
(Some) security by construction
through a LangSec approach

Erik Poll

Digital Security group, Radboud University Nijmegen, The Netherlands
erikpoll@cs.ru.nl

This talk discusses some good and bad experiences in applying formal meth-
ods to security and sketches directions for using formal methods to improve
security using insights from the LangSec (language-based security) paradigm.

On the face of it, security looks like a promising application area for formal
methods. Cyber security is a huge and still growing concern. It is widely recog-
nized that security should be addressed throughout the software development life
cycle, ideally by practising so-called Security-by-Design, and not bolted on later
as an afterthought; this means that formal methods for security could be applied
at any stage of the software development life cycle, from the earliest stages of
requirements engineering to the final stages such as pen-testing or patching.

Still, all this is easier said than done. Security requirements can be tricky to
formalise – or even to spot at all – and it can be difficult to say what it means for
an application to be secure. It is often easier to say what may make an application
insecure, as is done by lists of standard security flaws such as the OWASP
Top Ten1 or the CWE/SANS Top 252. Such lists are very useful, but always
incomplete, and lend themselves more naturally to testing for certain types of
security flaws post-hoc than to guaranteeing their absence by construction.

A more constructive approach to security can be taken by realising that
security problems typically arise in interactions and exploit the languages used
in these interactions. The most obvious example is the interaction between an
attacker and a system, where the attacker tries to abuse the interface the system
exposes. This interface can be a network protocol, but it may also involve a
file format, say JPEG, or a language such as HTML. Security problems can
also arise in the interaction between two applications (or an application and an
external service) even if neither of them is malicious. Classic examples here are
the interaction between a web application and its back-end database, where SQL
injection becomes a worry, or the interaction between a web application and the
browser, where XSS becomes a worry.

The LangSec paradigm3 highlights the central role played by the languages
used for these interactions – e.g. file formats, protocols, or query languages – in
causing security problems. Root causes of security problems identified are: the
large number of these languages, their complexity, their expressivity, the lack of
clear specifications, and finally the fact that parsers to process these languages
are hand-written, and often mix parsing and processing of inputs.

1 https://www.owasp.org/index.php/Category:OWASP Top Ten Project
2 https://cwe.mitre.org/top25/
3 See http://langsec.org, esp. http://langsec.org/bof-handout.pdf, or [5].



This also provides a clear way forward in using formal methods to improve
security, namely by providing formal descriptions of the input languages involved
and using these descriptions to generate parser code, thus getting at least some
security by construction. Ironically, formalisms for describing languages are some
of the best-known and most basic formal methods around, and parsing is one
of the oldest and best understood parts of computer science, with plenty of
tools for generating code. So it is a bit of an embarrassment to the computer
science community that this is where modern IT screws up so badly, with so
many security flaws. In addition to parsers, one would also like to generate
unparsers (aka pretty-printers or serialisers), as interactions between systems
typically involve an unparser at one end and a parser at the other end. Recent
initiatives here include Hammer [2] and Nail [1]. Formal descriptions of input
languages can also be used for testing, in test generation or as test oracles.

Even if we get rid of all (un)parser bugs, there remains the risk of uninten-
tionally parsing some inputs [7], especially inputs coming from sources that an
attacker can control. Here formal methods can also help, with data flow analysis
to trace where data comes from and/or where it might end up. Ideally, such data
flows can then be controlled by a type system, where different types explicitly
distinguish the various languages that the application handles (e.g. to avoid the
chance of accidentally processing a user name or a fragment of HTML as an SQL
statement), the various trust levels associated with different input channels (e.g.
to distinguish tainted inputs from untainted data), or both. As these types can
be application-specific, it is natural to use extensible type systems for this, e.g.
using type qualifiers [4] or type annotations [3], or to turn to domain-specific
languages [6].

References

1. J. Bangert and N. Zeldovich. Nail: A practical interface generator for data formats.
In Security and Privacy Workshops (SPW), 2014, pages 158–166. IEEE, 2014.

2. S. Bratus, A.J. Crain, S.M. Hallberg, D.P. Hirsch, M.L. Patterson, M. Koo, and
S.W. Smith. Implementing a vertically hardened DNP3 control stack for power
applications. In Industrial Control System Security Workshop (ICSS’16), pages 45–
53. ACM, 2016.

3. W. Dietl, S. Dietzel, M.D. Ernst, K. Muşlu, and T.W. Schiller. Building and using
pluggable type-checkers. In ICSE’11, pages 681–690. ACM, 2011.

4. J.S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. In PLDI’02,
volume 37 of SIGPLAN Notices, pages 1–12. ACM, 2002.

5. F. Momot, S. Bratus, S.M. Hallberg, and M.L. Patterson. The seven turrets of
Babel: A taxonomy of LangSec errors and how to expunge them. In Cybersecurity
Development (SecDev), pages 45–52. IEEE, 2016.

6. C. Omar, D. Kurilova, L. Nistor, B. Chung, A. Potanin, and J. Aldrich. Safely
composable type-specific languages. In ECOOP’14, volume 8586 of LNCS, pages
105–130. Springer, 2014.

7. E. Poll. LangSec revisited: input security flaws of the second kind. In Symposium
on Security and Privacy Workshops (SPW). IEEE, 2018.


