CMCS’01 Preliminary Version

From Algebras and Coalgebras to Dialgebras

Erik Poll and Jan Zwanenburg

University of Nijmegen
Toernooweld 1, 6525 ED Nigmegen, The Netherlands

Abstract

This paper investigates the notion of dialgebra, which generalises the notions of alge-
bra and coalgebra. We show that many (co)algebraic notions and results can be gen-
eralised to dialgebras, and investigate the essential differences between (co)algebras
and arbitrary dialgebras.

1 Introduction

An algebra is a set X together with some functions that can be used to con-
struct elements of X, i.e. functions f; that have X as output type,

fi i IN;(X) — X,
with IN; a polynomial functor. Algebras are widely used in (theoretical)
computer science. E.g. think of algebraic datatypes such as lists and trees, or
algebraic specifications.
A coalgebra is a set X together with some functions that can be used to
observe elements of X, i.e. functions f; that have X as input type,

fi: X —- OUT;(X),

with OUT; a polynomial functor. Coalgebras can be used to describe various
kinds of ‘dynamical systems’, e.g. automata, processes, or (labelled) transition
systems [Z1]. Moreover, elements of coalgebras can viewed as objects in the
sense of object-oriented (OO) programming [I'7], in which case the operations
are viewed as methods.

For an introduction to — and a comparison between — algebras and coal-
gebras we refer to [[1]. Algebras and coalgebras are dual notions, and are in
some intuitive sense ‘opposites’. However, this does not mean that algebra
and coalgebra do not have certain things in common. Indeed, the standard
example of an algebraic specification, stacks, also occurs in the literature as
an example of a coalgebraic specification!

! Email: {erikpoll, janz}@cs.kun.nl

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

mailto:erikpoll@cs.kun.nl, janz@cs.kun.nl

POLL AND ZWANENBURG

This paper investigates the notion of dialgebra, a straightforward general-
isation of (co)algebra: a dialgebra is a set X together with some functions

;i INi(X) — OUT/(X)

with I N; and OUT; polynomial functors. The name ‘dialgebra’ is taken from
[@]. Clearly all algebras and coalgebras are dialgebras.

An example of a dialgebra that is neither an algebra nor a coalgebra is a
type Set of sets of natural numbers with operations

empty : Set
add : Set X Nat — Set
elem : Set X Nat — bool
union : Set X Set — Set
min : Set — 1+ Nat
split : Set X Nat — Set X Set

Here min could for instance return the minimum of a set, if the set is non-
empty, and an element of a unit type 1 if the set is empty, and split(s,n)
could split the set s in a pair of sets, one containing the elements of s smaller
than n and the other containing the rest. This is not an algebra, because for
instance split and min are not ‘algebraic’, nor is it a coalgebra, because for
instance empty and the binary operation union are not ‘coalgebraic’.

Many interesting examples of dialgebras that are not (co)algebras can be
obtained simply by extending a coalgebra with an operation tnit : 1 — X that
yields some initial state. Including such an operation is a very natural thing
to do for many examples of coalgebras. In particular, this is very natural
when considering objects in the sense of OO: here using dialgebras rather
than coalgebras makes it possible to account for the constructors as well as
the methods of a class. In addition it becomes possible to account for so-called
binary methods.

We will show that most (co)algebraic notions can be defined for the more
general dialgebraic case, and investigate in how far properties of (co)algebras
— in particular properties of invariants and bisimulations — can be generalised
to arbitrary dialgebras, to get a better understanding of what the essential
differences between algebras, coalgebras, and dialgebras are.

2 Mathematical Preliminaries

Throughout this paper, types will just be sets. Signatures are mappings from
types to types, written as type expressions containing a type variable X.

Definition 2.1 A signature (X)) is a type expression, possibly containing
the type variable X, of the form

V(X)) = X | O] B1(X) + 2p(X) | X1(X) x Ba(X) | (X)) — 52(X),
2

POLL AND ZWANENBURG

where C' comes from a collection of base types. Here A x B is the Cartesian
product, with projections 7 : Ax B — Aand 7y : Ax B — B,and A+ B
the disjoint sum, with injections inl : A — A+ B and inr: B — A+ B. The
functions [f1, fo] : Ay + A2 — B for f; : A; — B, and (g1,92) : A — By X By
for ¢g; : A — B; are defined as usual.

A polynomial signature is a signature of the form

F(X) 2= X[C[Fi(X) + F2(X) | Fi(X) x Fp(X).

N.B. We deliberately exclude constant exponents of the form C' — F(X)
as polynomial functors, because we have not been able to prove our most
interesting result, Theorem B.2{, if we include these.

Polynomial signatures are functors, and F(f) : F(A) — F(B) is defined
in the usual way for f : A — B. The notions of predicate and relation lifting
can be defined not just for polynomial signature but for all signatures: we can
define predicate and relation lifting for arbitrary signatures.

Definition 2.2 For predicates P and () we define the predicates

« (PxPelQ)(z) <= P(m(x)) A Q(m(z))

o (P+PedQ)(z) < (z=inl(2") AP(2"))V (z = inr(2') A Q(z"))

o (P —Pred Q)(f) < Vo€ A. P(z) = Q(f(x)), with A the domain of P.

