
Specification of the JavaCard API in JML
Towards formal specification and verification

of applets and API implementations

Erik Poll, Joachim van den Berg, Bart Jacobs
Dept. of Computer Science, University of Nijmegen,

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.

{erikpoll,joachim,bart}@cs.kun.nl

Abstract

This paper reports on an effort to increase the reliability of JavaCard-based
smart cards by means of formal specification and verification of JavaCard
source code. As a first step, lightweight formal interface specifications, writ-
ten in the specification language JML, have been developed for all the classes
in the JavaCard API (version 2.1). They make many of the implicit assump-
tions underlying the current implementation explicit, and thus facilitate the
use of this API and increase the reliability of the code that is based on it.
Furthermore, the formal specifications are amenable to tool support, for veri-
fication purposes.

1 Introduction

Program specification and verification has always be one of the central issues in
computer science. Despite enormous theoretical progress in this area, the practical
impact is still modest. Over the last few years the situation is slightly improv-
ing, due to the availability of modern verification tools (like theorem provers and
model checkers), supported by fast hardware. Early work in program specifica-
tion and verification was based on mathematically clean and abstract programming
languages, with special logics for correctness formulas. But nowadays, correctness
issues are being investigated for real-life programming languages (like Java), and
formal logical languages are used enabling tool support for specification and veri-
fication.

This paper fits in that modern formal methods tradition. It uses the specification
language JML for annotation of the Java classes in the JavaCard API1 (version 2.1),
see also [5]. Its aim is to increase the reliability of JavaCard-based smart cards by
means of formal specification and verification of JavaCard source code. JavaCard is
a good target for the application of formal methods, for several reasons: JavaCard
applets are distributed in large numbers, and are often used in (safety or security)
critical applications, so that programming errors can have serious consequences.
But JavaCard applets are usually small programs, designed to run on a processor
with modest resources. Also, the language of these applets, JavaCard, is relatively
simple, with a relatively small API, in comparison to full Java. This makes the
application of formal methods to JavaCard a feasible and useful enterprise, which
can have an impact.

This paper reports on the first steps in the use of JML for JavaCard: very basic
specifications have been written for all the classes in the JavaCard API. These

1developed by Sun Microsystems, see http://java.sun.com/products/javacard/.

1

specifications are ‘lightweight’ in that they concentrate on conditions for normal
and abrupt termination (i.e. the throwing of exceptions), given by preconditions
and invariants, and omit the functional specification, which are typically written
in postconditions. We call such specifications termination specifications. These
specifications are very easy to read and to write, and, despite their simplicity, they
provide useful documentation and make many implicit assumptions explicit.

The API specification will be published on the web [14]. The ideal scenario is
that it will develop into an actively used ‘reference specification’, that will form
a basis for future versions of the JavaCard API implementation. (This fits in a
component-oriented approach, where interface specifications form the basis for soft-
ware composition.) Therefore, we explicitly solicit feedback from the JavaCard
(user and development) community, so that our specifications reflect the common
understanding of what should be in the JavaCard API.

The JML project

JML (for Java Modeling Language) [11, 12] is a specification language tailored
to Java, primarily developed at Iowa State University. It allows assertions to be
included in Java code, specifying for instance pre- and postconditions and invariants
in the style of Eiffel and the well-established Design by Contract approach [15]. JML
is being integrated with the specification language used for ESC/Java, the extended
static checker developed at Compaq System Research Center [13, 4].

At Nijmegen a formal semantics has been developed of a large subset of Java,
which includes all of JavaCard. A compiler has been built, the LOOP tool, which
translates a Java program into logical theories describing its semantics [9, 2, 6, 14].
These logical theories are in a format that can serve as input for theorem provers,
which can then be used to prove properties of the original Java program, thus
achieving a high level of reliability for this program. Currently the LOOP tool
supports output for the theorem provers PVS [16] and Isabelle [17]. This approach
to verification of Java has demonstrated its usefulness for instance with the proof
of a non-trivial invariant for the Vector class in the standard Java API [7]. The
LOOP tool is currently being extended to JML, so that it can be used to verify
JML-annotated Java source code. We should emphasise that this is source code,
and not bytecode verification.

