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Abstract

This paper reports on an effort to increase the reliability of JavaCard-based smart
cards by means of formal specification and verification of JavaCard source code.
As a first step, formal interface specifications, written in the specification language
JML, have been developed for all the classes that make up the JavaCard API. These
specifications are “lightweight” in the sense that they are incomplete and specify
only some aspects of the API, but they already provide a useful addition to the
existing informal API specifications. Moreover, the fact that these specification are
written in a formal language makes them amenable to tool support, for verifica-
tion purposes. As an illustration, the JML specifications of the APDU (Application
Protocol Data Unit) class in the JavaCard API are discussed in detail.
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1 Introduction

Program specification and verification has always been one of the central is-
sues in computer science. Despite enormous theoretical progress in this area,
the practical impact is still modest. Over the last few years the situation has
slightly improved, due to the availability of modern verification tools (like the-
orem provers and model checkers) supported by fast hardware. Early work in
program specification and verification was based on mathematically clean and
abstract programming languages, with special logics for correctness formulas.
But nowadays, correctness issues are being investigated for real-life program-
ming languages (like Java), and formal logical languages are used, enabling
tool support for specification and verification.
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This paper fits in that modern formal methods tradition. It uses the spec-
ification language JML for annotation of the Java classes in the JavaCard
API (version 2.1.1) [9]. Its aim is to increase the reliability of JavaCard-based
smart cards by means of formal specification and verification of JavaCard
source code. JavaCard is a good target for the application of formal methods,
for several reasons: JavaCard applets are used in large numbers and in (safety
or security) critical applications, where programming errors can have serious
consequences. JavaCard applets are usually small programs, designed to run
on a processor with modest resources. Also, the language of these applets,
JavaCard, is relatively simple, with a relatively small API, in comparison to
full Java. This makes the application of formal methods to JavaCard a feasible
and useful enterprise, which can have an impact.

This paper reports on the first steps in the use of JML for JavaCard: basic
specifications have been written for all the classes in the JavaCard API. These
specifications are incomplete – sometimes called “lightweight” – specifications
that focus on necessary (but not always sufficient) conditions for avoiding
unwanted behaviour of methods, e.g. the occurrence of certain run-time ex-
ceptions.

The JML specifications will be published on the web [14]. The ideal scenario is
that they will develop into an actively used ‘reference specification’, that will
form a basis for future versions of the JavaCard API. Therefore, we explicitly
solicit feedback from the JavaCard (user and development) community, so that
our specifications reflect the common understanding of the precise behaviour
of the JavaCard API.

The JML project

JML (for Java Modeling Language) [10,11] is a specification language tailored
to Java, primarily developed at Iowa State University. It allows assertions to be
included in Java code, specifying for instance pre- and postconditions and in-
variants in the style of Eiffel and the “Design by Contract” approach [15]. JML
is being integrated with the specification language used for ESC/Java, the ex-
tended static checker developed at Compaq System Research Center [13,5].

At Nijmegen, a formal semantics has been developed for a large subset of Java,
which includes all of JavaCard. A compiler has been built, the LOOP tool,
which translates a Java program into logical theories describing its semantics
[8,2,6,14]. These logical theories are in a format that can serve as input for
theorem provers, which can then be used to prove properties of the Java
program, thus achieving a high level of reliability for this program. Currently
the LOOP tool supports output for the theorem provers PVS [16] and Isabelle
[17]. This approach to verification of Java has demonstrated its usefulness for
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instance with the proof of a non-trivial invariant for the Vector class in the
standard Java API [7]. The LOOP tool is currently being extended to JML,
so that it can be used to verify JML-annotated Java source code. We should
emphasise that this is source code verification, not byte code verification.

One advantage of using a formal specification language is that it becomes
possible to provide tool support. Current work on tool support for JML focuses
on the generation of run-time checks on preconditions for testing, at Iowa State
University, extended static checking, at Compaq System Research Center, and
verification using the LOOP tool, at the University of Nijmegen.

