CMCS’2000 Preliminary Version

A Coalgebraic Semantics of Subtyping

Erik Poll

Department of Computer Science, University of Nijmegen,
P.O. Boz 9010, 6500 GL Nijmegen, The Netherlands.
erikpoll@cs.kun.nl

Abstract

Subtyping is a central notion in object-oriented programming. In this paper we
investigate how the coalgebraic semantics of objects accounts for subtyping. We
show that different characterisations of so-called behavioural subtyping found in the
literature can conveniently be expressed in coalgebraic terms. We define subtyping
between coalgebras and subtyping between coalgebraic specifications, and show that
the latter is sound and complete w.r.t. the former. We also illustrate the subtle
difference between the notions of subtyping and refinement.

1 Introduction

Subtyping is one of the famous buzzwords in object-oriented (OO) program-
ming. However, the precise meaning of subtyping, and more in particular the
question whether subtyping is the same as inheritance, has been the subject of
a lot of debate (more on that in Section 2). Given that the notion of (terminal)
coalgebra can be used to describe the semantics of objects [Rei95], an obvious
question to ask is how this semantics accounts for subtyping. We will show
that the coalgebraic view of objects provides a clean semantics for so-called
behavioural subtyping.

Refinement is an important notion in specification languages. At first sight
it seems to be closely related, if not identical, to the notion of subtyping. How-
ever, we will show that refinement and subtyping are really different notions.

This paper is organised as follows. Section 2 gives an informal explana-
tion of the notion of behavioural subtyping and discusses the difference with
the notion of inheritance. Section 3 defines some basic coalgebraic notions
and Section 4 explains the format of class specifications we use. Sections 5
and 6 then consider the coalgebraic semantics of signature subtyping and be-
havioural subtyping, respectively. Section 7 discusses the relation between
subtyping and refinement, and we conclude in Section 8.

This is a preliminary version. The final version will be published in
FElectronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs

PoLL
2 Behavioural subtyping

Behavioural subtyping captures the idea that objects in one class (the sub-
class) behave like objects in another class (the superclass). For example,
classes Car and Truck could be behavioural subtypes of a class Vehicle. Be-
havioural subtyping is sometimes referred to as the “is a” relation: a car “is
a” vehicle.

Behavioural subtyping guarantees that any code written for objects in the
superclass, i.e. vehicles, will behave as expected when applied to objects in
the subclasses, i.e. cars or trucks. So behavioural subtyping allows the reuse
of so-called client code: a piece of code written for vehicles will also work for
cars and trucks. This is the justification of the implicit casting of objects from
sub- to superclasses, also known as subsumption, by which for example any
object of type Car is also of type Vehicle.

There is a weaker relation than behavioural subtyping, known as signature
subtyping, which only concerns the signatures of objects. A class A’ is a sig-
nature subtype of another class A if objects in A’ have all the methods that
objects in A have, with compatible types!. For a signature subtype to also
be a behavioural subtype, these methods must also have the same semantics.
Unlike behavioural subtyping, signature subtyping is a purely syntactic no-
tion, defined by standard contra/covariant rules (e.g. [CW85]). Most of the
type-theoretical literature on OO is concerned with this notion of subtyping.
Signature subtyping can be mechanically checked by type checking algorithms,
and can be used to ensure that no type errors (of the form “method not found”)
can occur at run-time.

Different ways of defining behavioural subtyping have been proposed in the
literature. One way is to say that behavioural subtypes correspond to stronger
specifications. Usually, this is expressed in terms of pre- and post-conditions of
methods: methods in a behavioural subtype are then required to have weaker
pre-conditions and stronger post-conditions than the corresponding methods
in the supertype. This characterisation of behavioural subtyping is used in the
programming language Eiffel and the “Design by Contract” approach [Mey97],
and is widely used in the literature, e.g. [Ame87] [LW94] [LW95].

Another well-known characterisation of behavioural subtyping is the prin-
ciple of substitutability [Lis88]: “A’ is a behavioural subtype of A iff for every
object a' of type A’ there is an object a of type A such that for all programs
p that use a, the behaviour of p is unchanged when a is replaced with a'”.

In Section 6 we will give definitions of behavioural subtyping in the coal-
gebraic setting in both of the ways discussed above, and relate the two.

LA word about notation: throughout this paper we stick to the convention that a primed
letter such as A’ refers to a subtype of the unprimed one.

2

PoLL

Behavioural Subtyping vs Inheritance

In the world of OO there has been a lot of discussion on the precise meaning of
inheritance and subtyping, and the difference, if any, between them. It is now
generally recognised that one can distinguish (at least) two different notions.
Beware that a lot of the literature on OO treats the terms inheritance and
subtyping as synonyms! This is why, to avoid any confusion, we use the term
“behavioural subtyping” instead of just “subtyping” 2.

