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With cyber security becoming a growing concern, it has naturally attracted
the attention of researchers in formal methods. One recent success story here is
TLS: the development of the new TLS 1.3 specification has gone hand-in-hand
with efforts to verify security properties of formal models [5] and the development
of a fully verified implementation [3]. Earlier well-known success stories in using
formal methods for security are the verifications of operating system kernels or
hypervisors, namely seL4 [7] and Microsoft’s Hyper-V [10].

These examples – security protocols and OS kernels – are applications whose
primary purpose is to provide security. It is natural to apply formal methods to
such systems: they are by their very nature security-critical and they provide
some security functionality that we can try to specify and verify.

However, we want all our systems to be secure, not just these security sys-
tems. There is an important difference between secure functionality and security
functionality, or – given that most functionality and most security problems are
down to software – between software security and security software [11]. Many,
if not most, security problems arise in systems that have no specific security
objective, say PDF viewers or video players, but which can still be hacked to
provide attackers with unwanted functionality they can abuse.

Using formal methods to prove security is probably not on the cards of some-
thing as complex as a PDF viewer or video player. Just defining what it would
mean for such a system to be secure is probably already infeasible. Still, formal
methods can be useful, to prove the absence of certain types of security flaws
or simply find security flaws. Successes here have been in the use of static anal-
ysis in source code analysers, e.g. tools like Fortify SCA that look for flaws in
web applications and tools like Coverity that look for memory vulnerabilities
in C(++) code. Another successful application of formal methods is the use of
symbolic (or concolic) execution to generate test cases for security testing, as
in SAGE [6] or, going one step further, not just automatically finding flaws but
also automatically generating exploits, as in angr [16].

Downside of these approaches is that they are post-hoc and can only look
for flaws in existing code. The LangSec paradigm [9, 4], on the other hand, pro-
vides ideas on how to prevent many security problems by construction. Key
insights are that most security flaws occur in input handling and that there are
several root causes in play here. Firstly, the input languages involved (e.g. file
formats and network protocols) are complex, very expressive, and poorly, infor-
mally, specified. Secondly, there are many of these input languages, sometimes
nested or stacked. Finally, parsers for these languages are typically hand-written,
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with parsing code scattered throughout the application code in so-called shotgun
parsers [12]. With clearer, formal specifications of input languages and generated
parser code much security misery could be avoided. (Recent initiatives in tools
for parser generation here include Hammer [1] and Nail [2].) Given that formal
languages and parser generation are some of the most basic and established for-
mal methods around, it is a bit of an embarrassment to us as formal methods
community that sloppy language specifications and hand-coded parsers should
cause so many security problems.

Some security flaws in input handling are not so much caused by buggy pars-
ing of inputs, but rather by the unexpected parsing of input [13]. Classic examples
of this are command injection, SQL injection, and Cross-Site Scripting (XSS).
Tell-tale sign that unwanted parsing of input may be happening in unexpected
places is the heavy use of strings as data types [14].

Information or data flow analysis can be used to detect such flaws; indeed, this
is a standard technique used in the source code analysis tools mentioned above.
These flaws can also be prevented by construction, namely by using type systems.
A recent example of this is the Trusted Types browser API [8] by Google, where
different types are used to track different kinds of data and different trust level
of data to prevent XSS vulnerabilities, esp. the DOM-based XSS vulnerabilities
that have proved so difficult to root out.

To conclude, formal methods cannot only be used to prove security of security-
critical applications and components – i.e. the security software –, but they can
be much more widely used to improve security by ruling out of the root causes
behind security flaws in input handling, and do so by construction, and hence
improve software security in general. Moreover, some very basic and lightweight
formal methods can be used for this: methods that we teach – or should be
teaching – our students in the first years of their Bachelor degree, such as regu-
lar expressions, finite state machines, grammars, and types. Indeed, in my own
research I have been surprised to see how useful the simple notion of finite state
machine for describing input sequences is to discover security flaws [15].

That we have not been able to get these basic techniques into common use
does not say much for our success in transferring formal methods to software en-
gineering practice. Still, looking at the bright side, it does suggest opportunities
for improvement.
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