003.

A The applet

Below the actual code of our test applet. In the method runTest the different scenarios are
explained. The test applet is basically a big switch statement. For each scenario we add a case

based upon a unique byte that is sent from the terminal to run the test.
Performing a test requires sending of four APDUs, for example

00 A4 04 00 0F 6E 6F 6E 61 74 6F 6D 69 63 74 72 61 6E 73 41
00 01 00 00 15
00 00 00 00 01 01
00 01 00 00 15

The first APDU (the first line) selects the applet, the second shows the contents of the persistent
byte array t, the third runs one of the scenarios, and the fourth shows the contents of t again.
Note that this last APDU is only used if a scenario without card tear was executed.

To automate the process we have wrote scripts for such tests, and we used the scriptor tool
[VR03] to send these to the card. The scripts need to be modified if the length of the arrays
changes, though this could be done automatically.

/∗
∗
∗ Package: CopyNonAtomicTransactionTest
∗ Filename: CopyNonAtomicTransactionTest.java
∗ Class : CopyNonAtomicTransactionTest
∗ Date: Dec 17, 2003 4:06:14 PM
∗
∗/

package CopyNonAtomicTransactionTest;

import javacard.framework.∗;

/∗∗
∗
∗ Class CopyNonAtomicTransactionTest
∗
∗/

public class CopyNonAtomicTransactionTest extends javacard.framework.Applet{

final static short len = 0x20;

byte[] t = new byte[len];
byte[] u = new byte[len];
byte[] v = new byte[len];

16

boolean b = true;

public static final byte INS DO TEST = (byte) 0x00;
public static final byte INS GET T = (byte) 0x01;
public static final byte INS RESET = (byte) 0x04;

public static final byte INS SELECT = (byte)0xA4;

public static void install(byte[] bArray, short bOffset, byte bLength){
(new CopyNonAtomicTransactionTest()).register(bArray, (short)(bOffset + 1), bArray[bOffset]);

}

public void runTest (byte ttype) {
short i;
try {

if ((short) (ttype & 0x00FF) < (short)(0x40 & 0x00FF)) {
// Tests within the transaction system
JCSystem.beginTransaction();

} else {
// Tests outside the transaction system

}
switch (ttype) {

case 0x01:
// beginTrans
// <card tear/>

// commitTrans
while (b) {
}
break;

case 0x02:
// beginTrans
// t[0]++;
// <card tear/>

// commitTrans
for (i = 0; i<len; i++) {

t [i] = (byte)(t[i] + 1) ;
}
while (b) {
}
break;

case 0x03:
// beginTrans
// t[0]++;
// arrayCopyNonAtomic(u,0,t,0,1);
// <card tear/>

// commitTrans
for (i = 0; i<len; i++) {

t [i] = (byte)(t[i] + 1) ;
}
Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
while (b) {
}
break;

case 0x04:
// beginTrans
// t[0]++;
// arrayCopyNonAtomic(u,0,t,0,1);
// t[0]++;
// <card tear/>

// commitTrans
for (i = 0; i<len; i++) {

t [i] = (byte)(t[i] + 1) ;
}
Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
for (i = 0; i<len; i++) {

t [i] = (byte)(t[i] + 1) ;
}
while (b) {
}
break;

case 0x05:
// beginTrans
// arrayCopyNonAtomic(u,0,t,0,1);
// <card tear/>

// commitTrans
Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
while (b) {
}
break;

17

case 0x06:
// beginTrans
// arrayCopyNonAtomic(u,0,t,0,1);
// t[0]++;
// <card tear/>

// commitTrans
Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
for (i = 0; i<len; i++) {

t [i] = (byte)(t[i] + 1) ;
}
while (b) {
}
break;

case 0x07:
// beginTrans
// <card tear>
// arrayCopyNonAtomic(u,0,t,0,1);
// arrayCopyNonAtomic(v,0,t,0,1);
// </card tear>
// commitTrans
while (b) {

Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
Util .arrayCopyNonAtomic(v,(short)0,t,(short)0,len);

}
break;

case 0x08:
// beginTrans
// t[0]++;
// <card tear>
// arrayCopyNonAtomic(u,0,t,0,1);
// arrayCopyNonAtomic(v,0,t,0,1);
// </card tear>
// commitTrans
for (i = 0; i<len; i++) {

t [i] = (byte)(t[i] + 1) ;
}
while (b) {

Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
Util .arrayCopyNonAtomic(v,(short)0,t,(short)0,len);

}
break;

case 0x09:
// beginTrans
// arrayCopyNonAtomic(u,0,t,0,1);
// t[0]++;
// arrayCopyNonAtomic(u,0,t,0,1);
// <card tear/>

// commitTrans
Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
for (i = 0; i<len; i++) {

t [i] = (byte)(t[i] + 1) ;
}
Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
while (b) {
}
break;

case 0x0a:
// beginTrans
// arrayCopyNonAtomic(u,0,t,0,1);
// t[0]++;
// u[0]++;
// arrayCopyNonAtomic(u,0,t,0,1);
// <card tear/>