Inheritance allows us to make a (sub)class A’ of a (super)class A by adding
new methods and new fields to the class, and by overriding existing methods.
In many cases this will lead to behavioural subtyping, i.e. A" will be a be-
havioural subtype of A. However, this is not always the case. It should be
clear that if methods are overridden in a subclass, then objects in this subclass
may behave quite differently from objects in the superclass? .

So the only relation between inheritance and behavioural subtyping is that
inheritance may result in behavioural subtyping. Although ideally one uses
inheritance to produce behavioural subtypes, there may be good reasons to
use inheritance even if it does not produce behavioural subtypes. Like be-
havioural subtyping, inheritance makes it possible to reuse code, namely the
code of class definitions. The code reuse by inheritance, i.e. the reuse of class
definitions, may well be a more important source of code reuse than the code
reuse made possible by behavioural subtyping, i.e. the reuse of client code. The
programming language C++ offers a distinction between private and public
inheritance for this purpose: public inheritance should be used when inher-
itance produces a behavioural subtype, otherwise private inheritance should
be used. Objects of a subclass can then only be cast to the superclass when
public inheritance has been used.

Note that there can be behavioural subtyping between two classes even
though there is no inheritance between them. This is because behavioural
subtyping, unlike inheritance, concerns the observable behaviour of objects,
and not their implementation. Classes with completely different implementa-
tions, which are not in the inheritance relation, may well provide objects with
identical behaviour, and can thus be behavioural subtypes.

3 Coalgebraic Preliminaries

We will only need the very basics of the theory of coalgebras (see for instance
[Rut96] or [JRI7]).
We work in the category Set. Polynomial functors are of the form

F(X)u=X | C| K(X) + F(X) | Fi(X) x Fy(X) | C — F(X).

2 Sometimes subtyping is called “interface inheritance” and inheritance “implementation
inheritance”.

3 In the presence of so-called binary methods just adding methods may also break be-
havioural subtyping, even when no methods are overridden (see [CHC90] or [BCC*96]).

3

PoLL

We write m; and my for the projections from the Cartesian product, and inl
and inr for the injections into the disjoint sum.

An F-coalgebra is a pair (S, m) with S a set — called the state space — and
m : S — F(X). An F-coalgebra homomorphism f : (S,m) — (S',m’) is a
function f: S — S’ such that mo f = F(f) o m

For every polynomial functor there exists a final coalgebra, which is unique
up to isomorphism. We fix particular final coalgebras, denoted (vF, ar). The
unique homomorphism from a coalgebra (S, m) to the final coalgebra is de-
noted by behaviour,,. The final coalgebra can be viewed as the collection
of all the possible behaviours of F-coalgebras; the function behaviour,, then
maps every state s € S to its observable behaviour behaviour,,(s) € vF.

An invariant on a coalgebra (S, m) is a subset S’ C S such that (S',m) is
also a coalgebra; (S, m) is then called a subcoalgebra of (S, m).

To define the notion of bisimulation, we first define relation lifting. For
a relation ~ C X x Y the relation F™¥(~) C F(X) x F(Y) is defined by
induction on the structure of F', as follows:

e if F(X) = X then F'¥(~) = ~,
e if F(X) = C then F"®(~) = eqc, the equality relation on C,
o if F(X) = F(X) + F3(X) then F"(~) =

{(inl(z),inl(y)) | (z,y) € FT*'(~)} U{(inr(z),inr(y)) | (z,y) € F3(~)},
o if F(X)= Fi(X) x F»(X) then

Fre(~) = {(x,y) | (mi(z), m(y)) € F{*(~) A (ma(), m2(y)) € F3(~)},
e if F(X)=C — F;(X) then

Frei(~) ={(f,9) | Vz € C.(f(z),9(z)) € FT*(~)}.

A bisimulation ~ between F-coalgebras (S,m) and (S’,m') is a relation
~ C S x S such that

Vo:S,2' : 5"z~ = (m(x),m(2')) € Fr¥(~).

We write = for bisimilarity, the largest bisimulation (i.e. the union of a bisimu-
lations) between two coalgebras. Bisimilar elements have the same behaviour,
and the unique homomorphisms to the final F'-coalgebra identify precisely
these elements:

Lemma 3.1 Let (S,m) and (S',m') be F-coalgebras. Then behavioury,(s) =
behaviour,, (s') iff there is some bisimulation ~ between (S, m) and (S',m’)
such that s ~ &', i.e. iff s = . O

4 Class Specifications

Our format of class specification is based on that used in the experimental
specification language CCSL [Jac97] [HHJT98]. An example of such a class
specification is given in Figure 1. This example specifies a class with two
methods, getcount and count. All classes have a single constructor called

4

PoLL

CLASS Counter
METHODS getcount : X -> Int
count : X > X

ASSERTIONS
V x:X. getcount(count(x)) = getcount(x)+1

CREATION CONDITIONS
getcount (new Counter) = 0
END

Fig. 1. The class specification Counter

new. Methods always act on an object. This argument of a method, often
referred to as “this” or “self”, and usually left implicit, is made explicit here:
all methods get an argument of type X. This type X stands for the state space
of objects.