JML specifications for JavaCard

JML specifications of the JavaCard API are of interest both for developers of
implementations of the API and for developers of applets. The specifications
can be used to specify and verify essential properties of implementations of
the JavaCard API, starting with the current reference implementation itself,
and as a basis for the specification and verification of properties of individual
applets that use the API. Our formal specifications are based on the exist-
ing informal (but quite detailed) specifications of the JavaCard API (version
2.1.1), included as appendix in [4] and available as Javadoc-generated HTML
from Sun’s website [9].

Using a formal specification language such as JML still leaves a choice as to
how detailed the specifications we write should be. For any program there is a
wide spectrum of possible specifications. At one end of the spectrum are the
very complete and detailed specifications. The reference implementation of the
JavaCard API [9] is an example of such a specification. At the other end of
the spectrum are very incomplete or ‘lightweight’ specifications. These are the
kind of specifications we have given for the JavaCard API. More precisely, our
formal specifications concentrate on specifying the preconditions of methods
that ensure normal behaviour of the method, i.e. preconditions that rule out
some – or all – unwanted run-time exceptions. Such specifications are relatively
easy to write and easy to check, and can be used to guarantee the absence of
most run-time exceptions. This is important, as omitting the proper handling
of such exceptions is a common source of failures.

The paper is organised as follows. It starts with an introduction to JML in
Section 2. Section 3 gives typical examples of the specifications we have written
for methods in the JavaCard API. Section 4 then discusses the specification of
the APDU class, the largest class in the JavaCard API, and Section 5 discusses
the relation between this specification and the reference implementation of the
class. The article ends with some conclusions.
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2 JML

This section gives a brief introduction to the specification language JML.
It describes only the subset of JML used in this paper; for more complete
descriptions of JML see [10,11].

JML allows Java code to be annotated with specifications, expressing for ex-
ample preconditions, postconditions, or invariants, in the style of Eiffel, also
known as “Design by Contract”, see [15]. However, JML provides many en-
hancements making it much more expressive. One of these is the possibil-
ity to specify when certain exceptions may be thrown, must be thrown, or
may not be thrown. Other enhancements include the possibility of introduc-
ing specification-only variables, called model variables, and the possibility of
specifying (the absence of) side-effect of methods through so-called modifiable
clauses.

JML annotations are a special kind of Java comments: JML annotations are
preceded by //@, or enclosed between /*@ and @*/, so that they are simply
ignored by a Java compiler. These comments can be included in a .java source
file, or written in separate .jml files.

Methods can be specified in the usual way, by giving pre- and postconditions.
The simplest method specifications are of the form:

/*@ normal_behavior

@ requires: <precondition> ;

@ ensures: <postcondition> ;

@*/

Such a specification states that if the precondition holds at the beginning
of a method invocation, then the method terminates normally (i.e. without
throwing an exception) and the postcondition will hold at the end of the
method invocation. This is like a (total) correctness formula in Hoare logic [1].

Pre- and postconditions can simply be standard Java boolean expressions.
JML adds several operators, for instance quantifiers \exists and \forall,
but the JML specifications in this paper don’t use these. An example of a
normal_behavior specification is given in Example 1 in Section 3.

Java methods can terminate abruptly, by throwing exceptions. A more general
form of method specification makes it possible to specify which exceptions may
be thrown, and under which circumstances. These method specifications are
of the form:

4



/*@ behavior

@ requires: <precondition> ;

@ ensures: <postcondition>;

@ signals: (Exception1) <condition1>;

@
...

@ signals: (Exceptionn) <conditionn>;

@*/

Such a specification states that if the precondition holds at the beginning of a
method invocation, then the method either terminates normally or terminates
abruptly by throwing one of the listed exceptions. If the method terminates
normally, then the postcondition will hold. If the method throws an exception,
then the corresponding condition will hold. For an example, see Example 2 in
Section 3. These behavior specifications can be translated into an extended
Hoare logic dealing with abrupt termination, see [6]. A normal_behavior

specification is just a special case of a behavior specification, namely one
with signals: (java.lang.Exception) false.

For a single method several specifications of the forms above can be given,
joined by the keyword also. The method should then meet all these specifi-
cations.