Definition 2.3 For relations R and S we define the relations

* R4S = {(inl(),inl(y)) | (x,y) € R} U{(inr(x),inr(y)) | (z,y) € S}

* Rx™S ={(z,y) | (m(x), m(y)) € RA (m2(), m(y)) € S}

* RS ={(f,9) [V(z,y) € R (f(x),9(y)) € S}

Definition 2.4 Let ¥(X) be an arbitrary signature. For a predicate P on X
and a relation ~ C X x Y, the predicate ¥7"*¢(P) on ¥(X) and the relation

yref(~) C B(X) x X(Y) are defined, by induction on the structure of (X)),
as

o if ¥(X) = X then ¥P°(P) = P and X"(~) = ~,

)
o if (X)) = C then ¥P"4(P) = Truec, the constant predicate ‘true’ on C,
and X7 (~) = Idc, the identity relation on C,

e if B(X) = T,(X) + £5(X) then P P) = £, (P) 4774 £5(P) and
37 () = By () 7 Bg(~),

e i D(X) = $1(X) x S5(X) then $P(P) = %, (P) x7*d 53,(P) and
Yl (~) = By (~) X" By(~),

e HEN(X) = B (X) — Sp(X) then SPed(P) = 5, (P) —ed 33,(P) and

Of course, if we identify predicates with subsets, then there is no difference
between ¥ and Y. The notion of relation lifting is not just used in the
coalgebraic literature (e.g. [10]), but is much more widely used, notably for

3

POLL AND ZWANENBURG

logical relations in the semantics of typed lambda calculus (see [12] for a
comprehensive overview) and to formalise the notion of parametricity (e.g.
see [I4]).

Lemma 2.5 Let X(X) be an arbitrary signature. Then
(i) ZPred(Truex) = Truesx)
(ii) B (Idy) = Idsx)
Proof. Induction on the structure of ¥(X). O

For polynomial signatures, there is a close connection between relation and
function lifting:

Lemma 2.6 For any polynomial signature F(X)

graph(F(f)) = F™(graph(f))
where graph(f) C A x B is the function f : A — B viewed as a relation.

Proof. Induction on the structure of F'(X). a

Lemma 2.7 Let F(X) be a polynomial signature, and let i range over I.
Then

(i) PCQ= Frd(P) C F"(Q)
(ii) RC S = Fr{(R) C F"(9)
i m Fpred(P) Fpred(m P)

—

)
(iii)
(iv) (), F™(R:) = F™ (N, R:) if I is not empty.
(v) U, Fred(py) € Frred(U, P)

(vi) U, F(R:) € FY(U; Ri)

(vii) FrY(R;S) = Fr(R); Fre!(S)

Proof. All these can be proved by induction on the structure of F'(X). Prop-
erties 3. and 4. are also easy consequences of 1. and 2., respectively. O

None of the properties in Lemma 2.7 hold for arbitrary signatures. Note that
we have stronger properties for intersection, (iii) and (iv), than for union,
(v) and (vi). The properties |J;, FP*(P;) = Frred(|J, P;) and |J, F™(R;) =
Frel(|J, R;) do not hold for all polynomial signatures (X)) (for counterexam-
ples, take F'(X) = X x X), but do hold for some polynomial signatures:

Lemma 2.8 Let F(X) be a polynomial signature with at most one occurrence

of X. Then
(i) U; Frred(py) = Frred(U; P)
(i) U; F(R:) = F(U; i)

Proof. Induction on the structure of F(X). Of course, for F(X) with no
occurrence of X —i.e. F(X) a constant — the property is trivial. O

4

POLL AND ZWANENBURG

3 Dialgebras

Definition 3.1 A dialgebraic signature is a signature of the form
(X)) =%1(X) x ... x3,(X),

with each ¥;(X) of the form
5i(X) = IN(X) — OUTi(X),

with IN;(X) and OUT;(X) polynomial signatures. ¥(X) is called algebraic
iff OUT;(X) = X for all ¢, and coalgebraic iff IN;(X) = X for all 1.

Throughout the remainder of this paper, ¥ will be a dialgebraic signature of
the form
S(X) =[] = [[IN:(X) = OUT:(X).
iel iel
In examples 3(X) will usually be a labelled product rather than unlabelled
one; this is just syntactic sugar.

Definition 3.2 A X-dialgebra is a pair (A, f) consisting of a set A and a func-
tion f € X(A), ie. f=(f1,...,[n) with f; € 3;(A) = IN;(A) — OUT;(A).

For (co)algebraic signatures, this is just the definition of 3-(co)algebra. An
important difference between dialgebras and (co)algebras is that whereas an
algebra with n operations f; : F;(X) — X can be turned into a algebra with
the single operation, namely [fi,..., fn] : F1(X) + ...+ F,(X) — X, and,
similarly, a coalgebra with n operations f; : X — F;(X) can be turned into
a coalgebra with just one operation (fi,..., fu), we can not do something
similar for dialgebras. A practical consequence is that most definitions and
proofs for dialgebras have to be ‘point-wise’, quantifying over i.

