Type-based Object Immutability with Flexible
Initialization

Christian Haack!?* and Erik Poll!*

2

I Radboud University, Nijmegen aicas GmbH, Karlsruhe

Abstract. We present a type system for checking object immutability, read-only
references, and class immutability in an open or closed world. To allow object
initialization outside object constructors (which is often needed in practice), im-
mutable objects are initialized in lexically scoped regions. The system is simple
and direct; its only type qualifiers specify immutability properties. No auxiliary
annotations, e.g., ownership types, are needed, yet good support for deep im-
mutability is provided. To express object confinement, as required for class im-
mutability in an open world, we use qualifier polymorphism. The system has
two versions: one with explicit specification commands that delimit the object
initialization phase, and one where such commands are implicit and inferred. In
the latter version, all annotations are compatible with Java’s extended annotation
syntax, as proposed in JSR 308.

1 Introduction
1.1 Motivation

Immutable data structures greatly simplify programming, program maintenance, and
reasoning about programs. Immutable structures can be freely shared, even between
concurrent threads and with untrusted code, without the need to worry about modifica-
tions, even temporary ones, that could result in inconsistent states or broken invariants.
In a nutshell, immutable data structures are simple. It is therefore not surprising that
favoring immutability is a recommended coding practice for Java [3]].

Unfortunately, statically checking object immutability in Java-like languages is not
easy, unless one settles for supporting only a restricted programming style that can
be enforced through final fields. Clearly, objects are immutable if all their fields are
final and of primitive type. Additionally, one can allow final fields of immutable
types, this way supporting immutable recursive data structures. Thus, Java’s final
fields support a style of programming immutable objects that mimics datatypes in func-
tional languages and is advocated, for instance, by Felleisen and Friedman [[15].

Many immutable objects, however, do not follow this style. A prominent example
are Java’s immutable strings. An immutable string is a wrapper around a character ar-
ray. While final fields can prevent that a string’s internal character array is replaced by
another character array, final fields cannot prevent that the array elements themselves
are mutated. Moreover, Java’s type system provides no means for preventing represen-
tation exposure of the character array, which would allow indirect mutation of a string
through aliases to its (supposedly) internal character array. Preventing this, not just for

* Supported by IST-FET-2005-015905 Mobius project.

arrays but for any internal mutable data structures, requires a richer type system with
support for object confinement.

It is also quite common to have immutable data structures that are not instances of
immutable classes. Examples include immutable arrays, immutable collections that are
implemented in terms of Java’s mutable collection classes (but are never mutated after
initialization), and immutable cyclic data structures, e.g., doubly linked lists, graphs or
trees with parent references. Concrete examples are given on pages and Figure

This article presents the design of a pluggable type system for Java to specify and
statically check various immutability properties. A pluggable type checker operates on
Java’s abstract syntax trees and is optionally invoked after the standard type checker,
to ensure additional properties. A pluggable checker for object immutability guarantees
that immutable objects never mutate.

Syntactically, our immutability type system can be handled with Java’s extended
annotation syntax as proposed by JSR 308 [19], to be included in Java 7, which al-
lows annotations on all occurrences of types. While in this paper we slightly deviate
from legal annotation syntax (for explanatory reasons), all proposed annotations are in
syntactic positions allowed by JSR 308.

1.2 Kinds of Immutability

The following classification of immutability properties has been used in various places
in the literature [34)22]:

— Object immutability: An object is immutable if its state cannot be modified.

— Class immutability: A class is immutable if all its instances in all programs are
immutable objects.

— Read-only references: A reference is read-only if the state of the object it refers to
cannot be modified through this reference.

Examples of immutable classes are Java’s String class and the wrapper classes for
primitive types, e.g., Integer and Boolean. All instances of immutable classes are
immutable objects.

Conversely, immutable objects need not be instances of immutable classes. For ex-
ample, immutable arrays are not instances of an immutable class, and neither are im-
mutable collections that are implemented in terms of Java’s mutable collection libraries.
Immutable objects that are not instances of immutable classes typically have public,
non-final fields or public mutator methods, but the pluggable type system disallows
assignments to these fields and calls to these methods.

An example for a read-only reference is the reference created by Java’s static method
Collection unmodifiableCollection(Collection c), which generates a wrap-
per around collection c. This wrapper refers to ¢ through a read-only reference.

For class immutability, we further distinguish between an open and a closed world
[25]):

— Class immutability in a closed world assumes that all program components follow
the rules of the pluggable type system.

— Class immutability in an open world assumes that immutable classes and the classes
they depend on follow the rules of the pluggable type system, but clients of im-
mutable classes are unchecked (i.e., they only follow Java’s standard typing rules).

Unchecked class clients may for instance be untrusted applets. Note that the closed
world assumption only makes sense if all code is checked with the additional type
rules. Java’s classes String, Integer and Boolean are immutable in an open world.
For class immutability in an open world it is essential that instances of immutable
classes encapsulate their representation objects. Open-world-immutable classes nec-
essarily have to initialize their instances inside constructors or factory methods, and
they should not provide accessible mutator methods or fields. Note also that, in an open
world, object immutability without class immutability can only be achieved for objects
that are never exposed to unchecked clients, because unchecked clients cannot be pre-
vented from calling mutator methods or assigning to accessible fields if these exist.
Similarly, in an open world, read-only references can only be achieved for references
that are never exposed to unchecked clients.

1.3 Specifying Immutability with Type Qualifiers

Following our earlier work [18]], we support the distinction between mutable and im-
mutable objects through access qualifiers on types:

Access qualifiers:
p,q = RdAWr read-write access (default)
Rd read-only access

Types:
T == ¢qC C-object with g-access
C € Classld class identifiers

Objects of type Rd C are called Rd-objects, and have immutable fields. Our type system
is designed to guarantee the following soundness property (see Theorem [2):
Well-typed programs never write to fields of Rd-objects.

For instance, the method bad () attempts an illegal write to a Rd-object and is forbidden
by our type system. On the other hand, good () legally writes to a RdWr-object:

class C { int f; }

static void bad(Rd C x) { static void good(RdWr C x) {
x.f = 42; // TYPE ERROR x.f = 42; // OK

} }

An additional type qualifier, Any, represents the least upper bound of Rd and RdWr:

pq = e .
Any “either Rd or RAWr™ Subtyping:
Subqualifying: pr<tq C<:D
pC<:qD

Rd <: Any RdWr <: Any

A reference of a type Any C may refer to a Rd-object or a RdWr-object, so writes through
Any-references are forbidden. Beware of the difference between Rd and Any. A refer-
ence of type Any C is a read-only reference, meaning you cannot write to the object
through this particular reference. A reference of type Rd C is a reference to a read-only
object, i.e. to an object that nobody has write-access to

'IGJ [34] uses the same three qualifiers, calling them @Mutable, @Immutable, and @ReadOnly
instead of Rd, RdWr and Any.

The following example shows how Any-references can be useful. The method m ()
creates a RdWr-array and then applies the method foo () to the array. From the type of
foo() we can tell that foo () does not mutate the array:

interface Util { static void m(Util util) {
void foo(int Any []1 a); int[] a = new int RdWr [] {42,43,44};
} util.foo(a);

assert al[0] == 42;
}
In this example, we assume a closed world. In an open world, where there may be

unchecked classes that do not play by the additional rules our type system imposes,
there is still the possibility that foo () writes a to some heap location of type Any, so
that unchecked class could modify a[0] concurrently. Preventing foo () from writing
its parameter to the heap can be achieved by a more general method type that uses
qualifier polymorphism, as will be discussed in Section[2.3]

1.4 Flexible Object Initialization With Stack-local Regions

A common problem of type systems for object immutability [4}18l34/22]] and for non-
nullness (more generally, object invariants) [13/14428] is object initialization. Whereas
in traditional type systems, values have the same types throughout program execution,
this is not quite true for these systems. Type systems for non-nullness face the difficulty
that all fields are initially null; type systems for object immutability face the difficulty
that even immutable objects mutate while being initialized. In these systems, each ob-
ject starts out in an uninitialized state and only obtains its true type at the end of its
initialization phase. Thus, objects go through a typestate transition from “uninitialized”
to “initialized”.

Object initialization is often the most complicated aspect of otherwise simple type
systems, see for instance Fihndrich and Leino’s non-nullness type system [[13]]. Some of
the above type systems require that initialization takes place inside object constructors
[[13118l34]. Unfortunately, this does not really simplify matters because object construc-
tors in Java-like languages can contain arbitrary code (which may, for instance, leak
self-references or call dynamically dispatched methods). Moreover, initialization inside
constructors is often too restrictive in practice. For instance, cyclic data structures often
get initialized outside constructors, and array objects do not even have constructors.

One contribution of this paper is a simple but flexible object initialization technique
for immutability, using stack-local memory regions. Object initialization with stack-
local regions supports a programming style that is natural for programmers in main-
stream OO languages. In particular, programmers do not have to mimic destructive
reads, as required by type systems where object initialization is based on unique refer-
ences [4122]). Statically checking object initialization with stack-local regions is simple,
as it does not require tracking aliasing on the heap, which is needed in more general
typestate-like systems based on static capabilities [10429U6411U51702]. In order to facil-
itate modular static checking, these systems use additional program annotations in the
form of constraints, effects, or pre/postconditions. Our system, on the other hand, only
uses standard type annotations, largely hiding the typestate change from “uninitialized”

2 Following JSR 308 syntax, the qualifier of an array type C[] is written before the [].

to “initialized” from programmers. To this end, we have designed an inference algo-
rithm that automatically infers the end of object initialization phases (see Section [3.4).

1.5 Object Confinement with Qualifier-polymorphic Methods

A type system for class immutability in an open world must enforce several confine-
ment properties [3]]. Specifically, it must guarantee that instances of immutable classes
encapsulate their representation objects and that their object constructors do not leak
self-references. In our earlier paper [18]], we enforced these properties using two type-
based confinement techniques (in addition to the access qualifiers Rd and RdWr), namely
a dedicated ownership type system for enforcing encapsulation of representation ob-
jects, and so-called anonymous methods [32] for confining self-references during ob-
ject construction. Unfortunately, the resulting type system was more complex than one
would desire. One of the insights of this article is that, when combined with flexible
object initialization, the various confinement properties for class immutability can be
expressed in terms of methods that are polymorphic in access qualifiers.