An advantage of using a formal specification language is that it becomes possible
to provide tool support. Current work on tool support for JML focuses on:

• verification using LOOP tool, at the University of Nijmegen,

• extended static checking by ESC/Java, at Compaq System Research Center
in Palo Alto, and

• generation of runtime checks on preconditions for testing, at Iowa State Uni-
versity.

JML specifications for JavaCard

JML specifications of the JavaCard API are of interest for parties on both sides of
the interface the API provides, i.e. for developers of applets on the one hand, and
for developers of API implementations on the other hand. The specifications can be
used to specify and verify essential properties of implementations of the JavaCard
API, starting with the current reference implementation itself, and as a basis for the
specification and verification of properties of individual applets that use the API.

2

Once a formal specification language has been chosen, there is still a choice of
how detailed specifications should be. For any program there is a whole spectrum
of possible specifications. At one end of the spectrum are the very complete and
detailed specifications. The reference implementation of the JavaCard API is an ex-
ample of such a specification. At the other end of the spectrum are very incomplete
or ‘lightweight’ specifications. These are the kind of specifications we have given for
the JavaCard API, version 2.1 [10]. More precisely, the specifications we have given
only specify when methods are guaranteed not to throw unwanted runtime excep-
tions. We call such specifications termination specifications. Such specifications
are relatively easy to write and easy to check, and can be used to guarantee the
absence of most runtime exceptions. This is important, since omitting the proper
handling of such exceptions is a common source of failures. Our formal specifica-
tions are based on the informal (but quite detailed) specification of the JavaCard
API, that is contained as javadoc documentation in the reference implementation
of the JavaCard API. Essentially, they are a rediscovery of many of the design ideas
and decisions that went into the (current) implementation.

The paper is organised as follows. It starts with a gentle introduction to JML,
concentrating on the pre- and post-conditions for methods (including abrupt ter-
mination), and invariants. Section 3 discusses the typical features of the kind of
specifications we have given, and the subsequent Section 4 describes several typical
examples of specifications for methods from the JavaCard API, including a discus-
sion of typical specification issues in the presence of inheritance. Finally, the paper
ends with some conclusions.

2 JML

This section introduces the JML notation used in our formal specification. For
our relatively simple termination specifications, only a small subset of the full JML
syntax is actually used. So what is described here is by no means all of JML,
see [11, 12].

JML allows Java code to be annotated with specifications, for example with
preconditions, post-conditions, and invariants, in the style of Eiffel, also known
as “Design by Contract”, see [15, 8]. However, JML provides many enhancements
making it much more expressive. One of these, of particular relevance to this paper,
is the possibility to specify when certain exceptions may be thrown, must be thrown,
or may not be thrown.

JML annotations are a special kind of Java comments: JML annotations are
preceded by //@, or enclosed between /*@ and @*/.

Pre- and Postconditions in JML

Methods can be specified in the usual way, by giving pre- and postconditions. The
simplest method specifications are of the form

/*@ normal_behavior
requires : <precondition> ;
ensures : <postcondition> ;

@*/

Such a specification states that if the precondition holds at the beginning of a
method invocation, then the method terminates normally (i.e. without throwing an
exception) and the postcondition will hold at the end of the method invocation.
This is like a (total) correctness formula in Hoare logic [1].

3

Pre- and postconditions can simply be standard Java boolean expressions. JML
adds several operators, for instance quantifiers \exists and \forall, but for the
simple specifications given here none of these additional operators are needed.

In Java methods can terminate abruptly, by throwing exceptions. A more gen-
eral form of method specification makes it possible to specify in what circumstances
which exceptions may be thrown. These method specifications are of the form

/*@ behavior
requires : <precondition> ;
ensures : <postcondition>;
signals : (Exception1) <condition1>;
...
signals : (Exceptionn) <conditionn>;

@*/

Such a specification states that if the precondition holds at the beginning of a
method invocation, then the method either terminates normally or terminates ab-
ruptly by throwing one of the listed exceptions. If the method terminates normally,
then the postcondition will hold. If the method throws an exception, then the
corresponding condition will hold.

Finally, a third form of method specification that can be used is

/*@ exceptional_behavior
requires : <precondition> ;
signals : (Exception1) <condition1>;
...
signals : (Exceptionn) <conditionn>;

@*/

Such a specification states that if the precondition holds then the method will ter-
minate abruptly by throwing one of listed exceptions, and if one of these exceptions
is thrown then the corresponding condition will hold.