In addition to pre- and post-conditions, JML annotations can specify invari-
ants. An invariant is a property that holds after creation of an object by one
of the constructors, and that is preserved by all methods. So any invariant is
implicitly included in pre- and postconditions of all methods. Note that an in-
variant must also be preserved if a method throws an exception. For example,
in the class APDU, the following invariant is maintained for the byte array field
buffer:

/*@ invariant: buffer != null

@ && buffer.length == APDU.BUFFERSIZE;

@*/

This invariant is typical of objects with array fields. Invariants are not men-
tioned in the informal API specification, nor in the API reference implemen-
tation. Still, invariants provide useful documentation, and often play an im-
portant role as (implicit) assumptions in considerations about the correctness
of code.

In addition to pre- and postconditions, a method specification in JML can
include modifiable clauses. These clauses specify so-called frame conditions,
which say that only certain fields may have their values changed by a method.
For example, modifiable:x specifies that a method changes only field x. We
won’t discuss these annotations in this paper in detail, but modifiable clauses
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will be included in the examples we give.

To specify a class it is sometimes convenient (or necessary) to introduce ad-
ditional, specification-only, variables. For this purpose JML provides so-called
model fields. Model fields, preceded by the keyword model, are just like or-
dinary fields, but are for specification purposes only. They can be mentioned
in JML annotations, but not in the Java code. By convention, all our model
fields have names that start with an underscore.

Finally, the same keywords that can be used in Java to control the visibility
of fields and methods, e.g. public, private, etc. , can be used in JML to control
the visibility of method specifications and invariants. E.g. an invariant that is
maintained by an implementation of the class but which clients of the class
need not know about will not be make public, but private or protected.
For a public method we of course want a public specification, but there may be
an additional, say protected, specification, which gives additional information
for subclasses.

3 Example JML Specifications

As mentioned before, we have developed very basic specifications for all the
classes in the JavaCard API, with the concrete goal to specify preconditions for
methods and invariants for classes to rule out as many unwanted exceptions as
possible. These specifications are relatively easy to write, and easy to check,
but still provide useful information. In this section we discuss some typical
examples to give the flavour of such specifications.

Whenever possible, methods have been specified by a normal_behavior. This
requires a precondition that guarantees normal termination, i.e. that rules
out that any exceptions are thrown. The precondition usually imposes fairly
obvious restrictions on the parameters of the method, e.g. that references are
not null, that indices are within array bounds, etc. A typical example is the
specification of arrayCompare in the class Util.

Example 1 The method arrayCompare compares parts of two arrays, given
offsets within those arrays and a length saying how many array elements are
to be compared. A formal JML specification is given below:

public static native byte arrayCompare(byte[] src,

short srcOff,

byte[] dest,

short destOff,

short length)
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throws ArrayIndexOutOfBoundsException,

NullPointerException;

/*@ public_normal_behavior

@ requires: src != null && dest != null &&

@ srcOff >= 0 && destOff >= 0 && length >= 0 &&

@ srcOff + length <= src.length &&

@ destOff + length <= dest.length;

@ modifiable: \nothing;

@ ensures: true;

@*/

Some points to note about this specification:

• The precondition states very obvious requirements on the parameters needed
to avoid NullPointer- and ArrayIndexOutOfBoundsExceptions. These re-
quirements immediately follow from the detailed informal specification in the
JavaCard API documentation.

• The postcondition is simply true. This is the case with most of the speci-
fications we have developed. This means that nothing is specified about the
functionality of the method. Still, the specification is not trivial, because it
does specify that the method will not throw an exception if the precondition
is met.

• The specification of arrayCompare could easily be made stronger. For in-
stance, the informal specification of the JavaCard API states that a Null-

PointerException may be thrown if src or dest is a null reference, as
one would expect. We could easily specify this in JML as well. We have
chosen not to do so to keep the formal specifications as short and simple as
possible 1 . And, as one would expect (or hope), it turns out that no part of
the JavaCard reference implementation in fact relies on the property that
arrayCompare may throw a NullPointerException if src or dest is a
null reference.

• The method arrayCompare is declared as native, which means that it is
to be implemented by platform-dependent code. Indeed, the reference im-
plementation does not provide an implementation of this method. For such
methods precise specifications are of course of crucial importance.