To get an idea how polymorphism helps with confinement, consider the following
qualifier-polymorphic method signature:

<g> void foo(char q []1 arg)

where <g> denotes universal quantification of the qualifier variable q, making the method
polymorphic in g. For a qualifier hierarchy without greatest element, this signature tells
us that foo () does not write its parameter to a heap location, because the type of such
a location would need a single qualifier annotation that is greater than all other quali-
ﬁersr’j This observation can be exploited to confine representation objects of immutable
objects and to confine self-references to constructors of immutable objects.

To support deep immutability we treat the access qualifier as an implicit class pa-
rameter. It is interesting that this single class parameter in combination with qualifier-
polymorphic methods and flexible object initialization suffices for satisfactorily encod-
ing class immutability. In particular, we do not need separate ownership annotations,
because the required confinement properties can be expressed in terms of these primi-
tives, in a similar way as in ownership type systems. Flexible initialization is a crucial
ingredient, as it allows us, for instance, to treat the internal character array of a string
as an immutable object (rather than as a mutable object that is owned by an immutable
one). This would not be possible if object initialization was tied to object constructors,
because then all arrays would necessarily be mutableﬂ As aresult of treating the charac-
ter array inside a string as immutable, our type system can, for instance, easily support
different strings sharing the same, immutable, character array for their representation,
which is often problematic with ownership types.

3 Any is actually not the greatest element of our qualifier hierarchy, but the greatest qualifier for
initialized objects. We still name this qualifier Any (rather than Initialized). Fortunately,
qualifiers for uninitialized objects are inferred and never need to be written by programmers.

4 Supporting immutable arrays initialized by array initializers is not enough for the constructor
String(char[] c) of Java’s String class, because the length of c is not known statically.

1.6 Summary of Contributions

Based on the ideas sketched in this introduction, we have designed a pluggable im-
mutability type system for Java-like languages. The primitives of the type language are
the type qualifiers Rd, RdWr and Any for specifying object access rights. The features of
the system are:

— expressiveness: the system supports object immutability, read-only references, and
class immutability in a closed and open world;

— simplicity and directness: the system only needs the type qualifiers Rd, RdWr and
Any plus qualifier polymorphism; its formal typing rules are simple; annotations are
only required on field types and in method signatures; no annotations are required
inside method bodies;

— flexible initialization: object initialization is not tied to object constructors; while
the type system is necessarily flow-sensitive in order to support object initialization,
it works for concurrency, too, because it enforces that threads only share initialized
objects and because types of initialized objects are persistent.

On the technical side, our contributions are:

— type system formalization and proof of soundness for object immutability: we for-
malize a subset of the type system for a small model language; this subset focuses
on what we believe is the most critical part of the system, namely, the initializa-
tion phase; we prove that the system is sound for object immutability: well-typed
programs never write to Rd-objects;

— a local annotation inference algorithm: we present a local annotation inference
algorithm that automatically infers the end of object initialization phases; we have
formalized this algorithm for our model language and proven it sound.

Outline. The rest of the paper has two parts. Section [2] informally discusses the
type system design. Section [3] contains the technical contributions: it formalizes the
type system for a small model language, presents the annotation inference algorithm,
and states soundness theorems, whose detailed proofs are contained in the appendix
Section] compares to related work and Section [5] concludes.

Acknowledgments. We thank the anonymous ECOOP referees and James Noble for
their careful reviews, and comments and critique that helped improve the paper.

2 Informal Presentation

We carry on with the informal presentation, as started in Section [I.3]

2.1 Access Qualifier as Class Parameter

For aggregate object structures, it is desirable to associate a single access qualifier with
the entire aggregate, especially if the internal structure of the aggregate is hidden from
object clients. In order to support access control for aggregates through single access
qualifiers, we treat the access qualifier as an implicit class parameter. We have already
proposed this in [18] and so has 1GJ [34]. Technically, we introduce a special access
variable myaccess that refers to the access qualifier of this. The scope of this variable
is the entire class body. In particular, the myaccess variable can be used in field types

and signatures of methods and constructors. In the Square class below, myaccess an-
notates the type Point of its fields. Method m() takes an Any-square, so can neither
write to the Point-fields of the square, nor to the int-fields of its points.
class Point { int x; int y; }
class Square { myaccess Point upperleft; myaccess Point lowerright; }
static void m(Any Square s) {
s.upperleft = s.lowerright; // TYPE ERROR

s.upperleft.x = 42; // TYPE ERROR
}

It is also possible to assign a single access right to a cyclic structure. For instance:

class Person { myaccess Person partner; }

class Couple { myaccess Person husband; myaccess Person wife; }

Old-fashioned couples stick with each other forever: they have type Rd Couple. Modern
couples can divorce and the partners can re-marry: they have type RdWr Couple.

The access qualifier is a covariant class parameter. Generally, covariant class pa-
rameters are unsound, because upcasting a class parameter allows ill-typed writes to
fields whose types depend on this class parameter. Here, treating the access qualifier
covariantly is sound, because access qualifiers that permit write-access are minimal
elements of the qualifier hierarchy. Thus, upcasting access qualifiers makes object ref-
erences read-only.

2.2 Flexible Initialization

For sound object initialization, we adapt a technique from region-based memory man-
agement [30], allowing initialization of immutable objects inside stack-local memory
regions (closely related to lexically scoped regions). A stack-local region is a part of the
heap that cannot be reached from the rest of the heap. All references into a stack-local
region are on the stack. Each stack-local region is owned by a method (or a constructor),
namely, the lowest method on the call stack that holds references into this region. All
objects inside a stack-local region have the same special type qualifier. The method that
owns the region (and only this method) is permitted to change this type qualifier to some
other qualifier, uniformly for all objects in the same region. When this typestate change
is performed, the owning method is on the top of the call stack, so all references into the
stack-local region come from local variables of this owning method. This means that all
references into the stack-local region at the time of the typestate change are statically
known: the static type system can easily modify the type qualifiers of these references.

Technically, to support flexible initialization, we add Fresh-qualifiers. These have
a name as an argument, which we call an initialization token.

p,q = e
Fresh(n) fresh object under initialization

n € Name token for initializing a set of related objects

An initialization token can be viewed as an identifier for a stack-local region that con-
tains Fresh(n)-objects. The token n is secret to the method that owns the associated
region and grants permission to commit Fresh(n) to g, for any g. To syntactically
capture this semantics, we introduce two specification commands:

newtokenn create a new initialization token
commit Fresh(n) as ¢ globally convert Fresh(n) to ¢

These are specification commands, i.e., they operate on auxiliary state (“ghost state”)
and have no runtime effect on concrete state or control flow. Our inference algorithm
can infer all specification commands, so they need not be written by the programmer.
In fact, all annotations inside method bodies can be inferred, so that programmers only
have to write qualifiers in field declarations and method signatures. In the examples
below, all inferred annotations are shaded gray.

The following method, for instance, creates an immutable array; it uses the flexible
initialization technique, to initialize the array r outside a constructor.

static char Rd [] copy (char Any [] a) {
newtoken n;
char[] r = new char Fresh(n) [a.length];
for (int i=0; i++; i < a.length) r[i] = alil;
commit Fresh(n) as Rd;
return r;

}

To initialize immutable cyclic data structures, we use the same initialization token for
all members of the structure. Using the flexible initialization technique, we can set
cross-references (here husband and wife) after the constructors have been calledE]

newtoken n;

Person alice = new <Fresh(n)>Person();
Person bob = new <Fresh(n)>Person();
alice.partner = bob; bob.partner = alice;
Couple couple = new <Fresh(n)>Couple();
couple.husband = bob; couple.wife = alice;
commit Fresh(n) as Rd;

Note that field types and method signatures cannot contain Fresh (n) -annotations,
because 7 is out-of-scope in field types and method signatures:

class C {
Fresh(n) D x; // TYPE ERROR: n out of scope

static Rd C commit(Fresh(n) C x) { // TYPE ERROR: n out of scope
commit Fresh(n) as Rd; return x; }

}

Because we do not allow methods that are parametrized by initialization tokens, each
initialization token is confined to a single method. As a result, only the method that
“owns” a Fresh (n) -region can commit it, which is crucial for the soundness of commit.

Figure |1| sketches a runtime configuration before a commit-statement. In this con-
figuration, the heap has three regions: a region of initialized objects, and two Fresh
regions with associated initialization tokens nl and n2. The picture shows possible
inter-region references. Importantly, the type system ensures that there are no incoming
references from the heap into Fresh regions. Furthermore, when the top of the stack

5 person() is a qualifier-polymorphic constructor, hence the angle brackets. See Section

® RdWr-object © ¢ |stack-local region

S stack-local region
®® |Fresh(nl)

O Rd-object . © o |Fresh(n2)
© Any-object o o
@® Fresh(nl)-object Initialized °
@ Fresh(n2)-object heap \
[]

If the method that owns n1 “executes”
commit Fresh(nl) as Rd, then: \

— the n1 region joins the initialized heap P~
— qualifiers of references into the n1 region p
gby local variables of top frame) mustbe ad- | .o
Justed Stack

Fig. 1. Committing the fresh region owned by the top stack frame.

owns region n1, there are no references from the rest of the stack into this region. When
the commit-statement is executed, region n1 is merged with the initialized region. The
type system then has to adjust the qualifiers of all references into region nl. Fortu-
nately, this can be done statically, because all references into this region come from
local variables in its owning method.