Both normal_behavior and exceptional_behavior are just special cases of
behavior, and can be regarded as useful syntactic sugar. All these behaviors can
be translated into an extended Hoare logic dealing with abrupt termination, see [6].

For a single method several specifications of the forms above can be given, joined
by the keyword also. The method should then meet all these specifications. With
pre- and postconditions in Eiffel this is not possible.

In addition to pre- and postconditions, a method specification in JML can also
include modifiable clauses. These clauses specify so-called frame conditions, which
say that only certain (instance or class) fields may have their values changed by a
method. For example, modifiable:x specifies that a method may only change field
x. Because we do not want to discuss these clauses in this paper, all examples of
behavior specifications will either include a clause modifiable:\not_specified to
say that nothing is specified about the fields the method may change, or a clause
modifiable:\nothing to say that the method does not change any fields.

Invariants in JML

In addition to pre- and postconditions, JML annotations can also specify invariants.
An invariant is a property that should hold after creation of an object by one of the
constructors, and that should be preserved by all the methods. So any invariant is

4

implicitly included in pre- and postconditions of all methods. Note that an invariant
must also be preserved if a method throws an exception.

For example, for the class AID (Application Identifier), which includes a byte
array field theAID, we have an invariant

/*@ invariant: theAID != null &&
5 <= theAID.length && theAID.length <= 16;

@*/

For the class APDU (Application Protocol Data Unit), which includes two byte array
fields, buffer and ramVars, we have an invariant

/*@ invariant: buffer != null && ramVars != null &&
buffer.length == APDU.BUFFERSIZE &&
ramVars.length == APDU.RAM_VARS_LENGTH;

@*/

Invariants are not mentioned in the informal API specification, nor in the API
reference implementation. Still, invariants provide useful documentation, and of-
ten play an important role as (implicit) assumptions in considerations about the
correctness of code. This will be illustrated later, e.g. in Example 4.1.

3 Termination Specifications for the JavaCard API

We have developed very basic specifications for all the classes in the JavaCard
API. A concrete goal was to specify preconditions for methods to rule out as many
unwanted exceptions as possible. Such “termination” specifications are relatively
easy to write, and easy to check, but still provide crucial information about the
behaviour of the API classes. The specifications expose many of the considerations
and the implicit assumptions that have gone into the design of the API reference
implementation. In this section we discuss some typical examples to give the flavour
of the specifications we have given for all methods in the JavaCard API.

Whenever possible, methods are specified by a normal_behavior. This requires
a precondition which guarantees normal termination, i.e. which rules out that any
exceptions will be thrown. The precondition usually imposes fairly obvious restric-
tions on the parameters of the method, e.g. that references are not null, that indices
are within array bounds, etc. A typical example is the specification of arrayCompare
in the class Util. This method compares parts of two arrays, given offsets within
those arrays and a length saying how many array elements are to be compared. Its
termination specification is given below:

public static native byte arrayCompare(byte[] src,
short srcOff,
byte[] dest,
short destOff,
short length)

throws ArrayIndexOutOfBoundsException,
NullPointerException;

/*@ normal_behavior
requires: src != null && dest != null &&

srcOff >= 0 && destOff >= 0 && length >= 0
&& srcOff + length <= src.length &&
destOff + length <= dest.length;

modifiable: \nothing;

5

ensures: true;
@*/

Some points to note about this specification:

• The precondition states very obvious requirements on the parameters needed
to avoid NullPointer- and ArrayIndexOutOfBoundsExceptions. These re-
quirements immediately follows from the detailed informal specification given
in the JavaCard API documentation.

• The postcondition is simply true. This means that nothing is specified about
the functionality of the method. This is the case with most of the specifications
we have developed.

• The specification of arrayCompare could easily be made stronger. For in-
stance, the informal specification of the JavaCard API states that a NullPointerException
may be thrown if src or dest is a null reference, as one would expect. We
could easily specify this in JML as well. We have chosen not to do so to
keep the formal specifications as short and simple as possible2. And, as one
would expect (or hope), it turns out that no part of the JavaCard reference
implementation in fact relies on the property that arrayCompare may throw
a NullPointerException if src or dest is a null reference.

• The method arrayCompare is declared as native, which means that it is to be
implemented by platform-dependent code. Indeed, the reference implement-
ation does not provide an implementation of this method. For such methods
precise specifications are of course of crucial importance.