Definition 3.3 Let (A4, f) and (B, g) be X-dialgebras. A X-homomorphism
h: (A, f) — (B,g) is a function from A to B that preserves the operations,
ie.
OUE(]’L) o fz =4g;o INZ(h)

for all 4.
For dialgebras that are (co)algebras, this is the standard notion of (co)algebraic
homomorphism.
Lemma 3.4 (i) The identity id4 is a homomorphism from (A, f) to itself.
(ii) Homomorphisms are closed under composition, i.e. if h : (A, f) — (A',)

and ' = (A, f") — (A", f") then W o h: (A, f) — (A", f").
Proof. Easy. O
Lemma .7 listed some properties for polynomial signatures that do not hold

for arbitrary signatures. For dialgebraic signatures, we can salvage some of
the properties mentioned in Lemma .7

bt

POLL AND ZWANENBURG

Lemma 3.5 Let X(X) be a dialgebraic signature, and let i range over I. Then
(i) N, Z4(P) C T,)

(ii) M, Zr(R;) C Xri(N); Ry) if I is not empty.

(iii) Lre(R); ¥rel(S) C X(R;S)

Proof. The proofs are quite straightforward, using Lemma E.7. We just give
the proof of (i) for binary intersection; the others are similar.
feX(PNQ)
= V). f; €5,(PNQ)
< Vj. f; € IN;(PNQ)— OUT;(PNQ)
< Vj. Vo € IN;(PNQ). fi(x) e OUT;(PNQ)
<= Vj. Vo € IN;(P)NIN;(Q). fi(xz) € OUT;(P)NOUT;(Q)
by Lemma P.7(iii) (twice)
A(Va € IN;(Q). f;(x) € OUT}(Q))
<= Vj. fj € IN;(P) — OUT;(P) A f; € IN;(Q) — OUT;(Q)
= Vj. f; € 5;(P)N%E;(Q)
— feX(P)NXE(Q)

3.1 Invariants and sub-dialgebras

The notion of invariant is used in the literature both for algebras and for
coalgebras. Intuitively, a predicate is an invariant if all the operations preserve
it:

Definition 3.6 A predicate P on A is an invariant for a ¥-dialgebra (A, f)
iff f e yrred(p).

For dialgebras that are (co)algebras, this is the standard notion of (co)algebraic
invariant. Given an invariant we can construct a sub-dialgebra:

Definition 3.7 A sub-dialgebra of a 3-dialgebra (A, f) is another X-dialgebra
(A, f) with A’ C A.

For dialgebras that are (co)algebras, this is the standard notion of sub-(co)algebra.
For (A’, f) to be a sub-dialgebra of (A, f) all the functions in f have to be
‘closed” under the subset A’ of A.

Lemma 3.8 Invariants are closed under intersection.

Proof. Follows immediately from Lemma B.5: if f € ¥(P) and f € X(Q)
then f € ¥(P)NX(Q) C (P NQ) by Lemma B.5. O

As a consequence of this lemma, we can define the smallest invariant of a di-
algebra as the intersection of all invariants. This strongest invariant expresses

6

POLL AND ZWANENBURG

exactly the property of being ‘reachable’ by the dialgebra operations.
Invariants of dialgebras are not always closed under union:

Example 3.9 Let T(X) = X x X — X and consider the T-(di)algebra
(Z,+). The predicates Neg(z) = x < 0 and Pos(z) = x > 0 on Z are both
invariants, but clearly their union is not, because the sum of a positive and a
negative number may be 0.

For coalgebras, however, we do have this property (e.g. see [21,11]):
Lemma 3.10 For coalgebras, invariants are closed under union.

A useful consequence of this lemma is that, for a coalgebra, given any property
® there exist a largest invariant ® C ®, namely the union of all invariants
that are subsets of ®. We can slightly generalise Lemma B.10. For this we
first define

Definition 3.11 (X)) has no binary methods if none of the I.NV;(X') has more
than one occurrence of X.

Clearly all coalgebras are dialgebras without binary methods. Many inter-
esting examples of dialgebras without binary methods that are not coalgebras
can be obtained in the way mentioned earlier, simply by extending a coalgebra
with an operation that yields some initial state.

Note that (counter)Example B.g involves a binary method. Binary methods
are already notorious in the theoretical computer science literature on object
oriented (OO) programming; see [2]. Some properties of coalgebras, that do
not hold for all dialgebras, do hold for all dialgebras without binary methods,
including:

Lemma 3.12 For dialgebras without binary methods, invariants are closed
under union.

Proof. Let ¥ be a signature without binary methods. It suffices to prove
that | J, X7°4(P;) C ¥Ped(|J, ;). The crucial property of dialgebraic signature
without binary methods needed to prove this is that, since there is at most one
occurrence of X in the IN;(X), |, FFrd(IN;) = FPred(|J, IN;) by Lemma P.8:
feX(P)UE(Q)
— V. f; € 3;(P) UX;(Q)
<= Vj. f; € IN;(P) — OUT;(P)V f; € IN;(Q) — OUT;(Q)
<= Vj. (Vo € IN;(P). f;(z) € OUT;(P))
V(va € INJ(Q). f,(z) € OUT;(Q))
= Vj. Vo € IN;(P)UIN;(Q). f;(z) € OUT;(P)UOUT;(Q)
<= Vj. Vo € IN;(PUQ). fi(z) € OUT;(P)UOUT;(Q)
since IN;(PUQ) = IN;(P)UIN;(Q) by Lemma P.§
= Vj. Vo € IN;(PUQ). f;(z) € OUT;(PUQ)
since OUT;(P) U OUT;(Q) C OUT;(P U Q) by Lemma P.1
7

POLL AND ZWANENBURG

< Vj. f; € IN;(PUQ) — OUT;(PUQ)
— Vj. f; € 5;(PUQ)
— feX(PUQ)

3.2 Bisimulations, (partial) congruences, and quotient-dialgebras

The notion of bisimulation plays an important role in the literature on coalge-
bras, as does the closely related notion of (partial) congruence in the literature
on algebras.