Not all methods can be specified by a normal_behavior. Some methods can

1 Also, one has to be careful with such specifications, as it should not be specified
that a NullPointerException must be thrown if src or dest is a null reference. If
for example src is null and destOff > dest.length then the method may throw
an ArrayIndexOutOfBoundsException instead. The informal API specification in
fact warns that programmers should not rely on getting a specific exception if there
is the possibility of throwing more than one exception. Of course, by not specifying
anything about what happens outside the precondition, as we do here, we avoid this
danger altogether.
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throw exceptions that are very hard – if not impossible – to rule out with
a simple precondition. Such methods are specified using behavior instead of
normal_behavior. A typical example is the specification for arrayCopy in the
class Util.

Example 2 The method arrayCopy copies part of one array into another
array. Like arrayCompare it can throw a NullPointer- or ArrayIndexOut-

OfBoundsException. But it can also throw a TransactionException, namely
when the commit capacity (the maximum number of bytes of persistent data
which can be modified during a card transaction) is exceeded. A JML specifi-
cation is given below:

public static native short arrayCopy(byte[] src,

short srcOff,

byte[] dest,

short destOff,

short length)

throws ArrayIndexOutOfBoundsException,

NullPointerException, TransactionException;

/*@ public_behavior

@ requires: src != null && dest != null &&

@ srcOff >= 0 && destOff >= 0 && length >= 0 &&

@ srcOff + length <= src.length &&

@ destOff + length <= dest.length ;

@ modifiable: dest[destOff..destOff+length-1];

@ ensures: true;

@ signals: (TransactionException) true;

@*/

Some points to note about this specification:

• Again, the postcondition is true, so the specification does not describe any
functionality. And again, it is easy to see that the formal JML specification
of arrayCopy above captures part of its informal specification given in the
JavaCard API documentation.

• The precondition does not rule out all run-time exceptions, as it leaves open
the possibility that a TransactionException is thrown. One could try to
strengthen the precondition to exclude this possibility, but that would be much
harder. Unlike a NullPointer- or ArrayIndexOutOfBoundsException, a
TransactionException is not due to an obvious mistake by the client in-
voking this method.

A TransactionException is thrown when the space in the commit buffer
is exhausted. In this buffer the JCRE (JavaCard Runtime Environment)
retains the original contents of updated values until a transaction is com-
mitted, to support the rollback of a transaction in case of power loss. One
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could consider giving a second specification of arrayCopy, in addition to the
one above, that states that no TransactionException is thrown if some
(stronger) precondition, guaranteeing the availability of sufficient space in
the commit buffer, is met. Such a specification would make it possible to
prove the absence of TransactionExceptions in applets, assuming a cer-
tain minimal size of the commit buffer.

Specifications similar to those of arrayCompare and arrayCopy above have
been written for all the methods in the JavaCard API. All these specifications
express basic preconditions that rule out unwanted run-time exceptions. More
examples are discussed in [18]. In some respects these very basic specifications
are already more precise than the existing informal specifications. The pre-
cise listing of all possible run-time exceptions that may occur often includes
exceptions that are not declared in the code or mentioned in the informal
specifications. For example, any method that invokes arrayCopy may throw
a TransactionException, something which is typically not mentioned in the
existing informal specifications.

4 The APDU class: public interface specification

For most methods the JML specification is a straightforward translation of
(parts of) its informal specifications into JML. For the APDU class however
this is not the case.

The APDU class, the largest class in the JavaCard API, handles the commu-
nication between applets and the card terminal, or CAD (card acceptance
device). The implementation of the APDU class communicates with the card
terminal using the ISO7816 protocol, but it hides much of the complexity of
this protocol. In particular, as many differences as possible between the T=0
and T=1 variants of ISO7816 are hidden.