In general, a class specification consists of:

* a signature of methods m; : X — M;(X) with the M; polynomial functors,
* a collection of assertions, properties of the methods,

* a collection of creation conditions, properties of the constructor new.

Of course, the M; can be combined into a single functor M (X) = M;(X) x
... X M,(X). An implementation — or model — of a class specification then
consists of an M-coalgebra (S, m) giving a representation of the state space
and an implementation of the methods, plus an initial state ¢ : S giving the
implementation of the constructor new. They should satisfy the assertions and
creation conditions.

We want to impose some restrictions on the assertions and creation condi-
tions that are allowed. First, the assertions should be universal quantifications
giving properties that all objects have, and the creation conditions should only
specify properties of the initial object new. Second, we do not want assertions
or creation conditions to distinguish observationally equal implementations.
Here implementations are observationally equal if there exist a total bisim-
ulation between the respective coalgebras that relates the initial states. In
particular, this requirement means that a class specifications may not refer to
the notion of equality on the state space, but should use the notion of bisimi-
larity £ instead. For example, we do not want to allow Vx:X.count (x)#x as
an assertion; this should be written as Vx:X. count (x) #x instead.

A way to impose these restrictions would be to give a precise syntax for
assertions and creation conditions. Such a syntax could rule out the use of = as
relation on the state space, and only allow = to be used instead. Alternatively,
we could allow the use of = but define its interpretation to be bisimilarity. For
reasons of space we will not go to all this trouble here; instead we simply

5

PoLL

require that assertions and creation conditions are predicates on the final
coalgebra, i.e. predicates on object behaviours:

Definition 4.1 A class specification A is a triple (M, ®, V) with M a poly-
nomial functor and ® and ¥ predicates on vM, the state space of the final
coalgebra. O

The predicates ® and ¥ are the conjunction of the assertions and the con-
junction of the creation conditions, respectively. We now use the mappings
behaviour,, from M-coalgebras (S, m) to the final M-coalgebra to define the
notion of model:

Definition 4.2 A model of a class specification A = (M, ®,¥) is a triple

(S, m,c) with

* (S,m) a coalgebra, with S giving the state space X and m giving the inter-
pretation of the methods, and

e c: S, giving the interpretation of the constructor,
such that

* Vs:S. ®(behaviour,,(s)), i.e. behaviour,,(S) C P,
» U(behaviour,(c)).

In other words, all objects satisfy the assertions and the initial object satisfies
the creation conditions. The fact that (S, m,c) is a model of A is denoted by
(S,m,c) = A, and we write (S,m) = @ for behaviour,,(S) C ®. O

A minor difference with the notion of model in [Jac97] is that we explicitly
include the initial state ¢ as part of the model. Note that there may be
elements in S which are not “reachable” from the constructor ¢ using the
methods m.

The restrictions on the shape of assertions and creation conditions give
some nice properties:

Lemma 4.3 Let (S,m,c) = A.
(i) If (S",m) is a subcoalgebra of (S, m) then (S',m,c) E A.

(ii) If (T,n) is a coalgebra, d : T, and there exists a total bisimulation ~
between (S, m) and (T,n) such that ¢ ~ d, then (T,n,d) = A.

Proof. Follows immediately from the definition of |=, using Lemma 3.1. O

So any submodel of a model is also a model, and specifications do not dis-
tinguish between observationally equal models. The first property would not
hold if there could, for instance, be existential quantifications over the state
space in class specifications. The second would not hold if specifications could
state (in)equalities on the state space.

A construction needed later is that, using a coproduct, we can take the
“union” of models:

PoLL

Lemma 4.4 Let (S,m) and (T,n) be M-coalgebras, and A = (M, @, ¥) some
class specification. Then
(i) if (S,m) E ® and (T,n) = @ then (S+T,p) E @,
(ii) if (S,m) E ® and (T,n,d) = A then (S + T,p,inr(d)) E A,
where p = [M(inl) o m, M(inr) on]: S+ T — M(S+T).

Proof. Follows easily from the fact that behaviour[M(;m)om,M(;n,)on](S +7T)=
behaviour,,(S) U behaviour,(T). O

5 Signature Subtyping

A necessary condition for behavioural subtyping between classes is signature
subtyping: objects in a subclass should at least have all the methods that
objects in the superclass have.

Definition 5.1 Let A’ and A be class specifications. A’ is a signature subtype
of A iff A’ has at least all the methods that A has, with the same types O

For example, the class specification RCounter of “resetable’ counters below is
a signature subtype of the specification Counter given earlier:

CLASS RCounter

METHODS getcount : X -> Int
count : X > X
reset : X > X

ASSERTIONS
CREATION CONDITIONS

END

We have omitted assertions and creation conditions, because these do not play
a role in signature subtyping.