We cannot specify all methods by giving a normal_behavior. Some meth-
ods can throw exceptions that are very hard – if not impossible – to rule out
with a simple precondition. Such methods are specified using behavior instead of
normal_behavior. A typical example is the specification for arrayCopy in the class
Util. This method copies part of one array into another array. Like arrayCompare
it can throw a NullPointer- or ArrayIndexOutOfBoundsException. But it can
also throw a TransactionException, namely when the commit capacity (the max-
imum number of bytes of persistent data which can be modified during a card
transaction) is exceeded. Its specification is given below:

public static native short arrayCopy(byte[] src,
short srcOff,
byte[] dest,
short destOff,
short length)

throws ArrayIndexOutOfBoundsException,
NullPointerException, TransactionException;

/*@ behavior
requires: src != null && dest != null &&

srcOff >= 0 && destOff >= 0 && length >= 0
&& srcOff + length <= src.length &&
destOff + length <= dest.length ;

modifiable: \not_specified;
ensures: true;

2Also, one has to be careful with such specifications, as it should not be specified which excep-
tion gets thrown if there is the possibility of throwing more than one exception (e.g. when src is
null and destOff > dest.length). The informal API specification in fact warns that programmers
should not rely on getting a specific exception in such cases. Of course, by not specifying anything
about when certain exceptions are thrown, as we do here, we avoid this danger altogether.

6

signals: (TransactionException) true;
@*/

Some points to note about this specification:

• Again, the postcondition is true, so the specification does not describe any
functionality. And again, it is trivial to see that the specification of arrayCopy
above captures part of its informal specification given in the JavaCard API
documentation.

• The precondition does not rule out all runtime exceptions, as it leaves open
the possibility that a TransactionException is thrown. One could try to
strengthen the precondition to exclude this possibility, but that would be
much harder. Unlike a NullPointer- or ArrayIndexOutOfBoundsException,
a TransactionException is not due to an obvious mistake by the client in-
voking this method.

A TransactionException is thrown when the space in the commit buffer is
exhausted. In this buffer the JCRE (JavaCard Runtime Environment) retains
the original contents of updated values until a transaction is committed, to
support the rollback of a transaction in case of power loss. One could consider
giving a second specification of arrayCopy, in addition to the one above, that
states that no TransactionException is thrown if some (stronger) precon-
dition, guaranteeing the availability of sufficient space in the commit buffer,
is met. Such a specification would make it possible to prove the absence of
TransactionExceptions in applets, assuming a certain minimal size of the
commit buffer.

We have written specifications similar to those of arrayCompare and arrayCopy
above for all the methods in the JavaCard API, using either behavior or normal_behavior.
A few methods have been specified using exceptional_behavior rather than behavior
or normal_behavior, namely those which are specifically meant to throw exceptions
(i.e. the throwIt methods in all the exception classes).

4 Examples of developing and checking JML spe-
cifications

Obviously we cannot discuss the JML specifications for the whole JavaCard API
here. We will present several typical examples to give an impression of the kind of
verifications required to check that specifications are met, the difficulties involved
in developing specifications, and the relation between our formal JML specifications
and the informal ones given in the JavaCard documentation.

The first example illustrates an informal verification of a specification, and the
crucial role of invariants in this.

Example 4.1 (AID) The method equals of the class AID compares the AID bytes
in two AID instances. Our termination specification of equals is

public boolean equals(Object anObject)
/*@ normal_behavior

requires: true;
modifiable: \nothing;

ensures: true;
@*/

7

This specification states that equals always terminates normally, i.e. never throws
an exception. This very weak specification is already more precise than the informal
specification: the informal specification explicitly states that equals does not throw
a NullPointerException, but does not say anything about whether or not it may
throw other exceptions.