Applets receive an APDU object as parameter of their process method. Using
methods such as

public static short getInBlockSize()

public static short getOutBlockSize()

public static byte getProtocol()

the applet can get relevant information about the protocol implemented by the
APDU class. The applet can communicate with the card terminal by invoking
the following methods on an APDU object:

public short setIncomingAndReceive()
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public short receiveBytes(short bOff)

public short setOutgoing()

public short setOutgoingNoChaining()

public void setOutgoingLength(short len)

public void sendBytes(short bOff, short len)

public void setOutgoingAndSend(short bOff, short len)

These methods are meant to be invoked in a particular order. The specifi-
cation of this invocation order is the only aspect in which our formal JML
specifications are quite different in style from the informal specifications.

The informal API specifications give many constraints of the form “method
X should only/should not be invoked if method Y has previously been in-
voked”. For example, the informal specification of the method receiveBytes

states that an APDUException will be thrown “if setIncomingAndReceive()
not called or if setOutgoing() or setOutgoingNoChaining() previously in-
voked”. Our formal JML specifications use a finite state machine (or state
transition diagram) to specify these constraints. Considering all the constraints
listed in the informal specifications leads to the finite state machine given in
Figure 1. 2 We believe that such a diagram is much clearer and easier to

765401231
setIncomingAndReceive //

ε

��

765401232

receiveBytes
��

ε

xx

765401233
setOutgoingLength //765401234

sendBytes
��

/.-,()*+ setOutgoing

22eeeeeeeeeeeeeeeeeeeee
setOutgoingNoChaining

,,YYYYYYYYYYYYYYYYYYYYY

setOutgoingAndSend

..

765401235
setOutgoingLength //765401236

sendBytes
��

765401237

Figure 1. The APDU protocol

understand than a collection of constraints of the form “method X should
only/should not be invoked if method Y has previously been invoked”. A

2 The transitions labelled with ε instead of a method name can be taken without
invoking a method. E.g. setOutgoing can be invoked in state 1 or 2. These ε
transitions only serve to make the diagram easier to understand.
To keep the specification simple enough to treat in detail here, we make the minor
simplification of ignoring the possibility that sendBytes throws an APDUException
with reason NO T0 GETRESPONSE; including this would require an additional error
state, reachable by sendBytes. We also ignore the method sendBytesLong, whose
specification is almost identical to that of sendBytes.
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further advantage is that it is easy to formalise in JML. To express the con-
straints on the invocation order given by Figure 1 in JML we introduce a
model variable _APDU_state

//@ public model int _APDU_state;

//@ public invariant: 1 <= _APDU_state && _APDU_state <= 7;

and include propositions about the value _APDU_state in pre- and postcondi-
tions, e.g.

public short setIncomingAndReceive()

/*@ public_behavior

@ requires: _APDU_state == 1 && ... ;

@ ensures: _APDU_state == 2 && ... ;

@*/

When an applet receives an APDU as parameter of its process method this
APDU should be in state 1, so the precondition of process will include

public abstract void process(APDU apdu)

/*@ public_behavior

@ requires: apdu != null && apdu._APDU_state == 1 && ...

@ ...

@*/

This ”forces” the applet to invoke methods on apdu in a correct order. Note
that there are no public methods to restore an APDU to its initial state 1.
This is the task of the JCRE and of no concern to clients of the API. Indeed,
it is important that clients should not be able to do this.

Figure 1 does not tell the whole story. An additional constraint is that the
number of response bytes sent using the method sendBytes should be equal to
the length passed as argument to setOutgoingLength. Specifying this requires
another model variable:

//@ public model int _Lr;

The variable _Lr will record the remaining response length. Not surprisingly,
the method setOutgoingLength(len) will set _Lr to len:

public void setOutgoingLength(short len) throws APDUException;

/*@ public_behavior

@ requires: ...

@ ensures: _Lr == len && ...

@*/
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and the method sendBytes will decrease the value of _Lr with len; sendBytes
should not be called with len greater than the remaining response length _Lr:

public void sendBytes(short bOff, short len)

/*@ public_behavior

@ requires: 0 <= len && len <= _Lr && ...

@ ensures: _Lr == \old(_Lr)-len && ...

@*/

The postcondition above uses the JML syntax \old(_Lr) to refer to the “old”
value _Lr, i.e. the value _Lr at the beginning of the method invocation. The
informal specification does not say whether or not invocations of sendBytes
with len equal to 0 are allowed. The reference implementation does allow it,
so we have chosen the specification above to allow it.