Definition 3.13 A relation ~ C A x B is a bisimulation between two Y-
dialgebras (A, f) and (B, g) iff (f,g) € ¥ (~). Dialgebras (A, f) and (B, g)
are bisimilar if there exists a bisimulation between (A, f) and (B, g).

For (co)algebras one has the property that (co)algebra homomorphisms are
just functional bisimulations. This property also holds for dialgebras:

Lemma 3.14 Let (A, f) and (B, g) be ¥-dialgebras and h be a function from
A to B. Then h : A — B is a homomorphism iff graph(h) C A X B is a
bisimulation.

Proof. Straightforward, using Lemma P.G. |
Lemma 3.15 Bisimulations are closed under intersection and composition.
Proof. Follows immediately from Lemma B.5. O

Bisimulations between dialgebras are not always closed under union. For
coalgebras this is a basic property (e.g. see [Z1,[IT1]):

Lemma 3.16 For coalgebras, bisimulations are closed under union.

An important consequence of this property of coalgebras is that between any

two coalgebras there exists a largest bisimulation, namely the union of all
bisimulations. For arbitrary dialgebras we do not have this property.

Lemma 3.17 For dialgebras without binary methods, bisimulations are closed
under union.

Proof. Similar to Lemma BT2. O
Of special interest are bisimulations between a dialgebra and itself:

Definition 3.18 A relation ~ C Ax A is a (partial) congruence on a dialgebra
(A, f) iff it is a bisimulation between (A4, f) and itself, — i.e. (f, f) € ¥(~) -
and it is a (partial) equivalence relation.

In [21]), for coalgebras, what we call a congruence here is called a bisimula-
tion equivalence. Given a (partial) congruence we can construct a quotient-
dialgebra:

POLL AND ZWANENBURG

Definition 3.19 Let ~ be a (partial) congruence on (A, f). Then the quotient-
dialgebra ([S]~, [f]~) is the X-dialgebra ([S]~, [f]~), where [S]. is the collection
of ~-equivalence classes, and [f]. is the family of functions on ~-equivalence
classes induced by f.

As mentioned above, bisimulations are not closed under union. Congruences,
however, are, in the following sense:

Theorem 3.20 Let R; be congruences on the ¥-dialgebra (A, f), for j € J,
J#0. Then (U, R;)* is also a congruence relation for (A, f).

Proof. See the appendix. O

So, for any dialgebra there exists a largest congruence relation, namely (the
transitive closure of) the union of all congruences. Intuitively, this is the
notion of observational equality for that dialgebra. In Section B.3 below, we
discuss this difference between dialgebras and coalgebras — the existence of
largest congruences vs largest bisimulations — in more detail.

The property above does not hold for partial congruences:[?]

Example 3.21 Let T(X) = X x X — Z and consider the T-(di)algebra
(Z, f) where f is the function
f(z,y) =if y < 0 then z else 23
The relations R = N x N and Idz on Z are both bisimulations, i.e.
(z.2') € RA(y,) € R= f(z,y) = f(2',¥/)
(z,2') € Id A (y,y) € Id=> f(z,y) = f(«,y)

However, neither R U Id nor (R U Id)* is a bisimulation, since for instance
(4,5) € RUId and (—1,—1) € RUId, but f(4,—1) # f(5,—1).

3.3 Coalgebras vs dialgebras: the problem with binary methods

Moving from coalgebras to dialgebras we gain something, notably the possi-
bility of having binary methods. The price for this is that some properties are
lost, namely

* the existence of final coalgebras,
* the existence of unique largest bisimulation between any two coalgebras.

These two properties are intimately connected, as the largest bisimulation
relates precisely those elements that have the same image under the unique
homomorphisms to the final coalgebra. The properties are useful because
they provide a canonical notion of observational equality between elements
of different coalgebras. Two different coalgebras (A, f) and (B, g) with the

2 The property does hold for partial congruences if these all have the same domain; instead
of the transitive and reflexive closure (| F R;)* one then has to consider the transitive closure

U; &)™

POLL AND ZWANENBURG

same signature X can be regarded as different implementations for classes with
the same interface. The properties above then provide a canonical notion of
equality between objects from these two classes: an object with an internal
state a € A — using implementation (A, f) — is observationally equal to an
object with an internal state b € B — using implementation (B, g) — iff a ~ b,
where a ~ b is the greatest bisimulation between (A, f) and (B, g).

Below a simple (counter)example to illustrate the fundamental problem
with the union of bisimulations caused by a binary method:

Example 3.22 Consider £(X) = (X x X — X) x (X — N) and the -
dialgebras Z = (Z, (+, abs)) and L = (List, (++, length)) with List the set of
lists over some type, ++ the concatenation operation, and abs : Z — N the
function returning the absolute value.

The relations ~; and ~s,

~ =A{(z,1) | z=length(l)} ~2={(2,1)]2z=—length(l)}

are bisimulations between Z and L. However, ~; U ~y is not a bisimulation
between Z and L; for example, if [is some list with three elements, then

The problem is that when the binary method (4 or 4++) is used to observe
an individual element (of Z or List, respectively), the operation + of Z offers
different — more — observations than the operation ++ of L.