// commitTrans
Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
for (i = 0; i<len; i++) {

t [i] = (byte)(t[i] + 1) ;
}
for (i = 0; i<len; i++) {

u[i] = (byte)(u[i] + 1) ;
}
Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
while (b) {
}
break;

case 0x0b:
// beginTrans
// arrayCopyNonAtomic(u,0,t,0,1);
// t[0]++;
// u[0]++;

18

// arrayCopyNonAtomic(u,0,t,0,1);
// <card tear/>

// commitTrans
Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
for (i = 0; i<len; i++) {

t [i] = (byte)(t[i] + 1) ;
u[i] = (byte)(u[i] + 1) ;

}
Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
while (b) {
}
break;

case 0x0c:
// beginTrans
// t[0]++; (only half array)
// <card tear>
// arrayCopyNonAtomic(u,0,t,0,1);
// arrayCopyNonAtomic(v,0,t,0,1);
// </card tear>
// commitTrans
for (i = 0; i< (short)(len/2); i++) {

t [i] = (byte)(t[i] + 1) ;
}
while (b) {

Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
Util .arrayCopyNonAtomic(v,(short)0,t,(short)0,len);

}
break;

case 0x0d:
// beginTrans
// t[0] = t [0];
// arrayCopyNonAtomic(u,0,t,0,1);
// <card tear/>

// commitTrans
for (i = 0; i<len; i++) {

t [i] = t [i];
}
Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
while (b) {
}
break;

case 0x0e:
// beginTrans
// t[0] = t [0];
// arrayCopyNonAtomic(u,0,t,0,1);
// t[0]++;
// <card tear/>

// commitTrans
for (i = 0; i<len; i++) {

t [i] = t [i];
}
Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
for (i = 0; i<len; i++) {

t [i] = (byte)(t[i] + 1) ;
}
while (b) {
}
break;

case 0x0f:
// beginTrans
// t[0] = t [0];
// <card tear>
// arrayCopyNonAtomic(u,0,t,0,1);
// arrayCopyNonAtomic(v,0,t,0,1);
// </card tear>
// commitTrans
for (i = 0; i<len; i++) {

t [i] = t [i];
}
while (b) {

Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
Util .arrayCopyNonAtomic(v,(short)0,t,(short)0,len);

}
break;

case 0x41:
// <card tear/>

while (b) {
}
break;

case 0x42:

19

// t[0]++;
// <card tear/>

for (i = 0; i<len; i++) {
t [i] = (byte)(t[i] + 1) ;

}
while (b) {
}
break;

case 0x43:
// t[0]++;
// arrayCopyNonAtomic(u,0,t,0,1);
// <card tear/>

for (i = 0; i<len; i++) {
t [i] = (byte)(t[i] + 1) ;

}
Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
while (b) {
}
break;

case 0x44:
// t[0]++;
// arrayCopyNonAtomic(u,0,t,0,1);
// t[0]++;
// <card tear/>

for (i = 0; i<len; i++) {
t [i] = (byte)(t[i] + 1) ;

}
Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
for (i = 0; i<len; i++) {

t [i] = (byte)(t[i] + 1) ;
}
while (b) {
}
break;

case 0x45:
// arrayCopyNonAtomic(u,0,t,0,1);
// <card tear/>

Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
while (b) {
}
break;

case 0x46:
// arrayCopyNonAtomic(u,0,t,0,1);
// t[0]++;
// <card tear/>

Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
for (i = 0; i<len; i++) {

t [i] = (byte)(t[i] + 1) ;
}
while (b) {
}
break;

case 0x47:
// beginTrans
// <card tear>
// arrayCopyNonAtomic(u,0,t,0,1);
// arrayCopyNonAtomic(v,0,t,0,1);
// </card tear>
// commitTrans
while (b) {

Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
Util .arrayCopyNonAtomic(v,(short)0,t,(short)0,len);

}
break;

case 0x48:
// t[0]++;
// <card tear>
// arrayCopyNonAtomic(u,0,t,0,1);
// arrayCopyNonAtomic(v,0,t,0,1);
// </card tear>
for (i = 0; i<len; i++) {

t [i] = (byte)(t[i] + 1) ;
}
while (b) {

Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
Util .arrayCopyNonAtomic(v,(short)0,t,(short)0,len);

}
break;

case 0x49:
// beginTrans

20

// arrayCopyNonAtomic(u,0,t,0,1);
// t[0]++;
// arrayCopyNonAtomic(u,0,t,0,1);
// <card tear/>

// commitTrans
Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
for (i = 0; i<len; i++) {

t [i] = (byte)(t[i] + 1) ;
}
Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
while (b) {
}
break;

case 0x4a:
// arrayCopyNonAtomic(u,0,t,0,1);
// t[0]++;
// u[0]++;
// arrayCopyNonAtomic(u,0,t,0,1);
// <card tear/>

Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
for (i = 0; i<len; i++) {

t [i] = (byte)(t[i] + 1) ;
}
for (i = 0; i<len; i++) {

u[i] = (byte)(u[i] + 1) ;
}
Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
while (b) {
}
break;

case 0x4b:
// arrayCopyNonAtomic(u,0,t,0,1);
// t[0]++;
// u[0]++;
// arrayCopyNonAtomic(u,0,t,0,1);
// <card tear/>