2.3 Qualifier Polymorphism for Methods
Consider the following method:

static void copy(Point src, Point dst) {
dst.x = src.x; dst.y = src.y;

}

This method could accept both RdWr-points and Fresh-points as dst-parameters. To
facilitate this, we introduce bounded qualifier polymorphism for methods. The Hasse
diagram in Figure [2.3] depicts the qualifier hierarchy, including qualifier bounds. The
syntax for qualifier-polymorphic methods is as in Java Generics:

<0 extends B> T m(T %) g{...} (method declaration)

We usually omit the qualifier bound Qual, writing <a extends Qual> as <a>. The
qualifier ¢ is associated with the receiver parameter, that is, e.m() can only be called if
e’s access qualifier is a subqualifier of g. Receiver qualifiers are not present in static
methods. For subclassing, method types are treated contravariantly in the qualifiers on
input types (including the receiver qualifier) and covariantly in the qualifier on the out-
put type. These variances are as in GJ [34]. We can now type copy () as follows:

static <a, b extends Writeable> void copy(a Point src, b Point dst) {
dst.x = src.x; dst.y = src.y;

}

Note that Writeable can only be used as a qualifier bound, but not as a qualifier.
Allowing Writeable as qualifier would lead to unsoundness for two reasons: Firstly,

Qual Qualifier bounds:

JPte DRTE B = Any | Writeable | Qual
Any Writ'giaPle o € QVar (qualifier variables)
//' ' \i\\\ p,q = - | o
'/ : \\ \\\
L ' NN e:qC q extends Writeable
Rd Rdir Freslh(n) Fresh(m) - e.f=v:ok

Fig. 2. The qualifier hierarchy. Qual and Writable are qualifier bounds, not qualifiers,
so they cannot be used as type qualifiers, only in extends-clauses.

Writeable would be a non-minimal qualifier that allows writes, which would make
covariance of the myaccess class parameter unsound. Secondly, Writeable could be
used as an annotation on field types. This would open the door for violating stack local-
ity of Fresh-regions, which would make the typestate transition at commits unsound.
Signatures of qualifier-polymorphic methods tell us which method parameters are
potentially mutated by the method. In addition, they also provide information about
which method parameters are potentially written to the heap. For instance:
— static <a> void foo(int a [] x);
e does not write to object x through reference x
e does not write object x to the heap
— static void faa(int Any [] x);
e does not write to object x through reference x
e may write object x to the heap (into Any-fields)
— static <a extends Writeable> void fee(int a [] x);
e may write to object x through reference x
e does not write object x to the heap

The method foo (x) cannot write x to the heap, because the qualifier hierarchy does not
have a greatest element, which would be needed as the type of a location that x can be
written to. Similarly, fee (x) cannot write x to the heap, because there is no qualifier
that bounds all writeable qualifiers.

In the following example, we use the qualifier for the receiver parameter to dis-
tinguish between inspector and mutator methods. Inspectors can be called on any re-
ceivers, whereas mutators can only be called on writeable receivers:

class Hashtable<K,V> {

<a> V get(K key) a { ... } // inspector

<a extends Writeable> V put(XK key, V value) a { ... } // mutator
}
To create an immutable hash table we can use flexible initialization outside the con-
structor:

newtoken n;

Hashtable<String,String> t = new <Fresh(n)>Hashtable<String,String>();
t.put("Alice", "Female"); t.put("Bob", "Male");

commit Fresh(n) as Rd;

t.get("Alice"); // OK

t.put("Charly", "Male"); // TYPE ERROR

10

2.4 Constructors
Constructor declarations have one of the following two forms:

<@ extends B> g C(T %) p{ body } (caller-commit constructor)
<0 extends B> g C(T x){ newtoken n; body } (constructor-commit constructor)

Caller-commit constructors are more common. In their signature, p represents the
qualifier of this when the constructor body starts executing. The typechecker assumes
this qualifier initially when checking the constructor body, and enforces that constructor
callers, through super () or this(), establish this precondition. The postcondition ¢
represents the qualifier of this when the constructor terminates.

A typical instance of caller-commit constructors looks like this:

<0 extends Writeable> o C(TX)o{ ...}

In particular, the default no-arg constructors have this form. Note that, if in the above
constructor signature o does not occur in any of the parameter types 7, then we know
that the constructor does not leak references to thisP] This is often desired for construc-
tors. Constructors that deliberately leak this could have the following form (which
prevents the creation of immutable class instances):

RdWr C(T ¥) RdWr{ ... }

Constructor-commit constructors enforce that the object is committed inside the
constructor. This is useful in an open world to prevent object clients from ever seeing
an uninitialized object. In constructor-commit constructors, the precondition is omitted.
Instead, the constructor begins by generating a fresh token n. The body then initially
assumes that this has qualifier Fresh(n). The scope of n is the constructor body,
and therefore n cannot be mentioned in the constructor postcondition. To establish the
postcondition, the body is forced to commit Fresh(n) before it terminates. The type
system disallows calling constructor-commit constructors through super () or this ().
Therefore, constructor-commit constructors are particularly suited for final classes.

Figure [3] shows an example with a caller-commit constructor. An immutable tree
with parent pointers is constructed from the bottom up. A single initialization token
is used for all nodes and is committed only after the root node has been initialized.
This example is interesting because Qi and Myers [28] identify it as a problematic
initialization pattern for other type systems [[14]. It causes no problems for our system.

2.5 Class Immutability in an Open World

In his book “Effective Java” [3]], Bloch presents rules that ensure class immutability.
These rules require that fields of immutable classes are private and final, that public
methods are inspectors, that methods and constructors do not leak representation ob-
jects, that public constructors do not leak this, and that the behaviour of instances of
immutable classes does not depend on overridable methods. Some of these rules (e.g.,
that all fields are private and final) can very easily be checked automatically. The con-
ditions that methods of immutable classes are inspectors, that instances of immutable

6 If o occurs in T, the constructor could for instance leak this to a field x.f of a constructor
parameter & Dx, in case f’s type in C is annotated with myaccess.

11

class Tree {
myaccess Tree parent, left, right;
<a extends Writeable> a Tree (a Tree left, a Tree right) a {
this.left = left; this.right = right;
if (left != null) left.parent = this;
if (right != null) right.parent = this;

}

newtoken n;

Tree left_leaf = new <Fresh(n)>Tree(null, null);

Tree right_leaf = new <Fresh(n)>Tree(null, null);
Tree root = new <Fresh(n)>Tree(left_leaf, right_leaf);
root.parent = root;

commit Fresh(n) as Rd;

Fig. 3. Bottom-up initialization of a tree with parent pointers

classes do not leak representation, and that constructors of immutable classes do not
leak this can be expressed and checked by our type system.

If we specify class immutability with a class annotation Immutable, we could for
instance declare an immutable String class like this:

Immutable final class String {
private final char myaccess [] value;

}

Semantically, the Immutable annotation is meant to specify that String is an im-
mutable class in an open world, i.e., that all instances of String are Rd-objects that
cannot be mutated by possibly unchecked clients. In order to tie the access modifier
for the value array to the access modifier for the enclosing string, it is important that
we annotate the value field with myaccess instead of Rd. In combination with the
requirements on method and constructor signatures below, this prevents representation
exposure of the character array.
The following rules guarantee class immutability:

— immutable classes must be final and direct subclasses of Object

— methods and constructors may only call static or final methods or methods of final
classes (transitively)

— all fields must be final

— public constructors must have the following form:

<@ extends B>RA C(T ¥){ newtoken n; ...;commit Fresh(n) as Rd; }
where myaccess does not occur in T

— types of public methods must have the following form:

<o, P extends B> U m(T ®) a{...}
where myaccess and o do not occur in U.

12

static <a, b extends Writeable>
void arraycopy(a Object src, int srcPos, b Object dst, int dstPos, int 1);

public <a> Rd String(char a value[]) {
newtoken n;
int size = value.length;
char[] v = new char Fresh(n) [size];
System.arraycopy(value, O, v, 0, size);
this.offset = 0; this.count = size; this.value = v;
commit Fresh(n) as Rd;

Fig. 4. A constructor of Java’s immutable String class

We use the String example to explain the constructor rule: The rule ensures that
public constructors do not assign previously existing character arrays to the string’s
value field. This would only be possible, if the class parameter myaccess occurred
in one of the parameter types T, which is forbidden. For instance, the constructor
String(char valuel[]) is forced to make a defensive copy of its input parameter,
as shown in Figure 4] Furthermore, constructors can not assign this or this.value
to heap locations outside the stack-local Fresh (n) -region. This would only be possible
if one of the parameter types T mentioned myaccess, or if the commi t-statement were
executed somewhere in the middle of the constructor, in which case the constructor
could write this.value or this to the heap as a Rd-object after the commit.

As for the method rule, we have already argued that the above method type enforces
that m is an inspector. Furthermore, the type forbids that m assigns the value array to
the heap, because the qualifier hierarchy does not have a greatest element. Note that
method types of the form U m (T x) Any {...} do not prevent representation exposure,
because they enable writing the value array to Any-fields, which is dangerous in an
open-world. Similarly, if the value field were annotated with Rd instead of myaccess,
the value array could be written to Rd-fields or Any-fields.

2.6 Threads

For type soundness in multi-threaded programs, we must ensure that thread-shared ob-
jects are initialized, i.e., they must have types Rd, RdWr or Any, but not Fresh. This
suffices for soundness, because types of initialized objects never change. As all thread-
shared objects are reachable from the sharing Thread-objects and as the initialized
region is closed under reachabilityﬂ it suffices to require that Thread-objects are ini-
tialized when threads get started. Furthermore, we must assume this fact as the precon-
dition for verifying the body of Thread.run():

class Thread {

void run() Rdwr { }
void start(); // Treated specially. Type system uses run()’s type.

}

7 In this discussion, we ignore Java Generics. See [17] for a discussion of generics.

13

Subclasses of Thread may override run () with receiver qualifier RdWr or Any (by con-
travariance Calling start () on areceiver o, whose static type is a subtype MyThread
of Thread, requires that o has run()’s receiver qualifier from MyThread. Note that
treating Thread . start () specially is not a random special case, because conceptually
Thread.start () is a concurrency primitive for dynamic thread creation (a.k.a. fork
or spawn), which is always treated specially in verification systems for concurrency.