Binary methods are notorious in the literature on the theoretical foun-
dations of object-oriented programming: in the presence of binary methods
defining a satisfactory notion of subtyping becomes a problem [2]. This prob-
lem is closely related to the fact that there is no canonical notion of ‘observa-
tional equivalence’ in the presence of binary methods. Indeed, the coalgebraic
definition of subtyping (see [I5]) crucially depends on the existence of final
coalgebras, or the existence of unique largest bisimulation between any two
coalgebras.

4 Dialgebraic Specification

Just like algebras provide the basis for algebraic specification, coalgebras have
been used as the basis for coalgebraic specification, notably in the experimental
specification language CCSL [R,20]. We now consider a notion of dialgebraic
specification, defined in exactly the same way. Because of lack of space, we
have to omit many details of definitions and proofs.

For example, an equational dialgebraic specification for the dialgebraic
signature of Set mentioned in the introduction could include

union(s,empty) = s
union(s,t) = union(t,s)
elem(add(s,n) ,m) (n=m or elem(s,m))

10

POLL AND ZWANENBURG

elem(union(s,t),n) = elem(s,n) or elem(t,n)
elem(empty,n) = false
min(s) = inl(x) <= s = empty
min(s) inr(m) = elem(s,m) = true
min(s) inr(m) A elem(s,n) = true = m < n
union(split(s,m)) = s

A model of this dialgebraic specification would be a dialgebra providing an
implementation of all the operations for which these equations hold. However,
instead of insisting that models satisfy the equations above, one could also only
require that they satisfy the equations above up to some congruence relation.
This weaker notion of model makes sense because intuitively a congruence
relation provides a notion of ‘observational equivalence’.

For example, consider a simple implementation of the specification above
using lists, in which union is implemented as concatenation 4+, i.e. some
dialgebra L = (Listyat, (..., ++,...). This implementation does not satisfy

union(s,t) = union (t,s)
as concatenation is not commutative, but it does satisfy
union(s,t) ~pem union (t,s)

where ~p..,, is the relation on lists that relates permutations. If ~c.,, is a
congruence for L, then L can be regarded as a correct implementation of the
specification.

To formally introduce a notion of equational specification for dialgebras,
we need to introduce some syntax. We fix a dialgebraic signature X(X) =
[Lic; INi(X) — OUT;(X) and use names op; for the operations of the dialge-
bra:

Definition 4.1 The type expressions are given by
EiZ:X|O|E1+E2|E1XE2|E1—>E2

where X stands for the carrier of the dialgebra, and C' ranges over some
collection of base types.
The term expressions is given by

ex=op; | 2F | ¥ | XxP. e e(e) | inlgig(e) |inrgip(e) | m(e) | m2(e)

where 2 is a variable of type E, and c¥ a constant of type E not containing

X. We assume an infinite number of variables for every type £. The collection
of well-typed terms is defined in the obvious way.
The propositions are given by

(P:::_\q)l(Pl/\q)2|€1:E€2|VCCE.(P

where E is some type expression possibly containing X, and e; and ey are
well-formed expressions of type E.

11

POLL AND ZWANENBURG

A dialgebraic specification ® is simply a closed proposition.

Note that the definition above allows more propositions than usually allowed
in algebraic specification; for example, it allows universal quantifications over
the type X — X.

Definition 4.2 The interpretation of a type F, term e, and proposition ¢ in
the dialgebra (A, f), [El4, [e]a and [®], ;, are defined in the obvious
way, by induction on the structure, interpreting X as A and op; : 3;(X) as

Because terms and propositions can contain free variables, we have to
define the interpretation of terms and propositions wrt. an environment 7,
[e] s and [@] ;, where the environment 7 assigns to every free variable 2
an interpretation in F(A).

Definition 4.3 A dialgebra (A, f) satisfies specification ®, written (A, f) =
P, iff [, is true.

Now that we have a syntax, we can define a notion of observational equiv-
alence:

Definition 4.4 Two Y-dialgebras (A, f) and (B, g) are observationally equiv-
alent iff for all closed expressions e of some closed type F (i.e. a type E not
containing X') the interpretation of e in (A, f) is equal to its interpretation in

(B,9).

As one would expect, bisimilar dialgebras are observationally equivalent:

Theorem 4.5 Let (A, f) and (B, g) be X-dialgebras. If (A, f) and (B, g) are
bisitmilar then they are observationally equivalent.

Proof. Let ~ a bisimulation between (A, f) and (B, g). For environments 7
and & we write n ~ & if (p(2F), £(2)) € Er(~) for all ¥ in their domains.
Then we can prove that ([e H?A’f) ,'[[e]]vag)) € Er(~) for all e : £ and for all
n ~ &, by induction on the derivation of e. O

Behavioural Satisfaction

We now consider a weaker notion of behavioural satisfaction of dialgebras
satisfying specifications ‘up to some congruence relation’. First we define
[®]]A,f,Z’ the interpretation of ® in the dialgebra (A, f) wrt. a congruence ~:

Definition 4.6 For ~ a congruence[’] on the dialgebra (A, f), [@]) o is
defined as [®]]Z s> except that equality is interpreted as follows:

[ei=perli;n = ([ealhpn [ea]h) € E(x)

3 One could also take a partial congruence, but then the semantics of types would have to
be changed with [X | = dom/(~).