// commitTrans
Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
for (i = 0; i<len; i++) {

t [i] = (byte)(t[i] + 1) ;
u[i] = (byte)(u[i] + 1) ;

}
Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
while (b) {
}
break;

case 0x4c:
// t[0]++; (only half array)
// <card tear>
// arrayCopyNonAtomic(u,0,t,0,1);
// arrayCopyNonAtomic(v,0,t,0,1);
// </card tear>
for (i = 0; i< (short)(len/2); i++) {

t [i] = (byte)(t[i] + 1) ;
}
while (b) {

Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
Util .arrayCopyNonAtomic(v,(short)0,t,(short)0,len);

}
break;

case 0x4d:
// beginTrans
// t[0] = t [0];
// arrayCopyNonAtomic(u,0,t,0,1);
// <card tear/>

// commitTrans
for (i = 0; i<len; i++) {

t [i] = t [i];
}
Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
while (b) {
}
break;

case 0x4e:
// beginTrans
// t[0] = t [0];
// arrayCopyNonAtomic(u,0,t,0,1);
// t[0]++;
// <card tear/>

// commitTrans

21

for (i = 0; i<len; i++) {
t [i] = t [i];

}
Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
for (i = 0; i<len; i++) {

t [i] = (byte)(t[i] + 1) ;
}
while (b) {
}
break;

case 0x4f:
// t[0] = t [0];
// <card tear>
// arrayCopyNonAtomic(u,0,t,0,1);
// arrayCopyNonAtomic(v,0,t,0,1);
// </card tear>
for (i = 0; i<len; i++) {

t [i] = t [i];
}
while (b) {

Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);
Util .arrayCopyNonAtomic(v,(short)0,t,(short)0,len);

}
break;

default:
// No card tears
// beginTrans
// t[0]++;
// arrayCopyNonAtomic(u,0,t,0,1);
// t[0]++;
// commitTrans
for (i = 0; i<len; i++) {

t [i] = (byte)(t[i] + 1) ;
}

Util .arrayCopyNonAtomic(u,(short)0,t,(short)0,len);

for (i = 0; i<len; i++) {
t [i] = (byte)(t[i] + 1) ;

}
}
if ((short) (ttype & 0x00FF) < (short)(0x40 & 0x00FF)) {

// Tests within the transaction system
JCSystem.commitTransaction();

} else {
// Tests outside the transaction system

}
} catch (ArithmeticException e) {

ISOException.throwIt((short)0x7000);
} catch (ArrayStoreException e) {

ISOException.throwIt((short)0x7100);
} catch (ClassCastException e) {

ISOException.throwIt((short)0x7200);
} catch (ArrayIndexOutOfBoundsException e) {

ISOException.throwIt((short)0x7300);
} catch (IndexOutOfBoundsException e) {

ISOException.throwIt((short)0x7400);
} catch (NegativeArraySizeException e) {

ISOException.throwIt((short)0x7500);
} catch (NullPointerException e) {

ISOException.throwIt((short)0x7600);
} catch (SecurityException e) {

ISOException.throwIt((short)0x7700);
} catch (APDUException e) {

ISOException.throwIt((short)(0x7800 | e.getReason()));
} catch (ISOException e) {

ISOException.throwIt((short)(0x7900 | e.getReason()));
} catch (PINException e) {

ISOException.throwIt((short)(0x7a00 | e.getReason()));
} catch (SystemException e) {

ISOException.throwIt((short)(0x7b00 | e.getReason()));
} catch (TransactionException e) {

ISOException.throwIt((short)(0x7c00 | e.getReason()));
} catch (CardRuntimeException e) {

ISOException.throwIt((short)(0x7d00 | e.getReason()));
} catch (RuntimeException e) {

ISOException.throwIt((short)0x7e00);
} catch (Exception e) {

ISOException.throwIt((short)0x7f00);
}

22

}

public void reset() {
Util .arrayFillNonAtomic(t,(short)0,len,(byte) 0);
Util .arrayFillNonAtomic(u,(short)0,len,(byte) 2);
Util .arrayFillNonAtomic(v,(short)0,len,(byte) 7);

}

public void process(APDU apdu){
byte[] buf = apdu.getBuffer();
switch(buf[ISO7816.OFFSET INS]){

case (byte)0xb1:
break;

case INS SELECT:
break;

case INS GET T:
Util .arrayCopy(t,(short)0,buf,(short)ISO7816.OFFSET CDATA,len);

apdu.setOutgoingAndSend((short)ISO7816.OFFSET CDATA,len);
break;

case INS DO TEST:
apdu.setIncomingAndReceive();
reset () ;
runTest(buf[ISO7816.OFFSET CDATA]);
break;

case INS RESET:
reset () ;
Util .arrayCopy(t,(short)0,buf,(short)ISO7816.OFFSET CDATA,len);

apdu.setOutgoingAndSend((short)ISO7816.OFFSET CDATA,len);
break;

default:
ISOException.throwIt(ISO7816.SW INS NOT SUPPORTED);

}
}

}