The reference implementation of the API gives the following implementation of
equals:

{if (!(anObject instanceof AID)
|| ((AID)anObject).theAID.length != theAID.length)
return false;

return (Util.arrayCompare(((AID)anObject).theAID,
(short)0, theAID, (short)0,
(short)theAID.length)

== 0);
}

We will give an informal argument that this implementation of equals meets its
JML specification, i.e. that it terminates without throwing exceptions. This comes
down to showing that the invocation of the method Util.arrayCompare terminates
normally, as this is the only possible source of exceptions in the code fragment
above. Normal termination of Util.arrayCompare requires that its precondition
given earlier is met; substituting the actual values for the formal parameters yields:

((AID) anObject).theAID != null && theAID != null
&& 0 >= 0 && 0 >= 0 && theAID.length >= 0
&& 0 + theAID.length <= ((AID)anObject).theAID.length
&& 0 + theAID.length <= theAID.length

Recall the invariant of class AID:

theAID != null && 5 <= theAID.length && theAID.length <=16

This leaves only the following properties to be established:

(i) ((AID)anObject).theAID != null
(ii) theAID.length <= ((AID)anObject).theAID.length

It follows from the if-statement that Util.arrayCompare will only be invoked if:

(iii) (anObject instanceof AID)
(iv) ((AID)anObject).theAID.length == theAID.length

It follows from (iv) that (ii) holds. It follows from (iii) that the parameter (AID)anObject
has runtime type AID. We may therefore assume that it satisfies the invariant for
this class, and hence (i) holds. So all conditions needed to ensure normal termin-
ation of Util.arrayCompare are met, and hence the reference implementation of
equals in the class AID meets its JML specification. ut

Note that to understand that the reference implementation is correct, the in-
variant of the class AID is really needed. Also, it should be clear from the ex-
ample above that once we have the class invariant of AID and the specification of
Util.arrayCompare, then verifying that the method equals of AID meets its JML
specification is not that hard. The reasoning involved is well within the capabilities
of modern theorem provers.

8

The example also illustrates that even these very basic JML specifications can
be more precise than the existing informal specifications because they explicitly rule
out more runtime exceptions.

The example below illustrates a more complicated argument about correctness
of code from the API reference implementation.

Example 4.2 (PackedBoolean) The class PackedBoolean provides efficient man-
agement of volatile storage space. Instances of this class contain an array of bytes
container that is used to store boolean values. The point of this is that only one
bit rather than one byte is used for each boolean. The class provides methods put
and get to access the bits in the byte array container. For example, get(n) will
return the (n % 8)-th bit of the byte container[n / 8], where / and % are the
integer division and remainder operations.

In the reference implementation an instance of this class is created in which the
length of the byte array is 2 (in the class Dispatcher, via the class PrivAccess),
thus providing space for 16 booleans. Trying to use it for more than 16 booleans
will – not surprisingly – result in an ArrayIndexOutOfBoundsException. The fact
that no more than 16 booleans will be allocated in this instance of PackedBoolean
is a ‘global’ property, and cannot be checked by looking at an individual class. De-
veloping termination specifications for all methods will bring the hidden assumption
that no more that 16 booleans may be allocated to the surface, as shown below.

First we consider the specification of the class PackedBoolean. For this it is con-
venient to a feature of JML not mentioned so far, namely a specification-only field.
JML provides specification-only variables, which are just like ordinary variables but
are for specification purposes only, i.e. they can be used in JML annotations but
not in the Java code. For the class PackedBoolean we introduce a specification-only
field for the number of booleans that can be fitted in the container array:

//@ public model byte _NUMBER_OF_PACKED_BOOLS;

This specification variable will simply be equal to 8*container.length. The ad-
vantage of using a specification variable rather than the expression 8*container.length
is of course that it abstracts away from the implementation of PackedBoolean.

We have the following invariant for the class PackedBoolean:

/*@ invariant:
container != null &&
_NUMBER_OF_PACKED_BOOLS == container.length * 8;

@*/

The methods for accessing the booleans in the byte array can now be specified
as below. In combination with the invariant, the preconditions guarantee that no
NullPointer- or ArrayIndexOutOfBoundsException can occur.

public boolean get(byte identifier)
/*@ normal_behavior

requires: 0 <= identifier &&
identifier < _NUMBER_OF_PACKED_BOOLS;

modifiable: \not_specified;
ensures: true;

@*/

public void put (byte identifier, boolean value)
/*@ normal_behavior

9

requires: 0 <= identifier &&
identifier < _NUMBER_OF_PACKED_BOOLS;

modifiable: \not_specified;
ensures: true;