If A’ is a signature subtype of A, then giving an A’-object in a context
where an A-object is expected will not cause any “method not found” errors.
The definition of signature subtyping above is stronger than strictly necessary:
we could weaken it by only requiring that the type of a method in A’ is a
subtype of the type that this method has in A. In particular, by the standard
contra/covariant subtyping rule for function types (e.g. see [CW85]), the input
types of a method in the subclass could be supertypes of the input types this
method has in the superclass. For simplicity we use the stronger definition
above. Most existing object-oriented languages use such a simple definition.

7

PoLL

Semantics of Signature Subtyping

Semantically, signature subtyping between specifications results in a natural
transformation between their method signatures. Let M'(X) = [[.., M;(X)
and M(X) = [],c; M;(X) be the method signatures of specifications A" and
A, with A" a signature subtype of A. Then I’ D I, and there is an obvious
natural transformation

n={(mliel): M'— M,

i.e. the mapping that drops all components in M'(X) that are not in M (X).
This natural transformation provides a way of turning any M’-coalgebra into
an M-coalgebra:

Theorem 5.2 ([Rut96], Thm. 14.1)

A natural transformation n : M' — M induces a functor from the category of
M'-coalgebras to the category of M-coalgebras, which maps an M'-coalgebra
(S',m’) to the M -coalgebra (S',ns: o« m'), and an M'-coalgebra homomorphism
f simply to the M-coalgebra homomorphism f. This functor preserves bisim-
ulations. O

There are two interesting points to note about the construction above.

First, because the functor induced by n preserves bisimulations, elements
bisimilar in (S’,m') are also bisimilar in (S’,ng: o m’). This is of course what
you would expect: on the signature subclass we may have more methods
and hence a stronger notion of “observational equivalence”. It is a useful
property when comparing class specifications that are signature subtypes and
that therefore use different notions of bisimilarity.

Second, the construction in the theorem above provides a semantics of the
implicit cast from sub- to superclass, as in [Pol97]:

Definition 5.3 Forn: M' — M,
casty =geg behaviourpeq,,, : (VM', anr) = (VM o).
A basic property of cast, needed later is:

Lemma 5.4 For any M'-coalgebra (S',m') andn: M' — M

cast, o behaviour,y = behaviouryom, .
Proof. Trivial. O

The function cast,, is the unique function such that the diagram
y M A V(v M)
cast lM(cast)
vM M M(vM)

commutes. This diagram expresses precisely the condition that subsumption —
the implicit cast from sub- to superclass — does not introduce any ambiguities.
For example, let (v M, (getcount, count)) and (vM', (getcount’, count', reset'))

8

PoLL

be the final M- and M'-coalgebras, with M(X) = Nat x X and M'(X) =
Nat x X x X. Then for the cast, r,) : vM' — vM we have

(getcount’ ,count’ reset’)

vM' Nat x vM' x vM’
castl l(m,castwrz)
oM (getcount,count) Nat x vM

This shows for instance that invoking the method count’ on a resetable counter
and then casting to the superclass gives the same result as first casting to
the superclass and then invoking the method count. In other words, leaving
cast implicit and not distinguishing between the subclass methods and the
superclass methods, e.g. between count and count’, in the syntax — as is done
in all OO languages — does not cause any ambiguities. The diagrams above
express exactly the so-called coherence conditions for subsumption discussed
in [Mit90] [HP95] [Pol97].

6 Behavioural subtyping

We define two notions of behavioural subtyping. First, in Subsection 6.1, we
define behavioural subtyping between coalgebras, and then, in Subsection 6.2,
we define behavioural subtyping between coalgebraic class specifications. In
Subsection 6.3 we prove that the latter notion of subtyping is sound and
complete with respect to the former.

6.1 Behavioural subtyping between coalgebras

We already mentioned Liskov’s substitution principle [Lis88]: “A’ is a be-
havioural subtype of A iff for every object a’ of type A’ there is an object
a of type A such that for all programs p that use a, the behaviour of p is
unchanged when a is replaced with a'”. This principle immediately translates
to a definition of behavioural subtyping between coalgebras, using the notion
of bisimulation to express that objects have the same behaviour:

Definition 6.1 Let (S,m) be an M-coalgebra, (S’,m') an M'-coalgebra, and
n:M — M.

(S',m") is a behavioural subtype of (S, m), written (S',m’) <, (S,m), iff
there exists an M-bisimulation ~ C S’ x S between (S’,n o m') and (S, m)
such that Vs' € S’. 3s € S. s’ ~ s. O

Definitions of behavioural subtyping that use the notion of (bi)simulation can
already be found in the literature, e.g. [LW95] [Mau95] [Pol98].

Basic properties of <, are “reflexivity” and “transitivity”:
Lemma 6.2 (i) (S,m) <;4 (S, m).

(ii) If (S1,m1) <y, (S2,m2) and (S2,m2) <y, (S5, M3)
then (Sl, ml) Smom (Sg, mg).

PoLL

Proof. Trivial. O
An alternative definition of <, is given by the lemma below.