2.7 Generics

Our formal model in Section [3] does not include generic classes, but in our examples
we use generics with the same semantics as 1GJ [34]], except that we do not allow
covariant class parameters based on immutability annotations. We shortly explain the
combination of generics and qualifiers: Type variables range over qualified types, rather
than unqualified ones. For instance, the former of the following classes is legal:

class Pair<X,Y> { X x; Yy; } // legal
class Pair<p,q,X,Y> { p X x; q Yy; } // illegal

Type casts to qualified types need to be prohibited, if we want a sound, purely static
type system. For Java without generics, such casts can easily be disallowed syntactically
by requiring cast expressions to be of the form (C)e, where C is a class identifier.
However, with generics, we can cast to types that contain type variables, for instance,
(X)e, where X is a type variable. If X ranges over bounded qualified types (e.g. all
types bounded by RdWr Square), such a cast is unsafe. The type system has to check
for unsafe casts at cast sites, and forbid them. Note that casts of the form (X)e can be
allowed, if X has no explicit bound.

As usual in Java, class parameters are treated invariantly. In order to avoid incom-
patibilities between the covariance of myaccess and the invariance of class parameters,
we forbid occurrences of myaccess inside parameters of field types. For example:

class C {

p List<myaccess Object> x; // FORBIDDEN

q List<List<myaccess Object>> y; // FORBIDDEN
}

So far the treatment of generics is essentially a restriction (and simplification) of
IGJ’s treatment. Let us address the combination of generics and flexible initialization:
In the presence of generics, it is not quite true anymore that Fresh (n)-regions cannot
be reached from the rest of the heap, as there may be fields X f with variable type X
that refer into a Fresh (n)-region. While this does not break the soundness of commit
within threads, we need to be careful that the thread-shared region is part of the ini-
tialized heap. To this end, we impose the following restriction: if C<X> is a generic
subclass of Thread, instance creation expressions new q C<T> (&) must satisfy that all
types occurring in T extend Any Object. This restriction ensures that no Fresh objects
are reachable from g C-objects, as long as ¢ € {Rd,RdWr, Any}.

8 Tt would also be sound to use Rd as the receiver qualifier for Thread.run(). However, this
would be too restrictive, because it would globally enforce that threads never write to fields of
their Thread-objects.

14

2.8 Qualifier-polymorphism for Classes

Finally, we point out that qualifier-polymorphic classes are useful, too (while we have
not formalized them in our model language). For instance, we may want to use a qual-
ifier parameter for the Iterator interface in order to refer to the access qualifier for
collection internals. This allows us to distinguish between read-only iterators and read-
write iterators in the types:

class ListIterator<collection_access><E>
implements Iterator<collection_access><E>

{
collection_access Node<E> current, prev, pprev;
RdWr Iterator(collection_access Node<E> head) RdWr {
this.current = head; }
<a> E next() RdWr<a> { ... writes this, reads current ... }
<a extends Writeable> E remove() RdWr<a> {
. writes this, reads current, writes prev ... }
}

Iterators are always RdWr because they need to mutate their own fields. The class pa-
rameter collection_access is the access qualifiers for the list nodes current, prev
and pprev. The remove () method requires Writeable collection access, whereas any
collection access suffices for calling next () . For instance, the following client () can
only read the collection through its iterator parameter:

void client (RdWr Iterator<Any><E> it);

Variances. All qualifier parameters, except the special myaccess parameter need to
be invariant, for the usual reason. In order to avoid incompatibilities between the co-
variance of myaccess and the invariance of other class parameters, we need to forbid
myaccess as an invariant parameter for field types:

class C { ¢ D<myaccess> x; /* FORBIDDEN */ }

3 The Formal Model

We formalize our system for a model language that is deliberately simple. The main
objective is to prove soundness of the flexible initialization technique in a very simple
setting, to describe the local inference algorithm in the small as a high-level blueprint
for an implementation, and to prove soundness of the inference algorithm. Our simple
language is based on recursively defined records with nominal types, recursive function
definitions, and a simple command language. We include conditionals and while-loops,
because the type system and the associated inference algorithm are flow-sensitive, and
so branching and repetition are interesting.

Mathematical Notation. Let X — Y be the set of functions from X to Y, and X — Y the
set of partial functions, and SetOf (X) the set of all subsets of X. Functions f € X =Y
induce functions in f € SetOf(X) — SetOf(Y): f(X') = {f(x) | x € X' Ndom(f)}. We
usually omit the hat when the context resolves ambiguities. For f € X — Y and Z some

15

set, let f|Z be the restriction of f to Z: f|Z={(x,y) € f|x€Z}.For fe X =Y
andgeY —Z, letgof={(x,g(f(x))) |xe€dom(f)}. Note that go f € X — Z. For
f8eX =Y, let flg] =gU(f[{x|x ¢&dom(g)}). Let x — y = {(x,y)}. We write
f,x— yinstead of f[x — y] when we want to indicate that x ¢ dom(f). If f is a type
environment, we write f[x:y] and f,x : y instead of f[x — y] and f,x — y. We write 7|
and 7, for the first and second projection that map pairs to their components.

3.1 A Model Programming Language with Access Qualifiers

Access Qualifiers. We assume identifier domains of names and qualifier variables.
Names represent initialization tokens and object identifiers.

n,0 € Name (names) o, B € QVar (qualifier variables, including myaccess)
p,q € Qual := Rd | RdWr | Any | Fresh(n) | a (access qualifiers)

Subqualifying is the least partial order such that Rd <: Any and RdWr <: Any.

Class Declarations. Our model is based on records. We refer to named record types
as classes, and to records as objects. Types are of the form g C, where g is an access
qualifier and C a class identifier. If {f=7} is an object of type ¢ C, then the access
qualifier ¢ determines the access permission to the object fields. If, for instance, { f =7}
has type Rd C, then the fields of this object may only be read. The void-type has only
one element, namely null.

f,g € Fieldld (field identifiers) C,D € Classld (class identifiers)
class = classC{T f} (class declaration) TeTy == qC | void (types)
A class table is a set of class declarations for distinct class identifiers. Class declarations
may be recursive and mutually recursive. We define a mapping that erases qualifiers

from types: |¢g C| = C and |void| = void. Subtyping is the least partial order such that
pC<:qCforall p<:gq.

Qualifier Bounds. Our system has bounded qualifier polymorphism. To this end, we in-
troduce the qualifier bounds Writeable and Qual. These can only be used as qualifier
bounds, but not as qualifiers. Any can be used both as a qualifier and a bound.

B € QualBound ::= Writeable | Any | Qual (qualifier bounds)

Whereas Writeable only bounds the qualifiers RdWr and Fresh (n), Qual bounds any
qualifier. This is formalized by a simple type system, displayed in Figure 5] which also
ensures that arguments n of Fresh (n) represent initialization tokens. The figure also
displays the crucial lemma for soundness of covariant access qualifiers.

Method Declarations. Methods may be parametric in access qualifiers.

m € Methodld (method identifiers) x € Var (local variables)
method := <0.<4B>T m(T x){e} (method declaration)

The variable e that represents the method body ranges over expressions, which will
be defined below. A method table is a set of method declarations for distinct method
identifiers. Method declarartions may be recursive and mutually recursive.

16

A = ¢ | A,o<B | Ajn:Token (qualifier environments)
g <: Any AFg<B
A,0<B,A'-a<1B An:Token,A'n:Token Al g<Any Al g<Qual
Al n:Token
AF RdWr<Writeable Al Fresh(n)<Writeable

Lemma 1 (Writeable qualifiers are minimal). [f A g<Writeable and p <: q, then p = q.

Fig. 5. Qualifier typing, A= g<B and A+ n : Token

Expressions include while loops, conditionals and accessing object fields. All expres-
sions end in the return value. We choose a representation without composite expres-
sions, where instead all intermediate results are assigned to local variables.

ve OpenVal = null | n | x (open values)
ec€Exp = v | Cx;e | newtokennse | he (expressions)
heHdExp ::= x=v | x=v.f | v.f=v | x=<g>m(P) | x=newqC | (head expressions)
ifvee | whileve | commit Fresh(n) asgq
Derived form, e;e’: vie=e (hie);e' = h;(e;e’) (C x;e)ie’ = C x;(e;e’) if x not free in ¢/
(newtoken n;e);e’ = newtoken n; (e;e’) if n not free in ¢’

. A
Derived form, e;: e;=e;null

The identifiers x and n in the forms (C x;e) and (newtoken n;e) are binders with
scope e, and we identify expressions up to renaming of bound identifiers.

Note that declarations of local variables associate a class C with the variable, but no
access qualifier g. The reason for this design choice is that local variables may change
their qualifier at commit-statements. We would find it misleading if our system fixed an
access qualifier for a local variable at its declaration site, even though later the variable
refers to objects with incompatible access qualifiers.

Our system also permits qualifier changes at assignments to local variables. This
seems a natural design choice, given that we have flexible qualifiers for local variables
anyway. When a local variable x is used, the type system assumes the access qualifier of
the object that most recently got assigned to x. For instance, assuming a context where
local variables r and w have types Rd Point and RdWr Point, respectively:

Point p; p=w; // now p has type RdWr Point

p.x=42; // this typechecks

p=t; // now p has type Rd Point

p.-x=42; // type error: illegal write to Rd-object

3.2 Operational Semantics

Heaps are functions from names to objects. Each object is tagged with an access qual-
ifier. These tags are auxiliary state in the sense that they have no effect on concrete
program state or control flow, that is, they are erasable. The operational semantics also
tracks the pool of tokens that have so far been generated. Token pools are erasable.