A final aspect of the specifications of the APDU methods is that an APDU ob-
ject contains an array buffer that is used for storing the bytes that have
been received or that are to be sent, and methods for receiving and sending
bytes should take care to respect the buffer bounds. For example, the method
sendBytes(short bOff, short len) sends len bytes starting at offset bOff
in buffer to the card terminal; its precondition should include 0 <= bOff &&

bOff+len <= BUFFERSIZE.

Combining all the aspects discussed above leads to the formal specifications
given below. In these specifications the JML keyword \result is used to refer
to the result of a method, and some informal comments are given in JML
specifications by including them between (* and *). Despite the preconditions
all methods below can still throw APDUExceptions, e.g. if communication with
the card terminal fails.

public short setIncomingAndReceive() throws APDUException

/*@ public_behavior

@ requires: _APDU_state == 1;

@ modifiable: _APDU_state, buffer[5..5+\result-1];

@ ensures: _APDU_state == 2 &&

@ (* data received in buffer[5..5+\result-1] *);

@ signals: (APDUException) true;

@*/

public short receiveBytes(short bOff) throws APDUException

/*@ public_behavior

@ requires: _APDU_state == 2 && 0 <= bOff &&

@ bOff+getInBlockSize() <= BUFFERSIZE;

@ modifiable: _APDU_state, buffer[bOff..bOff+\result-1];

@ ensures: _APDU_state == 2 && 0 <= \result &&
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@ bOff+\result <= BUFFERSIZE &&

@ (* data received in

@ buffer[bOff..bOff+\result-1] *);

@ signals: (APDUException) true;

@*/

public short setOutgoing() throws APDUException

/*@ public_behavior

@ requires: _APDU_state == 1 || _APDU_state == 2

@ modifiable: _APDU_state;

@ ensures: _APDU_state == 3;

@ signals: (APDUException) true;

@*/

public void setOutgoingLength(short len) throws APDUException

/*@ public_behavior

@ requires: (_APDU_state == 3 && 0 <= len && len <= 256)

@ || (_APDU_state == 5 &&

@ 0 <= len && len <= getOutBlockSize()-2);

@ modifiable: _APDU_state, _Lr;

@ ensures: _APDU_state == \old(_APDU_state)+1 &&

@ _Lr == len;

@ signals: (APDUException) true;

@*/

public void sendBytes(short bOff, short len)

throws APDUException

/*@ public_behavior

@ requires: (_APDU_state == 4 || _APDU_state == 6) &&

@ 0 <= len && len <= _Lr &&

@ bOff + len <= BUFFERSIZE;

@ modifiable: _Lr;

@ ensures: _APDU_state == \old(_APDU_state) &&

@ _Lr == \old(_Lr)-len &&

@ (* buffer[bOff..bOff+length-1] sent *);

@ signals: (APDUException) true;

@*/

public void setOutgoingAndSend(short bOff, short len)

throws APDUException

/*@ public_behavior

@ requires: (_APDU_state == 1 || _APDU_state == 2) &&

@ 0 <= bOff && bOff + len <= BUFFERSIZE;

@ modifiable: _APDU_state,_Lr;

@ ensures: _APDU_state == 7 && _Lr == 0 &&
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@ (* buffer[bOff..bOff+length-1] sent *);

@ signals: (APDUException) true;

@*/

The specifications above can be more precise by stating the possible reasons of
any APDUExceptions that are thrown. For example, if receiveBytes throws
an APDUException, then this is because of an IO_ERROR or a T1_IFD_ABORT,
so we can specify:

public short receiveBytes(short bOff) throws APDUException;

/*@ public_behavior

@ ...

@ signals: (APDUException e)

@ e.getReason() == APDUException.IO_ERROR

@ || e.getReason() == APDUException.T1_IFD_ABORT;

@*/

One could be more precise still and specify that an APDUException with reason
T1_IFD_ABORT can only be thrown if the APDU implements the T=1 variant of
ISO7816, i.e. if getProtocol() == PROTOCOL_T1.