Lemma 6.3 Let (S',m') be an M'-coalgebra, (S, m) an M-coalgebra, and n :
M'"— M. Then

(S',m') <, (S,m) <= behaviour o (S') C behaviour,,(S).

Proof. To prove =, assume (S',m') <, (S,m) and = € behaviour,on (S'),
i.e. z = behaviour,eny (s') for some s' € S'. By the definition of <, there exists
a bisimulation ~ between (S’,n o m') and (S, m) such that there is an s € S
with s’ ~ s. Then behaviour,,(s) = behaviouryom (') = = € behavioury,(S).
To prove <=, assume behaviour,eny (S') C behaviour,,(S). Define ~ C S’ x
S as {(s',5') | behaviour,eny (s') = behaviour,,(s)}. This is an M-bisimulation
and clearly Vs' € S'. 3s € S. s’ ~ s, 50 (5", m') <, (S, m). O

Recall that, by Lemma 5.4, behaviour,o,s (S') = cast,(behaviour,, (S")).
So the lemma above states that a coalgebra C’ is a subtype of another coalge-
bra C' iff the set of possible behaviours of the objects in C’, viewed as objects
with signature M, i.e. after casting, is included in the set of possible behaviours
of objects in C'. We believe that this accurately captures the intuition behind
behavioural subtyping.

6.2 Behavioural subtyping between class specifications

Many definitions of behavioural subtyping in the literature are given in terms
of specifications: behavioural subtypes then simply correspond to stronger
specifications (e.g. see [Ame87] [Mey97] [LW94] [LW95]*). For example, con-
sider the class specification RCounter given in Figure 2. It is easy to see that
any object that meets the specification RCounter also meets the weaker spec-
ification Counter, since RCounter includes all the methods and assertions of
Counter. So RCounter can be regarded as a behavioural subtype of Counter.

Definition 6.4
Let A= (M,®,¥) and A" = (M', ®', ¥') be class specifications.
A’ is a behavioural subtype of A — written A’ < g5ert A — iff
(i) A’ is a signature subtype of A, and
(ii) if (S',m') = @' then (S',n o m') = @, for any M’-coalgebra (S’,m'),
where n : M' — M is given by the signature subtyping between the specifica-
tions. O

Instead of condition (ii) in the definition above, one could simply require that
@’ implies ®, suitably translated via 7, i.e. cast,(®') C ®. This condition is

4 In all these references, as is common in the OO literature, specifications are broken down
into invariants, preconditions and postconditions; stronger specifications then have stronger
invariants, stronger postconditions, but weaker preconditions.

10

PoLL

CLASS RCounter

METHODS getcount : X -> Int
count : X > X
reset : X > X

ASSERTIONS
Vx:X. getcount(count(x)) = getcount(x)+1
Vx:X. getcount(reset(x)) =0

CREATION CONDITIONS
getcount (new RCounter) = 0
END

Fig. 2. The class specification RCounter

CLASS AlternativeCounter
METHODS getcount : X -> Int
count : X -> X

ASSERTIONS
V x:X. getcount(count(x)) = getcount(x)+1
V x:X. getcount(count(count(x))) = getcount(x)+2

CREATION CONDITIONS
getcount (new Counter) = 0
END

Fig. 3. The class specification AlternativeCounter
in fact strictly stronger:

Lemma 6.5
If cast,(®') C @ then V(S',m'). (S',m') E @ = (S, n.m') = .

Proof. Assume cast,(®') C @, and (S',m') = @' i.e. behaviour,, (S') C ¥’
Then behaviourpom (S') = cast,(behaviour,, (S")) C cast,(®') C . O

The class specification below illustrates why we have chosen the condition (ii)
instead of the stronger condition cast,(®’') C ® in the definition of <gssers.
Consider the class specification AlternativeCounter in Figure 3. It is not
hard to see that this specification is equivalent to the specification Counter
given earlier. Any model for AlternativeCounter will also be a model for
Counter (and vice versa), and AlternativeCounter <,z .+ Counter. Still,
the assertions of AlternativeCounter do not imply those of Counter.

A condition equivalent to (ii) in Definition 6.4 is given by the lemma below:

Lemma 6.6 Let ® C vM' be the strongest invariant contained in ®'.
Then cast, (') C @ iff V(S',m'). (S',m') =& = (S',n.m'a) = .

11

PoLL

Proof. For the if-part, assume cast,(®') C @, and let (S’,m') = @ for
some M'-coalgebra (S',m'). As behaviour,,(S') is an invariant, it follows that
behaviour,, (S') C &' and hence behaviour,eny (S') = cast, (behaviour,, (S") C
cast,(®') C .