17

(Red Dcl) (Red New Token) n¢t

(0,C x;e) ::s,h,t — ((0,x+—null),e) ::s,h,t (o,newtokenn;e) :: s,h,t — (0,e) ::s,h,t U{n}
(Red Set Local) (Red Get) v#null o(v)=n
(o,x=v;e) ::5,h,t — (Clx — o(v)],e) s, h,t (o,x=v.fse) i 5,h,t — (Olx — M (h(n))(f)],e) :: s, h,t

(Red Set) v#null o(v)=n

(o,v.f=wie) ::5,h,t — (0,€) i s,h[n+— (T (h(n)), T (h(n))[f — o(w)])],t
(Red Call) <a<aB>U m(T ©){e'}

(o,x=<g>m(P);e) 2 s,h,t — (X— 0(V),€'[G/a]) :: (0,x=<g>m(¥);e) :: 5,h,t
(Red Return)

(o,w) i (0/,x=<g>m(P);e) :: s,h,t — ('[x — c(w)],e) :: s,h,t
(RedNew) classCA{T f} n¢dom(h)

(0,x=newq C;e) :: 5,h,t — (c[x —nl,e) :: 5, (h,n+— g{f=nulll}),s

(Red If True) o(v) =null (Red If False) o(v) # null
(o,(ifvee);e”) i s,ht — (0,e;€") i s, Myt (o,(ifvee);e") i s,ht — (0,e'5€") 2 s,h,t

(Red While True) o©(v) =null (Red While False) o(v) #null
(o,(whileve);e') ::s,h,t — (0,e;(whileve);e’) i s,h,t (0,(whileve);e) ::s,h,t — (0,€) :s,h,t

(Red Commit) &= (n+ gq)
(0,commit Fresh(n) as g;e) ::s,h,t — (G,e) ::5,(30h),t

Fig. 6. Operational semantics

veVal = null | n obj € Object = Qual x (Fieldld — Val) == ¢{f=V}
h € Heap = Name — Object t € TokenPool = SetOf(Name)

Commit-environments are functions from names to access qualifiers. They are used
to track Fresh-qualifiers that have been committed.

8 € CommitEnv 2 Name — Qual

Commit-environments 8 induce functions & in Qual — Qual, Ty — Ty and Object —
Object: 6(Fresh(n)) = ¢ if 8(n) = ¢, 6(q) = q otherwise; d(¢ C) = d(q) C, 6(void) =
void; 8(q{f=7}) = d(q) {f=v}. If the context resolves ambiguities, we omit the hat.
A stack frame is a pair of a local store ¢ and an expression e:
6 € Var — Val fre Frameé(VarAVaI)x Exp s € Stack == nil | frus

We extend the domain of functions 6 to OpenVal, by setting 6(v) = v for v € Val.
Configurations are triples of stacks, heaps and token pools.

¢fg € Configuration = Stack x Heap x TokenPool

The rules in Figure [6] define the small-step operational semantics on configurations. In
the rules [[Red Dcl)| and [[Red New Token)| we implicitly use a bound-variable conven-
tion that allows us to rename bound variables and names appropriately.

3.3 Type System

A type environment is a function from variables and names to types.
1€ VarUName I € TyEnv = (VarUName) — Ty

Let I' <: I" whenever dom(I') = dom(I"") and I'(1) <: (1) for all 1 in dom(I"). We
extend the domain of type environments to include null: I'(null) = void.

18

We define: AF ¢ : ok iff A+ g<Qual; C : ok iff C is declared; A+ g C : ok iff
At g:okand C:ok; A+ void : ok always; AF T : ok iff A+ T(1) : ok for all t in
dom(I"); At 8 : ok iff A n: Token and A F &(n) : ok for all x in dom(§).

Typing judgments for expressions have the following formats:

SH{D,8te: T{I",§} Tr{[,8}h{I",&}

(T, 8) represents the configuration before executing the expression, and (I”,8') the one
afterwards. We refer to (T, 8) as the precondition of the expression, and to (I, ') as its
postcondition. Recall that we permit local variables to change the qualifier components
of their types. This is why we need to include type environments in postconditions. We
write A;T"F v : T to abbreviate A+ {T",0}v: T{I",0}.

Now we can present the typing rules for expressions:

(Null) (1d) (Sub)
AFT,8,T : ok AFT,8: 0k AFUT":0ok T<:U AF{T,8}e:T{I".§} T'<:I”
AFA{L,8}null : T{I,8} AH{TL,8}:T(){T,d} AHA{L,8} e U{T", &}
(Dcl) (Seq) AFRT,d:0k
AFgC:ok 8(q)=q AF{([,x:qC),8}e:T{(I",x:U),8} AF{L,8}n{l",8'} A-{I".8}e:T{I",8"}
AFA{L,8}C x;e: T{I",&'} AT, 8}hse: T{I" 8"}
(New Token)

AFT,8,I",8 :ok A,n:Tokent {I,(8,n+— Fresh(n))}te: T{I",(&,n—q)}
At {T,8}newtokenn;e: T{I",§'}

In the rule we assume that the newly declared local variable initially has type
q C, where g can be chosen appropriately. An automatic typechecker needs to delay
the choice of an appropriate g until the new variable first gets assigned to. This delayed
choice of ¢ is subsumed by the inference algorithm in Section The premise 8(q) = ¢
ensures that g is not a previously committed Fresh-qualifier.

In the typing rules for head expressions, note that we update the qualifiers of lo-
cal variables after assignments, implementing flexible qualifiers of local variables, as
discussed earlier. Crucially, the rule checks that the object is writeable:

(Set Local) (Get) classCH{..Tf.}
[T()| = Tx)] I'(v)=qC U=Tlg/myaccess] |U|=|I'(x)|
AFAT, 8} x=v{[[x:T(v)],8} AEAT, 8} x=v.f{[[x: U],8}

(Set) classCH{.Tf.}
I'(v)=qC AF g<Writeable A;I'Fw:T[g/myaccess]

AF{T,8}hnf=w(I,5}

(Call) <@U m(T ©){e} (New)

8@)=q Arg<B ATFv:Tlg/e] V=Ula/a VI=IF@| AbqCiok Sl)=q C=|I()
AHAT, 8 x=<g>m (N {[x:V],8} A+ A{T,8}x=new g C{T'[x: ¢ C],8}
(If) (While)
ATHv:T AH{T,8}e:void{I",8'} AF{I,8}¢ :void{I",&'} ATHv:T AH{T,8}e:void{I,d}
AHA{T,8}ifve d{I",d'} A+ {T,8}whileve{l’,8}
(Commit)

8(n) =Fresh(n) Al g:ok d(g)=q & =n—gq
AF{T',8}commit Fresh(n) as g{&' oI',d' 03}
In the rule, note that the environments are an invariant for the loop body. Con-
sequently, it is disallowed to commit inside a loop body a token that was generated
outside the loop body (as this would modify the commit-environment). On the other

19

hand, it is allowed to commit tokens that were generated inside the loop body, because

the rule (New Token)]removes such tokens from pre- and postcondtions.
The following sanity properties are easily verified:

- IfA-{T,8}e:T{I",8'},then AF-T,3,T,I",8 : ok.
- IfAR{[,8}e: T{I",8'},I” <:T'and A-T": ok, then A {I"",8}e : T{I",&'}.
- IfAF{T,8}e:T{I",8'},1 ¢ dom(I') and A+ U : ok,
then AF{(T,1:U),8}e: T{(I',1:U),&}.
- IfAH{T,8}e:T{I",8'},n & dom(A) and A,n : Token | g : ok,
then A,n: Token + {T,(8,n — q)}e: T{I",(&8',n+— p)} for some p.
- IfAF{T,8}e:T{I",8'} and A+ {I",8'}¢ : U{T",d"},
then A {T',8}e;e’ : U{I"",8"}.

For checking class and method declarations, we use the following rules:

(Class) B (Method) B B
myaccess<QualFT:ok @<BFU,T:ok @a<BF{x:T,0}e:U{T,0}
classC{T f}:ok <0<aB> U m(T) {e} : ok

Note that the parameter and result types in method declarations cannot contain quali-
fiers of the form Fresh(n), because n would be out of scope. As a consequence, the
system enforces that a Fresh(n)-qualifier can only be committed in the same stack
frame that introduced n. Note, however, that qualifier polymorphism allows us to pass
actual method parameters whose qualifiers are Fresh (n). For instance, assuming the
previously presented copy-method and a context where p has type Rd Point, the fol-
lowing expression passes a point q with qualifier Fresh(n) to the copy-method.

Point q; newtoken n; q = new Fresh(n) Point; <Rd,Fresh(n)>copy(p,q);

As an indicator that the system provides good support for procedural abstraction,
we show that various kinds of factory methods are permitted. Here, for instance, is a
factory method that takes care of both object creation and object initialization:

<a < Qual> a Point factoryl(int x, int y) {
newtoken n; Point p; p = new Fresh(n) Point; p.x=x; p.y=y;
commit Fresh(n) as a; p }

Here is another kind of factory, which takes care of object creation and part of object
initialization, but leaves the completion of object initialization to the client:

<a < Writeable> a Point factory2(int x) {
Point p; p = new a Point; p.x=x; p }

Here is a client of this method:

newtoken n; Point p;
p = <Fresh(n)>factory2(7); p.y=3; commit Fresh(n) as Rd;

20

Well-typed stack frames, A;A; ;T = fr: T and A AT Hfr: T — U

ANT,DFo:T" ANF{I"8e:T{I".§} dom(8)Cdom(A) Sol' =T"
AN LT (o,e): T

fr=(o,x=<pm();e) AN LT FHfr:U <a<1B>Tm(VD{e} AFT:ok (Vxedom(c))(ATFo(x):T'(x)
AN Efr:T(Gg/e) — U ATHo: T

Well-typed stacks, A;T'F s : ok and A;T'Fs: 7 — ok:

AFT,T :ok NN T;UHfr:T ATEs:T—ok AANGURfr:T—U AT'bs:U— ok
A;TFnil : T — ok ANT,T Ffrs:ok AN T, Efris: T — ok
Well-typed objects, A;I' - o0bj: T: Well-typed heaps, A;T"F /4 : ok:
classC{Tf} A;'tV:T[g/myaccess] dom(T’) =dom(h) (Vn € dom(h))(A;TF h(n) :T'(n))
A;Fl—q{f=\7}:qC AT h:ok
Well-typed token pools, A -7 : ok: Well-typed configurations, cfg : ok:
dom(A) =dom(r) (Vnet)(AF n:Token) ATEs:ok ATHh:ok AFr:ok
Att:ok s,h,t: ok

Fig. 7. Typing rules for configurations

Soundness We extend the type system to configurations, as shown in Figure [/} The
judgment for stack frames has the format A;A'; ;I = fr: T. The type T is the type
of the return value. Whereas A and I" account for tokens and objects that are known to
stack frames below fr, the environments A’ and I account for tokens and objects that
have been generated in fr or in stack frames that were previously above fr and have
been popped off the stack. The premise dom(3) € dom(A’) in the first typing rule for
stack frames captures formally that the commit-environment for the top frame never
contains initialization tokens that have been generated in the rest of the stack. This
is important for the soundness of Another judgment for stack frames has
the form A;A';T;T7 = fr : T — U. Intuitively, it holds when A;A';T;T7 F fr - U and in
addition fr currently waits for the termination of a method call that returns a value of
type T.
We can now prove the following preservation theorem:

Theorem 1 (Preservation). If cfg : ok and cfg — cfg, then cfg’ : ok.