12

POLL AND ZWANENBURG

Note that if X does not occur in E, this simply reduces to
[ev=pei]i;n = ([ea]hpe=1e2ll;n)
A notion of behavioural satisfaction can now be defined as follows:

Definition 4.7 Let (A, f) be a X-dialgebra and ~ a congruence relation for
it. Then (A, f) satisfies ® with respect to ~, written (A, f) E~ ®, iff [®]]A,sz
is true.

Theorem 4.8 (A, f) E~ @ iff (A, f)/~E

Proof. By induction on the structure of ® we can prove that [®],, =
[®] 4~ To prove this we must first prove relations between ['], ; and
[E]a)~ and [€],; and [e] 4 s, namely [E], ;/~=[E] ;. and
H[e]]A,f]E(ﬁ) = [[e]](A,f)/z' o

Definitions and results similar to the ones above can be found in the litera-
ture for algebraic specifications, e.g. in [1,9,19]. We do not know of any similar
definitions or results in the literature on coalgebras or coalgebraic specifica-
tions. However, given that the notion of ‘observability’ plays a much more
central role in the coalgebraic setting than in the algebraic setting, we believe
that a notion of behavioural satisfaction makes even more sense for coalgebraic
specifications than for algebraic ones.

More work would be needed to really exploit the opportunities offered by
the notion of behavioural satisfaction when reasoning about specifications. In
particular, one would want to establish that any consequences of a specification
—in a particular logic — are not just valid for models satisfying the specification,
but also for models behaviourally satisfying the specification. For algebras
and algebraic specifications this idea is pursued in [1,9,19]. In a type-theoretic
setting, this idea is illustrated in [I6] and further investigated in [23]; the
abstract data types considered here are more general than dialgebras.

5 Related Work

Several ways to combine algebras with coalgebras have been investigated over
the past few years.

One way of combining algebra with coalgebra is to consider pairs consisting
of an algebra and a coalgebra, sometimes called bi-algebras. This is done in
[@] and [3]. Dialgebras are clearly more general than algebra-coalgebra pairs.
Using a algebra-coalgebra pair rules out operations f : IN(X) — OUT(X)
where both IN;(X) # X and OUT;(X) # X, for example a ‘partial’ binary
operation f: X x X — 1+ X.

In [22] Tews introduces extended polynomial functors and coalgebras for
these extended polynomial functors. This setting allows operations that are
not possible in our dialgebra-setting, because a (restricted) use of — is possible
in output types. For example, g : X — (C7 — X) + Cy is a coalgebra

13

POLL AND ZWANENBURG

for some extended polynomial functor, but cannot be an operation of any
dialgebra. However, whereas our notion of dialgebras subsumes algebras, the
setting of [22] does not; this setting is still strictly coalgebraic and does not
allow algebraic operations, not even one as simple as g : ¢ — X. In OO
terminology, the setting of [22] allows binary methods but not constructors.
As for our dialgebras, for the coalgebras in [22] bisimulations turn out to
be closed under intersection and composition, but not under union. It would
be interesting to see if a result similar to Theorem B.20, i.e. closure under
union for congruences, could be proved for extended polynomial functors.

Dialgebras and dialgebraic specifications can be regarded as special cases
of the abstract data types and the specifications for abstract data types con-
sidered in a type-theoretic setting in [16,23]. Such a type-theoretic setting is
also used in [5,6]. The crucial observation to link dialgebras with type theory
is that dialgebras — and hence algebras and coalgebras — can be regarded as
abstract datatypes. Abstract datatypes can be elegantly described in type
theory using so-called existential types [I3], and the logic for the notion of
parametricity described in [[4] then offers the expected proof rule for these
existential types, namely that two implementations of an abstract datatype
are equal if there exists a bisimulation between them.

This type-theoretic setting allows much wilder signatures than the dial-
gebraic signatures considered in this paper. This suggests further generalisa-
tions, for example with

e operations with higher-order types, e.g.
map : Setng X (Nat — Nat) — Set gy, Or

e polymorphic operations, i.e. operations with type parameters, e.g.
polymorphicMap : Sety, — Va.(Nat — o) — Set,, .

Finally, one of the referees drew our attention to [I8], which introduces a
notion of ‘nested sketches’ that support operations with arbitrarily structured
in- and output types and seem more general than our dialgebras.

6 Conclusions

We have shown that the notion of dialgebra is a well-behaved generalisation
of the notions of algebra and coalgebra. Dialgebras are more general than
both algebras and coalgebras. The coalgebraic setting does for instance not
allow ‘binary methods’, i.e. operations of type f : X x X — X, or operations
returning an initial state i.e. operations of type f : 1 — X. The algebraic
setting does not allow operations with complicated return types, e.g. ‘partial’
operations f: X — 1+ X.

We have shown that many notions used in the fields of algebra and coalge-
bra are essentially identical, and can already be defined for the more general
dialgebraic case: the (co)algebraic notions of homomorphism, invariant, bisim-

14

POLL AND ZWANENBURG

ulation, and (partial) congruence can all be extended to dialgebras, preserving
many of the essential properties.

We have also shown that dialgebraic specification provide a generalisation
of (co)algebraic specification, and indicated how the notion of behavioural
satisfaction, used in the field algebraic specification, can be extended to dial-
gebraic specifications (and hence also to coalgebraic specifications).