For the fi-part, assume V(S',m'). S',m') = ® = (S",n . m') £ ®. As
(', aprr) is an M'-coalgebra and (P, apy) = @', it then follows by the as-
sumption that (®',n - anr) = @, i.e. behaviour,,,, (®') = cast, (@) C @. O

For specifications that use the notion of bisimilarity = we have to be care-
ful, because different specifications may use different notions of bisimilarity.
By theorem 5.2, if A’ is a signature subtype of A, then the notion of bisimilar-
ity used in A’ is at least as strong as that used in A. This means that an as-
sertion stating a bisimilarity in A" specifies a stronger property than the same
assertion in 4. But the same does not hold for an assertion stating that cer-
tain elements are not bisimilar. For example, an assertion Vx:X.count (x) #x
in a specification with the signature of Rcounter does not imply the same
assertion in a specification with the signature of Counter.

The creation conditions do not play any role in the definition of <, sers-
This has some consequences which may appear counterintuitive at first sight.
For example, consider the class specification Counterl in Figure 4.

CLASS Counteril
METHODS getcount
count

: X -> Int
X >X
ASSERTIONS
Vx:X. getcount(count(x)) = getcount(x)+1

CREATION CONDITIONS
getcount (new Counterl) = 1
END

Fig. 4. The class specification Counterl

It only differs from Counter in its creation condition, which for Counter was
getcount (new Counter) = 0. Clearly Counterl < s+ Counter. This may
seem strange, because there appears to be an observable difference between the
two specifications: their initial objects have different getcounts. But this is
not an observable difference between individual objects: if you give an object
from class Counterl to someone who is expecting to receive an object of class
Counter, there is no way this person can observe that this object is not from
class Counter, because the only possible observations are invocations of the
methods, count and getcount. Unlike the methods, the constructor is not
invoked on objects and is not an observation.

Another way of explaining that creation conditions do not play a role in

12

PoLL

behavioural subtyping is that behavioural subtyping is about substitutability
of individual objects, i.e. substituting objects of one class by objects of another
class, and not about substitutability of classes.

One can consider a stronger notion of behavioural subtyping, which also
requires that the creation conditions of the subclass imply those of the super-
class. We will do this in Section 7, when we discuss refinement.

Something else which may appear counterintuitive is that we do not only
have Counterl <, .+ Counter, but also Counter <,..; Counterl. One
might be tempted to conclude from the specification of Counterl that all
objects in this class have a count of at least 1. There is an object in class
Counter that has a getcount equal to 0 (namely, the initial object), so that
would mean that we can distinguish this object in class Counter from all
objects in class Counterl. However, we may not use this form of inductive
reasoning, sometimes called data induction, to reason about classes. The
motivation for this is that a class specification should offer as much freedom
as possible for further extensions of the class. E.g. we want to leave open the
possibility of adding a method negate with the specification

Vx:X. getcount(negate(x)) = -getcount(x)

unless this is explicitly ruled out by the assertions. So, if we want all objects in
class Counter1 to have a getcount of at least 1, it should be specified explicitly
as one of the assertions. (The semantic counterpart of this argument is that
for models (S, m, c) we do not require that all elements of S are “reachable”
from ¢ by m.)

6.3 Soundness and Completeness

It is not immediately obvious what the connection between the subtype rela-
tion <,45er+ between class specifications and the subtype relation <, between
coalgebras should be. As a first guess, one might expect that if two specifica-
tions are related by <gssrt, then their implementations will be related by <,
ie.

A, Sassert A :> V(SI7 m’? CI)): A,'V(S7 m’ C)): A' (S,7 m,) ST] (S’ m)'

However, we cannot expect this property to hold. For example, take A’ =
A some trivially true specification, e.g. one with without any assertions or
creation conditions. Clearly A" <.ssert A. However, there are lots of models
of this specification that are not related by <,, in any way, so the right-hand
side of the implication above will not hold. In fact, if A’ = A and A’ is any
specification weak enough to allow observably different implementations, then
we cannot expect the property above to hold.
We will prove a weaker relation, namely

A <pssert A <= V(S',m/,d) = AI(S,m,c) E A (S,m) <, (S,m).
13

PoLL

The right-hand side says that however we implement A’, there is an implemen-
tation of A that includes all the behaviour of this implementation of A’, after
casting. The property crucially relies on the restriction imposed on assertions
in Section 4. In particular, we use Lemma 4.4.

Theorem 6.7 (Soundness)

Let A be a consistent specification (i.e. one with at least one model). Then
A <gssert A = V(S ,m/,d) = A F(S,m,c) = A (S',m') <, (S,m)

with n given by the signature subtyping between the specifications.

Proof. Assume A" <g4er¢ A and (S, m', ') = A', with A" = (M', &', ¥') and

A= (M,®,¥). To prove: 3(S,m,c) = A. (S',m') <, (S,m).

We know that (S',m') = @, and hence by A" <gssert A it follows that
(S',mem') E ®. Since A is a consistent specification, we may assume there
is some model (7, n,d) of A. By Lemma 4.4 now (S’ + T, p,inr(d)) = A,
where p = [M(inl) o n o m', M(inr) o n], and it is simple to prove (S',m') <,
(S"+T,p). O
The restriction to consistent specifications in the theorem above is really nec-
essary. For example, let A" be a consistent specification and A a specifi-
cation with weaker assertions but an inconsistent creation condition. Then

A’ <gssert A, but clearly the right-hand side of the implication in the theorem
above does not hold, since A has no models.