The proof of the preservation theorem is mostly routine and contained in Appendix [A]
The following theorem says that the type system is sound for object immutability: well-
typed programs never write to fields of Rd-objects. The theorem is a simple corollary
of the preservation theorem and the fact that a configuration is ill-typed when the head
expression of its top frame instructs to write to a field of a Rd-object.

Theorem 2 (Soundness for Object Immutability). If ¢fg : ok, cfg —* (0,v.f=w;e) ::
s,h,t and 6(v) = n, then 1 (h(n)) # Rd.

Proof. Let cfg : ok, ¢fg —* cfg’ and 6(v) = n, where cfg’ = (6,v.f=w;e) :: s,h,t. By
preservation, we get c¢fg’ : ok. By inspecting the premises of the last rules in the proof of
cfg’ : ok, we find A, T, T” such that (A; T h:ok), (A;THo:T) and A-{T7, }v.f=w;e:
{_,-}. The proof of the latter judgment ends in a (possibly empty) sequence of

21

rules, preceded by From the premises of |(Set), we get I'(v) = g C and A g <
Writeable for some ¢, C. Because (A;T' o : I7), it follows that (A;T'Fn: ¢ C). Then

I'(n) = g C, using Lemma On the other hand, from A;T"+ £ : ok we get A;T'+ h(n) :
I'(n) = ¢ C. This implies 7t; (h(n)) = g. But ¢ # Rd, because A+ g<Writeable. [

3.4 Local Annotation Inference

Figure [§| presents the syntax for annotation-free expressions E, as obtained from the
expression syntax by omitting the specification statements newtoken and commit, as
well as the qualifier arguments at call sites and the qualifier annotations at object cre-
ation sites. The function e — |e| erases specification commands and annotations from
annotated expressions. This section presents an algorithm that infers the erased infor-
mation, deciding the following question: Given A,I",E. T such that A+ T",T : ok. Are
there ¢,I” such that |e| = E and A+ {T',0}e : T{I",0}?

We have proven that our algorithm answers this question soundly: if the inference
algorithm answers “yes”, then the answer to this question is indeed “yes”. We believe
that the converse also holds (completeness), but cannot claim a rigorous proof. The
algorithm constructs an annotated expression e whose erasure is E. An implementation
does not have to really construct e, because knowing that e exists suffices. There are, of
course, many annotated expressions that erase to the same annotation-free expression.
So what is the strategy for inserting the specification commands without restricting
generality? Conceptually, the algorithm parses the unannotated E from left to right,
inserting specification commands newtoken and commit as needed.

Inserting Commits. For commits, we use a lazy strategy and only insert a commit if
this is strictly necessary. For instance, we never insert commits in front of local variable
assignment, because commits and local variable assignments can always be commuted
without breaking well-typedness or changing the erasure. The spots where commits do
get inserted are: (1) in front of field assignments when a value of type Fresh(n) is
assigned to a field of type g where g # Fresh (n), (2) in front of method calls when the
method signature forces to commit types of arguments, (3) in front of the return value
when the return type forces to commit the type of the return value, (4) at the end of
conditional branches to match commits that have been performed in the other branch,
(5) at the end of loop bodies (for tokens generated inside the loop) to establish the
loop invariant, and (6) in front of loop entries (for tokens generated outside the loop) to
establish the loop invariant. Consider the following example with a while-loop:

void r(Rd C x); void w(RdWr C x); <a < Writeable> f (a C x);
C x; x = new C; while x (£(x); w(x););

Generated annotated expression:

newtoken m; newtoken n; C x; x = new Fresh(n) C;

commit Fresh(n) as RdWr; while x (<RdAWr>f(x); w(x););
commit Fresh(m) as Any;

22

E € AfreeExp = v | Cx;E | H;E (annotation-free expressions)
H € AfreeHdExp = x=v | x=v.f | v.f=v | x=m(¥) | (annotation-free head expressions)
x=newC | if vEE | whilevE
|| : Exp — AfreeExp
v 2y IC x;e| ic X;le| |newtokenn;e| S le] |commit Fresh(n) as g;e| S le|
|hs el e |h); le], if h # commit Fresh(.) as _
|-]: HdExp — AfreeHdExp
[x=<g>m ()| £ x=m () |x=new ¢ C| A x=newC [if vE E'| ity |E| |E'|
|[while v E| 2 vhilev |E| |h| 2 p, otherwise

Fig. 8. Annotation-free expressions and erasure

In the above expression, the method call w(x) inside the loop body forces a commit in
front of the loopﬂln contrast, the following expression does not typecheck, because the
loop body forces x to have both a Writeable type and type Rd, which is impossible.

C x; x = new C; while x (£(x); r(x);); // TYPE ERROR

One could deal with while-loops by a fixed point computation that requires two
iterations over the loop body, one to discover a candidate loop invariant and another
one to check if the candidate grants the access permissions required by the loop body.
Our algorithm is syntax-directed, because this is simpler to implement on top of the
JSR 308 checkers framework [23]].

Generating Tokens. Concerning the generation of initialization tokens, there are two
questions to answer. Firstly, when does the algorithm generate new initialization tokens,
and secondly, where does the algorithm insert the newtoken statements that bind the
tokens. Generation happens (1) at variable declaration sites, (2) at object creation sites,
and (3) at call sites for instantiation of qualifier parameters that occur in the method
return type but not in the method parameter types. At such sites, the algorithm generates
a new token n and uses Fresh(n) as the type of the newly declared variable, the newly
created object or the method return value. In the above example, m and n are the tokens
that were generated at the variable declaration site for x and at the object creation site
that follows it. Note that tokens generated at variable creation sites often do not occur
in the program text. Using Fresh(n) as the qualifier for newly created objects (and
similarly for variable declarations and method returns) is no restriction, because the
following type- and erasure-preserving transformation replaces qualifiers g at object
creation sites by Fresh(n):

x=new qC — newtoken n;x=new Fresh(n) C;commit Fresh(n) as q

As for where to insert newtoken, observe that these can always be pulled out of
conditional branches by the following type- and erasure-preserving transformation:

if v (newtokenn;e) ¢ — newtokenn;if ve (¢/;commit Fresh(n) as 8(n);)
where 8 is the commit environment in the postcondition of e (as found in the type derivation)

? Technically, the inference algorithm delays the generation of the prefix
newtoken m;newtoken n; and the postfix commit Fresh(m) as Any. These get inserted at
the top level, see Theorem E}

23

fig & (g0f)Ug ifdom(f)Ndom(g) =0

’ ts € Scopes =t | r::ts || Ay |t 2s] 240 |2s] rest(t) 29 rest(t :: ts) S |zs]
newtokens(t);e 2 newtoken ny;...;newtoken ng;e ift ={ny,..., e}
commit(8) 2 commit Fresh(n)) as qy;...;commit Fresh(m) as qx; ifd={ni+—qi,....,nx — qr}
Fig. 9. Helpers

We cannot pull newtoken out of loops, though, because the typing rules prevent loop
bodies to commit tokens that were generated outside the loop. Consider the following
variation of the earlier example:

C x; while x (x = new C; f(x); r(x););

In contrast to the erroneous expression further up, this expression is well-typed. The
inference algorithm generates the following annotated expression for it:

newtoken m; C x; commit Fresh(m) as Rd; while x (
newtoken n; x = new Fresh(n) C; <Fresh(n)>f(x);
commit Fresh(n) as Rd; r(x););

The newtoken command commutes with all other commands, and therefore the infer-
ence algorithm generates newtoken at the beginning of loop bodies only (leaving token
generation at the beginning of method bodies implicit).

Subqualifying Constraints. To deal with subqualifying the inference algorithm gener-
ates subqualifying constraints. We extend qualifiers by existential variables:

0. € ExVar (existential variables) p,q € Qual == - | 20 AF?00<Qual

We partition the set of qualifiers into the sets PQual of persistent qualifiers and TQual
of transient qualifiers:

TQual = {Fresh(n) | n € Name} PQual £ Qual\ TQual
A substitution is a function from existential variables to closed persistent qualifiers:
p € Subst = ExVar — (PQual \ ExVar)

Note that existential variables range over persistent qualifiers only. Substitutions p in-
duce functions p in PQual — PQual: p(?a) = p(?a) if 2o € dom(p); p(g) = g other-
wise. Let p(T') (resp. p(e)) denote the type (resp. expression) obtained by substituting
all qualifier occurrences g by p(g). We omit the hat when no ambiguities arise.

A constraint set contains pairs of the forms (¢,B) and (p,q):

C € Constraints = SetOf (PQual x QualBound U PQual x PQual)

A A-solution of a constraint set C is substitution p such that A - p(g) <B and p(p) <:
p(q) for all (¢,B), (p,q) in C.

24

Inference Algorithm. The inference judgment has the following format, where ts,T", 5,
and T are inherited attributes, and the other attributes are synthesized.

ts;THE:T | (I',8,15,1,C)for (Bpee)

The synthesized annotated expression e is such that |[E| = e. An implementation does
not need to compute e or track Spre, as the other attributes do not depend on them.