@*/

To allocate a boolean in an instance of the class PackedBoolean, clients call the
method allocate, which returns the identifier that is to be used in subsequent
calls of the methods get and set to address a particular boolean. Instances of the
class PackedBoolean have a field nextId, which is used to keep track of how many
booleans have already been allocated. The method allocate simply returns the
field nextId and increments it by 1. An obvious invariant for this field is:

/*@ invariant:
0 <= nextId && nextId < _NUMBER_OF_PACKED_BOOLS;

@*/

and the specification of allocate is

public byte allocate()
/*@ normal_behavior

requires: nextId+1 < _NUMBER_OF_PACKED_BOOLS;
modifiable: \not_specified;

ensures: \result < _NUMBER_OF_PACKED_BOOLS;
@*/

The precondition ensures that we never allocate more booleans than for which
there is space. The JML keyword \result in the postcondition refers to the value
returned by the method.

The specification above forces all classes using a PackedBoolean to ensure that
they do not exceed its capacity. For example, the constructor of the APDU class
allocates eight booleans:

APDU()
{ ...
thePackedBoolean = PrivAccess.getPackedBoolean();
incomingFlag = thePackedBoolean.allocate();
sendInProgressFlag = thePackedBoolean.allocate();
outgoingFlag = thePackedBoolean.allocate();
outgoingLenSetFlag = thePackedBoolean.allocate();
lrIs256Flag = thePackedBoolean.allocate();
noChainingFlag = thePackedBoolean.allocate();
noGetResponseFlag = thePackedBoolean.allocate();
...

}

Its precondition will have to include

requires: PrivAccess.getPackedBoolean().nextId + 8
< PrivAccess.getPackedBoolean()._NUMBER_OF_PACKED_BOOLS;

By the specification of allocate it then follows that the constructor above estab-
lishes invariants like

0 <= outgoingFlag &&
outgoingFlag < thePackedBoolean._NUMBER_OF_PACKED_BOOLS;

for the class APDU. This in turn guarantees that methods like

10

private boolean getSendInProgressFlag()
{ return thePackedBoolean.get(sendInProgressFlag); }

in the class APDU will not throw any runtime exceptions, because the precondition
of get is met. ut

As the example above shows, the development of even very basic JML specifica-
tions forces many implicit assumptions out into the open. Writing JML annotations
while developing the code would require less effort than writing them afterwards as
we have done. The post-hoc writing of JML specifications essentially forces us to
(re)discover many of the considerations that were part of the original design, but
which cannot be found back anywhere in the code or in the informal documentation.

Specification Inheritance

Inheritance is a key feature of object-oriented (OO) programming. It provides
extensibility: subclasses can extend existing classes, and code written for those
original classes can be reused for any new subclasses. However, this extensibility
comes at a price. It is no longer possible to decide statically which code will be
executed when a method is invoked, because, due to late binding, this will depend on
the runtime type of an object. This makes it hard to reason about object-oriented
programs: it is dangerous to rely on certain properties of a method, because these
might not hold for implementations of this method in future subclasses.

Specification inheritance [15, 3] is the principle that a class inherits the specific-
ation of its superclass and the specifications of any of the interfaces it implements.
This principle addresses exactly the difficulty in reasoning about object-oriented
code mentioned above: It guarantees that it is safe to assume some properties of a
method because these properties will not be violated in future subclasses. It means
that in subclasses we are only allowed to weaken preconditions and strengthen post-
conditions. This constrains the use of inheritance: one can no longer make methods
behave completely differently by overriding (but this is not good programming prac-
tice anyway).

Specification inheritance exposes the fundamental complexity of specification
and verification in an OO setting. One has to be careful not to make specifications
too strong, because this may rule out interesting subclasses in the future. This
means specification requires some foresight. What often happens in practice is that
one wants to add a subclass but finds that it does not meet the specification of its
superclass. One can then weaken the superclass specification to allow the subclass,
but that signals that existing client code of the superclass may be affected. This is
illustrated in Example 4.3 below.

Java enforces some form of specification inheritance for throws clauses: a method
in a subclass cannot throw exceptions that are not declared in the supertype. Of
course, this does not apply to runtime exceptions, as they do not have to be declared.
(In Java these are called unchecked exceptions.) As the earlier examples illustrate,
our JML specifications effectively extend this policy to runtime exceptions.