Theorem 6.8 (Completeness)
Let A’ be a consistent specification. Then

(V(S',m',d) E A" 3(S,m,c) £ A. (S",m') <, (S,m)) = A <gssert A
with giwen by the signature subtyping between the specifications.
Proof. Let A= (M,®,V¥) and A’ = (M',®', V') and suppose
V(S',m',) EA.3(S,m,c) E A (S,m') <, (S,m). (i)
We must prove A" <gssert A, ie. (8", m') = & = (5,7 m') = & for any
M'-coalgebra (S',m’).

Let (S",m') E @'. Since A’ is a consistent specification, we may assume
some model (T, n,d) of A". By Lemma 4.4 then (S"+ T, p,inr(d)) = A’, where
p = [M'(inl) o m', M'(inr) o n]. Now by (i) there exists some (S, m,c) £ A
such that (S +T,p) <, (S,m), and then

behaviourpony (S') C behavioury.,(S' + 1) by def. p
C behaviour,,(S) since (S"+T,p) <, (S, m)
cCo since (S,m,c) = A
ie. (S, nom') E ®. O
Again, the restriction to consistent specifications in the theorem above is re-

ally necessary. For example, suppose A’ is inconsistent because its creation
14

PoLL

condition is in contradiction with its assertions. Then the left-hand side of
the implication in the theorem above is trivially true for any specification A,
but clearly A" <gssert A will not hold for any A.

7 Refinement

Refinement is a central notion in specification languages. A specification A’
is a refinement of another specification A if given any implementation of A’
we can construct an implementation of A. In [Jac97] refinement for class
specifications is defined as follows:

Definition 7.1 [Refinement [Jac97]|
Let A’ and A be class specifications. Let n: M' — M.
A’ is a refinement of A iff

V(S m',d)EA. 3I(S,nom',c) EA SCS' AceS
with 7 given by the signature subtyping between the specifications. O

The natural transformation 7 gives the definition of the abstract operations
of A in terms of the concrete ones of A’. Note that for refinement these
natural transformations can be much wilder than the very simple natural
transformation that occur in subtyping, which simply drop some components
from a n-tuple.

For an example for refinement, we can use the specifications Rcounter
and Counter given earlier: Rcounter is a refinement of Counter. Because
Rcounter is also a behavioural subtype of Counter, this example suggests a
close connection between refinement and behavioural subtyping. However,
such a connection does not exist: there are refinements that are not be-
havioural subtypes, and behavioural subtypes that are not refinements. For
example, consider the class specification DCounter in Figure 5. DCounter is
not a behavioural subtype of Counter, because there are objects in this class
for which the Counter assertion

V x:X. getcount(count(x)) = getcount(x)+1

does not hold. Still, DCounter is a refinement of Counter, and it is obvious
how we can implement Counter given any implementation of DCounter.

For an example of a behavioural subtype that is not a refinement, consider
Counterl and Counter. As explained earlier, the specification Counteri is
a behavioural subtype of Counter. However, it is not a refinement, because
there are models of Counter1 that do not provide a suitable initial state for
Counter, i.e. one with a getcount equal to 0. Note that this shows that for
refinement, unlike subtyping, the creation conditions do play a role.

The lemma below illustrates a fundamental difference between refinement
and subtyping. Refinements have more behaviour, whereas subtypes have less:

15

PoLL

CLASS DCounter

METHODS getcount : X -> Int
count : X > X
getdelta : X -> Int

setdelta : X X Int -> X

ASSERTIONS
Vx:X. getcount(count(x)) = getcount(x)+getdelta(x)
Vx:X. getdelta(count(x)) = getdelta(x)
Vx:X,n:Int. getdelta(setdelta(x,n)) = n
Vx:X,n:Int. getcount(setdelta(x,n)) = getcount(x)

CREATION CONDITIONS
getcount (new DCounter) =
getdelta(new DCounter)

non
= O

END

Fig. 5. The class specification DCounter

Lemma 7.2 (i) If A is a refinement of A then

V(S',m',) = A" 3(S,m,c) E A. behaviour,on (S) 2 behaviour,,(S).
(ii) If A’ is a subtype of A and A is consistent then

V(S',m'.c) = A" 3(S,m,c) E A. behaviour,on (S) C behaviour,,(S).
Proof. To prove (i), simply note that if S C S" and m = 1 o m’ then

behaviouryon (S') 2 behavioury,(S). Part (ii) follows immediately from sound-
ness, Theorem 6.7. O

For a stronger relation than behavioural subtyping, that does take the
creation conditions into account, we can define a clear relation with refinement:

Definition 7.3 Let A" = (M',®',¥') and A = (M, P, V) be class specifica-
tions.
Then A’ is a stronger specification than A — written A" <gssert create A —

iff A" <gssert A and cast,(¥') C U, with 7 given by the signature subtyping
between the specifications. O

Lemma 7.4 If A" <gssert,create A then A’ is a refinement of A.