- (T, 8,re) represents the precondition for e.

(I, (8pre: 8)) represents the postcondition for e.

— ts contains the tokens in scope before e. ts has a stack structure that reflects the
nesting of enclosing while loops.

— t5’ contains the tokens in scope after e.

— t contains all tokens n in rest(zs’) such that the type derivation for e has a leaf of
the form A F Fresh(n) <Writeable. These tokens must be tracked because they
cannot be committed to Rd in front of enclosing while-loops. (See the example on
page[23})

— (are the subqualifying constraints required for well-typedness of e.

The detailed inference algorithm is displayed in Figures[I0] [[T]and[I2] We have proven
the following soundness theorem as a corollary of a more general theorem that can be
shown inductively (see Theorem [on page [#2).

Theorem 3 (Soundness of Inference). Suppose ran(A) C QualBound, (AFT,T : ok),
[, T do not contain existential variables, 0;U - E : T || (T, _t,_,C) for (0-¢) gpd p A-
solves C. Then (At {T',0}newtokens(r);p(e);commit(d) : T{(8;p) o I",0}) for 6 =
{(n,Any) | n €1,8(n) = Fresh(n)}.

4 Related Work

Immutability. Our type system supports class immutability, object immutability, and
read-only references, allows flexible object initialization, and is simple and direct (build-
ing only on the access qualifiers Rd, RdWr and Any). To the best of our knowledge, no
existing type system for a Java-like language meets all these goals at once: Our earlier
system Jimuva [18]] supports object immutability and open-world class immutability,
but requires immutable objects to be initialized inside constructors and does not meet
the goal of simplicity and directness, as it requires ownership types, effect annotations
and anonymity annotations in addition to access qualifiers. 1GJ [34] is simple, direct and
supports both object immutability and read-only references, but requires immutable ob-
jects to be initialized inside constructors and its support for deep immutability is limited.
For instance, 1GJ has no way of enforcing that the character array inside an immutable
string is part of the string and should thus be immutable. This would either require im-
mutable arrays or a special treatment of owned mutable subobjects, neither of which
1GJ supportﬂ SafeJava [4]] and Joes [22] are ownership type systems that support
immutable objects with long initialization phases, where the transition from “uninitial-
ized” to “initialized” is allowed through unique object references. In order to maintain

101G J supports immutable arrays initialized by array initializers. This is not enough to check the
String-constructor String(char[] c), because the length of c is not known statically.

25

uniqueness they use destructive reads, which is a rather unnatural programming style in
Java-like languages. These systems build on top of expressive ownership type systems,
thus violating our design goals of simplicity and directness. Frozen objects [20]] support
immutable objects with long initialization phases, but builds on the Boogie verification
methodology [1]], so is not suitable for an independent pluggable type system. The Uni-
verse type system [21] features read-only references. In particular, Generic Universe
Types [12] support covariant class parameters if the main modifier of the supertype is
Any (which is essentially what we and |GJ [34]] do).

Unkel and Lam [31] automatically infer stationary fields, i.e., fields that may turn
immutable outside constructors and after previous assignments, and thus are not neces-
sarily final. Their fully automatic analysis requires the whole program. It only detects
fields that turn stationary before their objects have been written to the heap, and is in
this respect more restrictive than our system, which can deal with stack-local regions,
as needed for initializing cyclic structures. On the other hand, our system only works
at the granularity of objects. Interestingly, non-final stationary fields are reportedly
much more common than final fields.

Our system does not address temporary immutability, which would require heavier
techniques in order to track aliasing on the heap. On an experimental level, statically
checking temporary immutability has been addressed by Pechtchanski and Sarkar [24].
On a theoretical level, it is very nicely supported by fractional permissions [3].

Object confinement and ownership. For open-world class immutability, we use qualifier
polymorphism to express several confinement properties. Firstly, we express a variant
of so-called anonymous methods [32] in terms of qualifier polymorphism. Anonymous
methods do not write this to the heap. Our variant of anonymity for constructors of
immutable classes is slightly weaker and forbids that this is written to the heap outside
the Fresh region in which the instance of the immutable class is constructed. Secondly,
by combining the myaccess class parameter with conditions on method types, we can
express that representation objects of immutable objects are encapsulated, thus avoiding
the need to include both access qualifiers and ownership annotations in the system. To
this end, we make use of qualifier-polymorphic methods, similar to owner-polymorphic
methods in ownership type systems [94)33127/18]].

It is not clear if the myaccess parameter alone is enough to express tree-structured
ownership hierarchies in general, as facilitated in parametric ownership type systems
(e.g., [8l, [4]) through instantiating the owner class parameter by rep or this, and
in the Universe type system [21]] through the rep-modifier. Potanin’s system FGJ+c
for package-level confinement [26] is based on a static set of owner constants (for-
mally similar to Rd and RdWr but without the additional access semantics). It seems that
very similar confinement properties as in FGJ+c could be expressed purely in terms of
qualifier-polymorphic methods and without the owner constants. A subtle difference,
however, is this: FGJ+c, as most ownership type systems, allows methods to return con-
fined objects, ensuring safety by preventing “outside” class clients from calling such
methods. Our system, on the other hand, prevents methods from returning confined ob-
jects in the first place. In an open world, where class clients may not follow the rules of
the pluggable type system, the latter is the only safe choice.

26

Type systems for flexible object initialization. There are several articles on initialization
techniques for non-nullness type systems [13/14/28]]. Fahndrich and Xia’s system of
“delayed types” [14] is most closely related to our work, like us using lexically scoped
regions for safe typestate changes, and using a class parameter representing a “delay
time”, similar to our myaccess parameter. Unlike us, Fihndrich and Xia do not address
local annotation inference. Our system is considerably simpler than theirs, because the
initialization problem for immutability seems inherently simpler than the initialization
problem for object invariants. Intuitively, there are two reasons for this: Firstly, whereas
for object immutability the end of the initialization phase is merely associated with the
disposal of a write permission, for object invariants it is associated with an obligation to
prove the invariant. Secondly, a major complication in [[14] is the need to permit insert-
ing uninitialized objects into initialized data structures. This is essential to satisfactorily
support cyclic data structures, but requires the use of existential types. Fortunately, this
complication does not arise for immutability, because no objects (whether uninitialized
or not) ever get inserted into immutable data structures.

J\mask [28] is a type-and-effect system for reasoning about object initialization. It
is based on a rich language for specifying partial object initialization, including prim-
itives for expressing that fields may or must be uninitialized, as well as conditional
assertions. It is designed to guarantee that well-typed programs never read uninitial-
ized fields. It is not designed for immutability, and consequently offers no support for
specifying deep immutability or object confinement, as needed for object and class
immutability. J\mask (based on a rich specification language for partial object initial-
ization) is quite different in nature to Fihndrich and Xia’s delayed types (based on
a variant of lexically scoped regions combined with dependent types). Qi and Myers
rightly claim that J\mask supports some initialization patterns that delayed types do
not, giving bottom-up initialization of trees with parent pointers as an example where
delayed types cannot establish object invariants in the required order. This example
causes no problems for our immutability system, see Figure 3| In fact, our annotations
for this example avoid conditional assertions and are thus simpler than J\mask’s (but
this comparison is not quite fair, as J\mask and our system have different goals).

Lexically scoped regions. Stack-local regions are closely related to lexically scoped
regions [30] for region-based memory management (see also [16]). Whereas, in region-
based memory management, lexical scoping is used to statically determine when mem-
ory regions can safely be deallocated, here we use it to statically determine when the
types of memory regions can safely be changed. Lexically scoped regions do not have
a separate commit-statement, but associate the end of region lifetimes with the end of
region name scopes. We opted for a separate commit-statement, because it simplifies
the description of our inference algorithm, which works by a left-to-right pass over the
abstract syntax tree, inserting commits when field or method types enforce this.

5 Conclusion

We presented a pluggable type system for immutable classes, immutable objects, and
read-only references. The system supports flexible initialization outside constructors
by means of stack-local regions. Our system shows, for the first time, that support for
the various forms of immutability, including open-world class immutability, is possible

27

without building on top of an expressive ownership type system (though the class pa-
rameter myaccess effectively provides some notion of confinement) and without using
effect annotations or unique references. A lesson we have learned is that parametric
qualifier polymorphism is a very expressive tool, both for flexibility and confinement.

28

8,0 8,8 = (§odud 1 : SetOf(Name) — CommitEnv n(t) A {(n,Fresh(n)) |ner}
’ ts € Scopes ==t | t::ts| (below we represent two clauses as one, delimiting an optional tail by angle brackets)
|| : Scopes — SetOf(Name) 1] 4y |t 2 2s] LY |ts]
top : Scopes — SetOf(Name) top(t) 4y top(r :: 1s) 2y
rest : Scopes — SetOf(Name) rest(r) 29 rest(t :: ts) £ |2s]
LJ: Scopes x Scopes — Scopes rur 2rur (Fees)U(t i ts) 2 (rur): (esUts')
scope : Scopes x Name — N scope(t (:: ts),n) L0ifnet scope(t :: ts,n) A1 +scope(ts,n),if n ¢t

add : Scopes x Name x N — Scopes add(t (:: #s),n,0) 2 (tU{n}) (::ts) add(r::ts,n,k+1) A add(s,n, k)

n” fresh k = max(scope(ts,n),scope(rs,n’))
ts - commit(Fresh(n) ,Fresh(n')) || ({n— n"}U{n’ — n"}, add(ts,n" k))

’ ts = commit(p,q) |} (8,t5) ‘

q € PQual q € PQual
ts - commit(Fresh(n),q) | ({n+— g},ts) tst commit(g,Fresh(n)) | ({n+ g},ts)