The specifications above do not say anything about the behaviour of the meth-
ods outside the given preconditions. The specifications could be made more
precise by including specifications of the behaviour of the methods outside the
preconditions. For example, the informal specification of receiveBytes states
that and APDUException may be thrown with the reason codes ILLEGAL_USE,
BUFFER_BOUNDS, IO_ERROR or T1_IFD_ABORT. So, the specification of receive-
Bytes could be extended with

/*@ also

@ public_behavior

@ requires: true;

@ ensures: true;

@ signals: (APDUException e)

@ (_APDU_state != 2

@ && e.getReason() == APDUException.ILLEGAL_USE )

@ || ( (bOff < 0 || bOff+getInBlockSize() > BUFFERSIZE)

@ && e.getReason() == APDUException.BUFFER_BOUNDS)

@ || e.getReason() == APDUException.IO_ERROR

@ || e.getReason() == APDUException.T1_IFD_ABORT;

@*/

This additional specification constrains the possible behaviour of receiveBytes
outside the precondition given earlier. Note that this additional specification is
not really of interest to the programmer of well-behaved applets. In well-coded
applets invocations of receiveBytes should never cause an APDUException
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with reason ILLEGAL_USE or BUFFER_BOUNDS. Still, for someone implementing
the API it is relevant to know how to react to ill-behaved applets. Since JML
specifications for a class can be distributed over several files, it would make
sense to collect specifications that are not of interest to an applet developer
but that are only of interest to an API implementor, such as the one above,
in a separate file.

5 The APDU class: implementation

To prove that a particular API implementation meets the specification above,
the model variables used in the specification need to be related to some fields
or methods that are present in the implementation.

The reference implementation of the APDU class uses five booleans flags to
record whether or not certain methods have been invoked:

private boolean getIncomingFlag()

private boolean getSendInProgressFlag()

private boolean getOutgoingFlag()

private boolean getOutgoingLenSetFlag()

private boolean getNoChainingFlag()

Together, these flags record the _APDU_state of an APDU object. The relation
between these flags and the _APDU_state can be expressed by invariants, such
as

/*@ private invariant:

@ _APDU_state == 3

@ <==>

@ getOutgoingFlag() && !getNoChainingFlag()

@ && !getOutgoingLenSetFlag();

@*/

Note that this invariant is private, as it is of no concern to clients of the APDU

class.

Trying to establish the relation between the flags and the _APDU_state it turns
out that the reference implementation does not distinguish between the states
4 and 7. This is hardly surprising, given that setOutgoingAndSend(bOff,len)
is implemented as

setOutgoing(); setOutgoingLength(len); sendBytes(bOff, len).
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in the reference implementation. The best invariant one can find is

/*@ private invariant:

@ _APDU_state == 4 || _APDU_state == 7

@ <==>

@ getOutgoingFlag() && !getNoChainingFlag()

@ && getOutgoingLenSetFlag();

@*/

All this means that the statement in the informal specification that “sendBytes
throws an APDUException if setOutgoingAndSend has been previously in-
voked” is not quite true for the reference implementation: following an invo-
cation of setOutgoingAndSend with invocation of sendBytes will not always
throw an APDUException. However, after invoking of setOutgoingAndSend

the value of Lr will be zero, so, by the precondition of sendBytes, we can
only invoke sendBytes without throwing an APDUException if the second
argument is equal to zero, and such invocations are completely harmless.

Relating the model variable _Lr to the implementation is much simpler than
_ADPU_state, as the implementation includes a method getLr() which re-
turns exactly _Lr:

//@ private invariant: getLr() == _Lr ;

We could have chosen to specify the public interface of APDU in terms of boolean
flags as actually used in the reference implementation, which would have made
it easier to relate the reference implementation and the specification. We have
chosen not to do this because we believe that a specification of the correct
invocation sequences with a diagram like Figure 1 is much easier to understand
than a specification involving several boolean flags, and that in such a diagram
one is much less likely to make mistakes.