Proof. Easy: if A" <gssert create A and (S',m’, ') = A’ then by the definition
of <gssert,create it immediately follows that (S',n . m/,) = A. O

8 Conclusions

We have shown that the coalgebraic view of objects also provides a natural
interpretation of (behavioural) subtyping, both for coalgebras themselves and
for coalgebraic specifications. The subtyping relation between coalgebras is

16

PoLL

based on the notion of substitutability, and uses the notion of bisimulation.
The subtyping relation between coalgebraic specifications is based on the idea
that behavioural subtypes correspond to stronger specifications. Both ways
of characterizing behavioural subtyping already exist in the OO literature.

It is interesting to note that some definitions of behavioural subtyping in
the literature combine the use of specifications with the use of bisimulations.
For example in [Ame87] and [LW94], specifications make use of a so-called
abstraction function that maps objects to the abstract values they represent.
Such an abstraction function in fact defines a bisimulation relation, namely
objects are related iff they have the same abstract value.

As mentioned in Section 2, one difference between inheritance and be-
havioural subtyping is that the former concerns implementations of classes,
whereas the latter only concerns the observable behaviour of these imple-
mentations. This already suggests that in the coalgebraic setting, where ob-
servability plays such a central role, it is easier to explain subtyping than
inheritance. Indeed, a limitation of the coalgebraic view of objects is that
is does not directly account for the self-references in method definitions, i.e.
invocations of methods on “self”. As these self-references play a central role in
inheritance with late binding, we cannot expect the coalgebraic object model
to easily account for inheritance with late binding.

References

[Ame87] Pierre America. Inheritance and Subtyping in a Parallel Object-Oriented
Language. In J. Bezivin et al., editor, ECOOP’87, volume 276 of Lecture
Notes in Computer Science, pages 232—242. Springer, 1987.

[BCCT96] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, the Hopkins Objects
Group (Jonathan Eifrig, Scott Smith, Valery Trifonov), Gary T. Leavens,
and Benjamin Pierce. On Binary Methods. Theory and Practice of
Object Systems, 1(3):221-242, 1996.

[CHCY90] William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is
not subtyping. In Principles of Programming Languages (POPL), pages
125-135. ACM, 1990.

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data
abstraction and polymorphism. Computing Surveys, 17(4):471-522,
1985.

[HHJT98] Ulrich Hensel, Marieke Huisman, Bart Jacobs, and Hendrik Tews.
Reasoning about classes in object-oriented languages: Logical models
and tools. In Ch. Hankin, editor, European Symposium on Programming

(ESOP), number 1381 in Lecture Notes in Computer Science, pages 105—
121. Springer, Berlin, 1998.

17

PoLL

[HP95] Martin Hofmann and Benjamin C. Pierce. A unifying type-theoretic
framework for objects. Journal of Functional Programming, 5(4):593—
635, 1995.

[Jac97] Bart Jacobs. Invariants, bisimulations and the correctness of coalgebraic
refinements. In M. Johnson, editor, Algebraic Methodology and Software
Technology (AMAST’97), LNCS, pages 276-291. Springer, 1997.

[JR97] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and
(co)induction. In EATCS Bulletin. June 1997.

[Lis88] Barbara H. Liskov. Data abstraction and hierarchy. SIGPLAN Notices,
23(3), 1988.

[LW94] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of
subtyping. TOPLAS, 16(6):1811-1841, November 1994.

[LW95] Gary T. Leavens and William E. Weihl. Specification and verification of
object-oriented programs using supertype abstraction. Acta Informatica,
32(8):705-778, November 1995.

[Mau95] Ian Maung. On simulation, subtyping and substitutability in sequential
object systems. Formal Aspects of Computing, 7(6):620-651, 1995.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
2nd yey. edition, 1997.

[Mit90] John C. Mitchell. Toward a typed foundation for method specialization
and inheritance. In Principles of Programming Languages (POPL), pages
109-124. ACM, 1990.

[Pol97] Erik Poll. Subtyping and Inheritance for Categorical Datatypes. In
Theories of Types and Proofs (TTP) - Kyoto, RIMS Lecture Notes 1023,
pages 112-125. Kyoto University Research Insitute for Mathematical
Sciences, 1997.

[Pol98] Erik Poll. Behavioural subtyping for a type-theoretic model of objects.
In Foundations of Object-Oriented Languages (FOOLS5), 1998.

[Rei95] Horst Reichel. An approach to object semantics based on terminal co-
algebras. Mathematical Structures in Computer Science, 5:129-152, 1995.

[Rut96] Jan Rutten. Universal co-algebra: a theory of systems. CWI report 9652,
CWI, 1996.

18