Given that (co)algebras are special cases of dialgebras, it is to be expected
that some properties are lost when moving from algebras or coalgebras to
dialgebras.

Most obviously, we no longer have the existence of initial c.q. final mod-
els. However, as far as dialgebraic specifications are concerned losing these
properties maybe is not too bad, given that one is usually interested in loose
semantics anyway.

In addition to this, useful properties of coalgebras that do not hold for
arbitrary dialgebras are closure under union for invariants and bisimulations
(Lemmas B.10 and B.1G). The fact that we do not have these closure properties
can be traced back to so-called binary methods, which are already notorious in
the literature on object-oriented programming because of the problems they
cause with subtyping (see [2]). For dialgebras without binary methods we do
still have the properties that invariants and bisimulations are closed under
union.

For a given functor there exists a canonical notion of ‘observational equal-
ity” between elements of different coalgebras for that functor. An important
consequence of the fact that for arbitrary dialgebras bisimulations are not
closed under union, is that for a dialgebraic signature such a notion may not
exist, as discussed in Section B.3. However, in the dialgebraic setting we do
still have a canonical notion of equality between elements of a single dialgebra,
thanks to Theorem B20.

Future Work

Given the duality between algebras and coalgebras it is surprising that, whereas
we did come across properties of coalgebras that do not hold for arbitrary di-
algebras (namely closure properties for union, Lemmas B.I(and B.1G), we
did not come across (dual) properties of algebras that do not hold for arbi-
trary dialgebras. Carefully dualising Lemmas B.1(and B.1G might reveal such
properties.

Another direction for future work is to further investigate which notions
and results from the fields of algebra and coalgebra — notably the well-developed
field of algebraic specifications — could be generalised to dialgebras.

Finally, the notion of dialgebra we have introduced is fairly ad-hoc and
very syntactic. The motivation behind the definition of dialgebra was that
it is the natural ‘unification’ of the definitions of algebra and coalgebra. It
would be interesting to investigate more semantical characterisations of some

15

POLL AND ZWANENBURG

notion of dialgebra, and to investigate in how far the restriction to polynomial
functors could be relaxed, e.g. allowing the extended polynomial functors of
[22].

Acknowledgments
We would like to thank Bart Jacobs and Hendrik Tews for comments on earlier
versions of this paper.

7 Appendix: Proof of Theorem 3.20

Lemma 7.1 Basic properties of the operations + and X on relations are:
(i) (R+9); (R +5) = (R;R)+(5;5)

(ii) (R xS); (R x5 = (R;R) x (5;5)

(iii) R*+ST=(R+9)"

(iv) Rt x St =(Rx S)" if R and S are partially reflexive.

Here RT denotes the transitive closure of R, and R is partially reflexive iff
V(z,y) € R. (x,x) € RA(y,y) € R.

Proof. Easy. O

Lemma 7.2 Let F be a polynomial signature. Then F(R") = F(R)* if R is
partially reflexive.

Proof. Induction on the structure of F, using Lemmas [[.1|(iii) and [7.1(iv).O

Lemma 7.3 Let i and j range over I and J, respectively.
(i) U, Ri+U,;S;=U,; Ri +S; if I and J are not empty.
(i) U; Ri x Uj S = Uz] R; x5

Lemma 7.4 Let F' be a polynomial signature. Let R; be a equivalence relation

on A, forallje J, J#0. Then F(UJ Rj> - (U] F(Rj)>+.

Proof. Induction on the structure of F.
e F(X)=Cor F(X)=X: trivial.
16

POLL AND ZWANENBURG

s F(X)=F(X)+ Fy(X):

Fi(R;) + Fy(Rj)
= Fi(R;; 1da) + Fy(Ida; R;)
= (Fi(Ry); Fi(1da)) + (Fa(Ida); F2(R;)) by Lemma B
= (F1(R;) + Fa(Ida)) 5 (Fi(Ida) + Fo(R;)) by Lemma [.1)(i)
C (Fi(R) + Fa(Ry)) 5 (Fu(Ry) + Fa(R;))

since Idy C R;, so Fi(Ida) C Fi(R;)
= F(R;) ; F(R))

F(UR) =R (U R) + B (U R))

c (U Rr)) + (U Ba(Ry) by TH

= (U A (R) + Uy B(Ry)) by Lemma T
= (U Ai(R) + Bo(R)) by Lemma F3()
c <Um.F(R,-) : F(Rj)>+ by the result above
= (U F(R)) : (U, F(R)) by Lemma F0)
c (U Fr)) by definition of +.

¢ F(X) = Fi(X) x F5(X): Analogous.

Lemma 7.5 (Closure of congruences under union)
Let R; be congruences on the X-dialgebra (A, f), for all j € J, J # 0. Then

Jr
(Uj Rj> is a congruence on (A, f).

Proof. We just do the proof for binary union.

Let R and S be congruences on (A, f), i.e. R and S are equivalence re-
lations, (f, f) € 3X(R), and (f, f) € 3(S). To prove: (f,f) € Z((RUS)"),

(fi, i) € Zi((RUS)T) = IN; (RUS)*) — OUT; (RUS)™)

for all 4.
Let (z,2") € IN; (RUS)*"). To prove (fi(z), f;(2")) € OUT; (RUS)™).
IN; (RUS)*) = (IN;(RUS))" by Lemma [[-2
C ((INJ(R) U IN;(SH))" by Lemma 3
= (IN;{(R) UIN;(S))* by definition of +.