We should stress that so far we have not attempted formal verification (i.e. us-
ing theorem provers) of the APDU implementation, but just trying to convince
ourselves that the reference implementation meets our JML specifications al-
ready raised some interesting questions. For example, the reference imple-
mentation of the method setOutgoingAndSend invokes sendBytes, so, like
sendBytes, it can throw an APDUException with reason NO_T0_GETRESPONSE

or T1_IFD_ABORT. This is something the informal specification fails to men-
tion. Another example is that the reference implementation of the method
receiveBytes throws an APDUException with reason BUFFER_BOUNDS when
bOff + getInBlockSize() >= BUFFERSIZE, whereas one would expect this
exception to be thrown only when bOff + getInBlockSize() > BUFFERSIZE.

16



6 Conclusion

Despite the fact that our formal specifications of the JavaCard API are in-
complete, we believe they provide a useful documentation to complement the
existing informal specifications, included as appendix in [4] and available as
Javadoc-generated HTML from Sun’s website [9].

Some properties expressed by the JML annotations cannot be found in the
informal specification. In these cases the JML specification of the JavaCard
API is more informative than the informal specification and even the source
code of the reference implementation. For instance, our JML specifications
state precisely for every method which exceptions it may throw at run-time.
This information is useful in preventing uncaught exceptions, a common source
of failures. Furthermore, the JML invariants make explicit many considerations
and assumptions that are implicit in the design, and which are relied upon for
the correctness of the code.

For properties expressed by the JML annotations that can be found in the
informal specifications, using a formal specification language has the advan-
tage of leaving no room for ambiguity. For example, the requirement bOff +

getInBlockSize() <= BUFFERSIZE in the JML specification of receiveBytes
corresponds exactly to the expression “enough buffer space for incoming block
size” in the informal specification, but is of course more precise.

Writing our formal JML specifications for the JavaCard API has not been
very difficult. Writing JML annotations while developing the code, instead of
afterwards as we have done, would require less effort still. In particular, the
discovery of invariants that are maintained is often a rediscovery of design
ideas and decisions that have gone into the existing implementation. Here
the JML specifications expose some of the thoughts and considerations that
have gone into the design of the API. All JML annotations should be easy
to understand for any Java programmer, assuming some basic knowledge of
formal methods. Indeed, one of the design goals of JML is that it should be
readily understandable for Java programmers.

Using a formal specification language rather than informal English makes it
possible to provide tool support. Several tools are being developed for JML
(see also [12]):

• At Iowa State University, tools are being developed for generating Javadoc-
like HTML from JML specifications, and for generating code that includes
run-time checks of preconditions and invariants. As in Eiffel [15], code with
such run-time checks helps in debugging. While useful in the development
and testing phase, leaving run-time checks in the final JavaCard source code
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of an applet or API implementation is probably undesirable, for reasons of
efficiency and size. 3

• The extended static checker ESC/Java [5], developed at Compaq System
Research Center, does not check JML assertions at run-time, but tries to
check them at compile-time. This tool can automatically check for certain
kinds of common errors in Java(Card) code, such as dereferencing null or
indexing an array outside its bounds. The extended static checker should
be a useful tool in the development of both applets and API implemen-
tations, pointing out some violations of preconditions and invariants fully
automatically, at the push of a button.
• Of course one cannot expect arbitrarily complex properties to be checked

fully automatically by ESC/Java, but one can try proving these interac-
tively using the LOOP tool being developed at the University of Nijmegen.
The LOOP tool translates JML-annotated code into proof obligations for
theorem provers such as PVS or Isabelle. This approach is more labour-
intensive, but for vital properties of JavaCard API implementations and
applets the effort may well be justified. The first – very modest – steps to
verify JML-annotated JavaCard code formally using the LOOP tool and
the theorem prover PVS are reported in [3].

More examples of JML specifications for the JavaCard API are discussed in
[18]. All JML specifications for the JavaCard API will be made available on our
webpages [14]. We hope this will be a useful service to the JavaCard commu-
nity, providing a useful addition to the existing documentation of the JavaCard
API, and bringing to light ambiguities in the existing informal specifications.
Future work will focus on developing more detailed JML specifications of the
JavaCard API, and using these as the basis for formal verification of source
code – both of applets and API implementations – using the LOOP tool.
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