There are not many places where specification inheritance is an issue in the
JavaCard API. In fact, quite a few classes that make up the JavaCard API are
final. These cannot be extended, so for these classes specification inheritance can
never become a problem. Two places where specification inheritance is an issue are

• the abstract class Applet, and

• the interface PIN.

11

The class Applet is obviously meant to be extended; after all, it is an abstract
class. The specification of the class Applet should give properties that we want all
possible JavaCard applets to have. Similarly, the specification of the interface PIN
should give properties that we want all possible implementations of this interface
to have.

Even for the very basic specifications we consider one can argue about what the
specifications of Applet and PIN should be. For instance, any applet has to provide
an implementation of the method

public abstract void process(APDU apdu)

that will be called by the JCRE to process incoming APDU’s. Several specifications
for this methods are possible: one could not specify anything about this method
at all, or one could specify that it may only throw a limited set of exceptions. For
instance, when developing an applet, one might want to ensure that its process
method can only throw an ISOException or an APDUException.

The example below shows that, even with our very basic specifications, specific-
ation inheritance already brings to light some subtleties in the reference implement-
ation of the JavaCard API.

Example 4.3 The interface PIN contains a method isValidated(), that returns
true if a valid PIN value has been presented since the last card reset or last invoc-
ation of reset(). A first guess for its specification would simply be:

public boolean isValidated()
/*@ normal_behavior

requires: true;
modifiable: \not_specified;

ensures: true;
@*/

It states that this method never throws an exception. But, surprisingly, this specific-
ation is already too strong. This is because the class OwnerPIN, which implements
the interface PIN and therefore inherits its specification, provides an implementation
of isValidated that may throw a SystemException. (This in itself is already far
from obvious! But giving termination specifications in JML for all methods in the
class OwnerPIN will bring this fact to light.) So the implementation of isValidated
in OwnerPIN does not meet the specification above. It does meet the weaker spe-
cification

/*@ behavior
requires: true;

modifiable: \not_specified;
ensures: true;
signals: (SystemException) true;

@*/

So specification inheritance means that for the method of isValidated in the in-
terface PIN we should also give this weaker specification, or something weaker still.
The advantage of this is that, by looking at its JML specification, any user of the
interface PIN will be aware that implementations of this interface may throw a
SystemException. ut

We already saw that JML specifications can be more precise than the informal
specifications, because they rule out more runtime exceptions (e.g. in Example 4.1).
The example above show that JML specifications can also be more precise about

12

runtime exceptions for the opposite reason, i.e. because they explicitly state that
an exception may be thrown even though this is not mentioned anywhere in the
informal specification or in the code of the reference implementation.

5 Conclusion

The termination specifications of the JavaCard API provide useful documentation,
as the examples we have given illustrate. Many properties expressed by the JML
annotations can directly be found in the informal specification, but some cannot.
In these cases the JML specification of the JavaCard API is more informative than
both the source code of the reference implementation and the informal specification,
and makes explicit many considerations and assumptions that are implicit in the
design. In particular, the specifications we have developed are useful in preventing
uncaught exceptions, a common source of failures.

Writing termination JML specifications in JML for the JavaCard API is not
very difficult, assuming some basic knowledge of formal methods. Writing JML an-
notations while developing the code, instead of afterwards as we have done, would
require less effort still. All annotations are easy to understand for any Java program-
mer. (It is in fact one of the goals of JML that it should be readily understandable
for Java programmers.)

Using a formal specification language rather than informal English makes it pos-
sible to provide tool support. The conventional tool support for Design by Contract
is the automatic inserting of runtime tests in code to check no preconditions are
violated. There are other efforts underway to provide such support for Java, e.g. [8].
While useful in the development and testing phase, leaving such tests in the final
JavaCard source code of applets or of API implementations is probably undesirable,
for reasons of efficiency and size3.

Our goal is to go further than runtime testing of specifications, and give compile-
time proofs that specifications are met. Relatively simple properties, like those
given in the specifications discussed here, should be proved fully automatically.
Experiments are underway to see how strong specifications can be made while still
being automatically enforceable by the extended static checker ESC/Java [4]. Once
the extended static checker ESC/Java will be released, it can then provide useful
tool support for the development of both applets and API implementations, allow
automatic verification of simple specifications at the push of a button. One cannot
expect arbitrarily complex properties to be proved fully automatically, but these
can still be proved interactively using the LOOP tool as a front-end to theorem
provers such as PVS or Isabelle. This approach is of course more labour intensive,
but especially for vital properties of JavaCard API implementations and applets
the effort may well be justified.