17

POLL AND ZWANENBURG

So (z,2') € (IN;(R) U IN;(S))", ie. there exist oy ...,z, such that
(z,21), (21,22), ..., (Tn,2") € IN;(R)UIN(S) .

Since R and S are bisimulations it then follows that

(fi(z), fi(x1)), (filzr), fi(z2)), .., (filwn), fi(2"))
€ OUT,(R)UOUT;(S)
C OUT;(RU S) by Lemma 2.7
and hence
(filx), fi(z")) € (OUT,(RUS))*
= OUT; ((RUS)") by Lemma [[-2

References

[1] Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Behavioral and abstractor
specifications. Science of Computer Programming, 25:149-186, 1995.

[2] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, the Hopkins Objects
Group (Jonathan Eifrig, Scott Smith, Valery Trifonov), Gary T. Leavens, and
Benjamin Pierce. On Binary Methods. Theory and Practice of Object Systems,
1(3):221-242, 1996.

[3] Corina Cirstea. An algebra-coalgebra framework for system specification. In
H. Reichel, editor, Coalgebraic Methods in Computer Science (CMCS’2000),
number 19 in ENTCS, pages 81-112. Elsevier, Amsterdam, 2000.

[4] Tatsuya Hagino. A categorical programming language. PhD thesis, University
of Edinburgh, 1987.

[5] Jo Hannay. Specification Refinement with System F. In J. Flum and
M. Rodriguez-Artalejo, editors, Computer Science Logic (CSL’99), volume 1683
of LNCS, pages 530-545. Springer-Verlag, September 1999.

[6] Jo Hannay. A Higher Order Simulation Relation for System F. In
FOSSACS’2000, volume 1784 of LNCS, pages 130-145. Springer-Verlag, 2000.

[7] R. Hennicker and A. Kurz. (w,§)-logic: On the algebraic extension of
coalgebraic specifications. In B. Jacobs and J. Rutten, editors, Coalgebraic
Methods in Computer Science, number 19 in ENTCS, pages 195-212. Elsevier,
Amsterdam, 1999.

[8] U. Hensel, M. Huisman, B. Jacobs, and H. Tews. Reasoning about classes in
object-oriented languages: Logical models and tools. In Ch. Hankin, editor,
European Symposium on Programming (ESOP), number 1381 in Lecture Notes
in Computer Science, pages 105-121. Springer, 1998.

18

POLL AND ZWANENBURG

[9] Martin Hofmann and Donald Sannella. On behavioural abstraction and
behavioural satisfaction in higher-order logic. Theoretical Computer Science,
167:3—-45, 1996.

[10] Bart Jacobs. Invariants, bisimulations and the correctness of coalgebraic
refinements. In M. Johnson, editor, Algebraic Methodology and Software
Technology (AMAST’97), LNCS, pages 276-291. Springer, 1997.

[11] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction.
EATCS Bulletin, 62:222-259, June 1997.

[12] John C. Mitchell. Foundations of Programming Languages. MIT Press, 1996.

[13] John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type.
ACM Trans. on Prog. Lang. and Syst., 10(3):470-502, 1988.

[14] Gordon Plotkin and Martin Abadi. A logic for parametric polymorphism.
In Typed Lambda Calculi and Applications, volume 664 of Lecture Notes in
Computer Science, pages 361-375, 1993.

[15] E. Poll. A coalgebraic semantics of subtyping. In H. Reichel, editor, Coalgebraic
Methods in Computer Science (CMCS’2000), number 33 in ENTCS, pages 281—
299. Elsevier, 2000.

[16] E. Poll and J. Zwanenburg. A logic for abstract data types as existential types.
In J.-Y. Girard, editor, Typed Lambda Calculi and Applications (TLCA’99),
volume 1581 of LNCS, pages 310-324. Spinger, 1999.

[17] Horst Reichel. An approach to object semantics based on terminal co-algebras.
Mathematical Structures in Computer Science, 5:129-152, 1995.

[18] Horst Reichel. Nested sketches. Technical Report ECS-LFCS-98-401,
Edinburgh University, Laboratory for Foundations of Computer Science, 1998.

[19] Horst Reichel. Specification semantics. In E. Astesiano, H.-J. Kreowski, and
B. Krieg-Briickner, editors, Algebraic Foundations of System Specifications,
pages 131-158. Springer, 1998.

[20] J. Rothe, B. Jacobs, and H. Tews. The coalgebraic class specification language
CCSL. Journal of Universal Computer Science, 2001. To appear.

[21] J. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer
Science, 249:3-80, 2000.

[22] H. Tews. Coalgebras for binary methods. In H. Reichel, editor, Coalgebraic
Methods in Computer Science (CMCS’2000), number 33 in ENTCS. Elsevier,
Amsterdam, 2000.

[23] Jan Zwanenburg. Object-Oriented Concepts and Proof Rules: Formalization in
Type Theory and Implementation in Yarrow. PhD thesis, Eindhoven University
of Technology, 1999.

19

	Introduction
	Mathematical Preliminaries
	Dialgebras
	Invariants and sub-dialgebras
	Bisimulations, (partial) congruences, and quotient-dialgebras
	Coalgebras vs dialgebras: the problem with binary methods

	Dialgebraic Specification
	Related Work
	Conclusions
	Appendix: Proof of Theorem 3.20
	References