All JML specifications for the JavaCard API will be made available on our
webpages [14]. We hope this will be a useful service to the JavaCard community,
in providing a proper addition to the existing documentation of the JavaCard API.
We also plan to develop more detailed (functional) JML specifications of the API
for the verification of JavaCard source code using the LOOP tool.

3Indeed, the informal JavaCard API specification explicitly states that implementations of
the API should not do any parameter checking, but leave it up to the virtual machine to throw
appropriate exceptions.

13

References

[1] K. R. Apt. Ten years of Hoare’s logic: a survey – Part I. ACM Trans. on Prog. Lang.
and Syst., 3(4):431–483, 1981.

[2] J. van den Berg, M. Huisman, B. Jacobs, and E. Poll. A type-theoretic memory
model for verification of sequential Java programs. In D. Bert and C. Choppy, editors,
Recent Trends in Algebraic Development Techniques, number 1827 in Lecture Notes
in Computer Science. Springer, Berlin, 2000.

[3] K.K. Dhara and G.T. Leavens. Forcing behavioral subtyping through specification
inheritance. In Proceedings 18th International Conference on Software Engineering,
Berlin, Germany, pages 258–267. IEEE, 1996.

[4] Extended static checker ESC/Java. Compaq System Reserch Center, http://www.-
research.digital.com/SRC/esc/Esc.html.

[5] U. Hansmann, M.S. Nicklous, T. Schäck, and F. Seliger. Smart Card Application
Development Using Java. Springer, 2000.

[6] M. Huisman and B. Jacobs. Java program verification via a Hoare logic with abrupt
termination. In T. Maibaum, editor, Fundamental Approaches to Software Engineer-
ing, number 1783 in Lecture Notes in Computer Science, pages 284–303. Springer,
Berlin, 2000.

[7] M. Huisman, B. Jacobs, and J. van den Berg. A case study in class library verification:
Java’s Vector class. Techn. Report CSI-R0007, Comput. Sci. Inst., Univ. of Nijmegen,
2000. An earlier version appeared in: B. Jacobs, G.T. Leavens, P. Müller, and A.
Poetzsch-Heffter (eds.), Formal Techniques for Java Programs. Proceedings of the
ECOOP’99 Workshop. Technical Report 251, Fernuniversität Hagen, 1999, p.37-44.

[8] iContract. R. Kramer, http://www.reliable-systems.com/tools/iContract, 1999.

[9] B. Jacobs, J. van den Berg, M. Huisman, M. van Berkum, U. Hensel, and H. Tews.
Reasoning about classes in Java (preliminary report). In Object-Oriented Program-
ming, Systems, Languages and Applications (OOPSLA), pages 329–340. ACM Press,
1998.

[10] The Java Card 2.1 Application Programming Interface (API). Sun Microsystems,
1999.

[11] G.T. Leavens, A.L. Baker, and C. Ruby. JML: A Notation for Detailed Design. In
H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Specifications of Businesses
and Systems, pages 175–188. Kluwer, 1999.

[12] G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. Technical report, Dept. of Comp. Sci., Iowa
State University, 1999. Tech. Rep. 98-06.

[13] K.R.M. Leino, J.B. Saxe, and R. Stata. Checking Java programs via guarded com-
mands. In B. Jacobs, G. T. Leavens, P. Müller, and A. Poetzsch-Heffter, editors,
Formal Techniques for Java Programs. Proceedings of the ECOOP’99 Workshop,
pages 37–44. Techn. Rep. 251, Fernuniversität Hagen, 1999. Also as Technical Note
1999-002, Compaq Systems Research Center, Palo Alto.

[14] The LOOP project. http://www.cs.kun.nl/˜bart/LOOP/index.html.

[15] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd rev.
edition, 1997.

[16] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas. PVS: Combining specific-
ation, proof checking, and model checking. In R. Alur and T.A. Henzinger, editors,
Computer Aided Verification, number 1102 in Lecture Notes in Computer Science,
pages 411–414. Springer, Berlin, 1996.

[17] L.C. Paulson. Isabelle: A Generic Theorem Prover. Number 828 in Lecture Notes in
Computer Science. Springer, Berlin, 1994.

14