’ tstp<iql (8,15,C) ‘ ’ tsET <:U | (8,15,C) ‘
p,q € PQual ts = commit(p,q) | (8,1s") tskp<:ql (8,t5,C) T =void
tskp<iql (0,15,{(p.q)}) tskp<:ql(8,1,0) tsEpC<iqCl(8,t5,C) tsHT <:T(0,15,0)
Fp= ! . - 15, -
tskp=ql(8,15,C) ’ sFT<T'Y (.6',0) ‘ sk 0 <:01 (0,15,0)
p.q € PQual ts - commit(p,q) | (5,1‘5’) sET < U (B,TS/,C) ts' 8ol <: 80T | (8/,15”,C/)
st p=ql(0,15,{(p.9),(a:P)}) tskp=ql(31,0) sk (Tx:T) <: (T',x:U) | (8:8,15",CUC)

ts = commit(p,q) | (8,1s")
tstpUql (8(p),8,15',0)

T =void
tsETUT | (T,0,15,0)

’ tstpUq (r,,15,C) ‘ ’ sETUU L (V,8,15,C) ‘

p,q € PQual ?a fresh tstpUq (r,8,15,C)
sk pUg i (20,0,15,{(p,?),(g,20)}) ts-pCUgCl(rC,8,15,C)

tsETUU | (V,8,t5',C) ts' =80T LS | (I, &, 15", C')
tsE0U0 (0,0,15,0) tsE(Cx:T)U(T,x:U) 4 (I,x:8(V)),8:8,1",cul’)

’ tsFTUT U (I,8,15,C) ‘

dom(8)Ndom(¥) =0 1s-8US U (8",15,C) 15 F8"(p) =" (q) 4 (8",15",C")
158U I (3US 15,0) 1s- (8,1 p)U(&,ni— q) I ((8,n— 8" (p)):8"15",CUC)

’ sk 8U8 I (8,15, C) \

Fig. 10. Inference: helper functions

;T ():A.0)) (g,8,15',1,C) 20 fresh
ts;TE(): (0.0 4 (0),0,15,0,0) ts;TF () : (a<Any,A).() 4 ((?0,G),8,25',t,C)
ts;TF () :A.) U (G,8,t5',t,C) B# Any nfresh ts;TEv: AT | (§,8,15',t,C)
ts;TF () : (a<B,A).() | (Fresh(n),§),8,add(zs',n,0),t,C) ts;TF (null,d) : A(T,T) | (g,8,25',t,C)

ts;THv:AT §(4,8,t5,t,C)

v#null T =voidor T =g C where ¢ ¢ dom(A) v#null T'(v)=¢C q€PQual ?0fresh
tsEL(v) <:T 1 (8,15,C) ts; v (AA).T[2a/0] U ((G,p),8,t5',t,C) |g] = |A|
15,80 7: AS(T) § (4,8,15",1,C") C' ={(¢,?0), (2, B) }

ts;TH (v, 9) : A(T,T) | (3,8:8 15", t,CUC") ts;TF (v,9) : (A, a<B,A).(aC, T) | ((§,?0, p),8,t5',t, CUC')

v#mnull I'(v)=Fresh(n) C

ts;T v (AA).T[Fresh(n) /o) | ((3,p),8,t5',t,C) |G| =|A] B+# AnyVd(n) € PQual

t' =if B=Writeable A3(Fresh(n)) =Fresh(n') An' € rest(ts') then {n'} else® (' ={(¢q,B)|q=38(n) € PQual}
ts;TF (v,9) : (A,a<B,A).(aC,T) | ((§,8(Fresh(m)), p),8,ts',t Ut ,CU)

Fig. 11. Inference: matching method arguments against method types

29

newtokens(t);e

> >
=]
o
=
(28
o
=
o
=1
K
B
o
=
ot
o
=
o
=}
=
S
o
=
Z
I
—_—
=
B
S
=

commit(8) = commit Fresh(n;) as q;...;commit Fresh(ny) as q; if8={n; —qi,...,m — q}
c($,%) e | (dom(d) \ dom(d)) fn : Qual — SetOf(Name), fn(Fresh(n)) 4 {n}, fn(q) £0, otherwise

;T E T | (1,8, 1, C) For (Bprele)

(Infer Null) (Infer Id) e=commit(3|top(zs’))
tsET() <:T Y (8,25, C)
ts;TFnull : T |} (T,0,z5,0,0)fr Goernull) o Ty T | (801,38, 15,0, C) for Goreent)

(Infer Dcl)
n fresh add(zs,n,0);T,x:Fresh(n) CFE:T | (I",x:U),8,1s' .1, C)or (Bpre)
ts;THFCxE:T | (T,8,15,t,C) for (8preC xie)

(Infer Seq) &), =8peun(|ts'|\|ts]) &=8'|rest(ts)

ts;THH U (F,,S,ZS/,I, C) for (8reten) l‘S/;F/ FE-T ‘U (F”,S/,Z‘S”,I/, C/) for(ﬁoﬁ};m)—e)
;T HLE T L (T,8:8 15" .t Ufn (8 (1)) Ut', CU C') for Bue8i(en)ie)

;T H | (F/,& tS/,t, C) for (3yret-e)

(Infer Set Local) (Infer Get) classC{..Tf..}
()| = IT(x)] I'(v)=qC U=T[g/myaccess| |U|=|[(x)|
ts;TEx=v{ (Tx:T(v)],0,1s,0,0) for (8pret-x=v;) ts;TEx=v.f | (T[x:U],0,ts,0,0) for (8 -x=v.f3)

(Infer Set) classC{..Tf..}

I'(v)=qC tskT(w)<:Tl|g/myaccess] | (8,ts',C)

t={ne€rest(ts') | 8(q) =Fresh(n)} (' ={(8(g),Writeable)|d(q) € PQual}
ts;THv.f=wl (SOF,S,ZS/,I‘, Cu C/)for(Smecommit(S\top(rs’));v.f=w;)

(Infer Call) <&U m(T ©){EY}
ts;CFv: (a<B).T | (g,8,15,t,C) V=Ulg/a] |V|=|T(x)
ts;TFx=m @) | (8oT)[x:V],8,15,t,C) for (8,re-commit (3| top(ts')):x=<g>m (¥);)

(Infer New)
Cdeclared nfresh C=|I'(x)]

ts;T'F x=new C || (I'[x : Fresh(n) C],0,add(zs,n,0),0,0) for (3yreFx=newFresh(n) C:)

(Infer If) ¢/=8/(c(8:,8,)(e;);commit(c(8;,5,)));commit(§)) for ic{1,2} §=8|top(ts’) &,=8|rest(ts’) &/=8|top(zs")
§=¥rest(s”)y T'(v)=T ts;TFE;:void | (1,8, 1s:,t, C,-)fw(spwwi) forie {1,2}
ts1 Utsy 81 U8y U (8,15,C) 15’ F 8ol LSl I (I,8,15",C) 1] = fn((c(8:,8):8) (1)) for i € {1,2}

ts;THifvE Ey § (I,8;8 15" 1y Ut U U, LU G U CU C’)for(sﬁ"‘Hf”/‘)

(Infer While) ¢'=newtokens(r'):(8" ||15”|)(e):commit(8") 8/'=8" |top(ss”) ts+TUT Y (I,8,15',C)
IGV)=T 0:t';T"FE:void| (F”,S’,ts”,t,C/)for(ﬁl’"'ke) ts FT" <& o1 || (8", 65", C")
& = (8;8;8") ||ts"] " =tUfn(d"(t)) C" ={(q,RdWr)|q e d”(tNtop(ts”’)) NPQual}
ts:TF while v E | ((8:8")ol",8" 15" 1"\ top(ts”), CUC'U C" U C'") o Bpe-commit(§)white v)

Fig. 12. The inference algorithm

30

Appendix

A Type System: Soundness

Lemma 2 (Type System Properties).

(@) IfAF{T,8}e:T{T",8'}, then A-T,8,T,T",8 : ok.
(b) IFAF{T,8}e:T{I",8'}, T <:T and AFT" : ok, then A\ {T"" 8}e: T{I",8'}.
©) IfAFA{T,8}e:T{I",8'}, 1 ¢ dom(l) and A+ U : ok,
then A-{(TC,1:U),8}e: T{(T'1:U),8}.
(d) If AFA{T,8}e: T{I",&'}, n ¢ dom(A) and A,n : Tokent g : ok,
then A,n: Tokent {T',(8,n— q)}e: T{I",(&§,n— p)} for some p.
(e) If AF{L,8}e:T{I",8'} and A+ {I",8'}¢' : U{T",§"},
then At-{T,8}e;e’ : U{T",§"}.

We omit the statement of additional substitution lemmas that the system is designed to
satisfy, and apply these lemmas silently.
Proof of Theorem [1| (Preservation). If cfg : ok and cfg — cfg', then cfg : ok.

Proof. We distinguish cases by the possible reduction rules:

Case 1,[(Red Dcl);

(0,C x;e) ::s,h,t — ((0,x+—null),e) ::s5,h,t
The trunk of the left-hand-side’s proof tree has the following form:

AN+ qC:ok
8(q)=q
AN F{T"x:qC),8e: T{(I",x:U),8}

AN FA{T",8}C x;e: T{I",8'}

AANT,"Fo: T

dom(8) C dom(&’)

SOFU:I‘H

AN F (0,C xe): T ATHs:T — ok
AN T, (0,C x;e) i s: ok AN;T, T = h:ok AN -t ok
(0,C x;e) ::s,h,t : ok

We construct the following proof for the right-hand-side:

AN F{I",x:qC),8}e: T{(I'",x:U),8}
AN;T,TF (0,x—null): (I",x:qC)
dom(8) C dom(A")
8o(I,x:qC)=(I",x:qC)

A AT - ((0,x —null),e) : T ATEs:T — ok
AAN;T, T ((6,x+—null),e) s : ok AN;T.T = h:ok AN Ft:ok

((o,x > null),e) ::s,h,t: ok

31

Case 2,|(Red New Token)}
ne¢t

(o,newtoken n;e) :: s,h,t — (G,e) ::s,h,t U{n}

The trunk of the left-hand-side’s proof tree has the following form:

AN T, 8: 0k
AN n:Tokent {I",(8,n+ Fresh(n))}e: T{I'"",(§',n— q)}

A A+ {I",8}newtoken nye: T{I"", &'}
AN T)T"Fo:T”

dom(8) C dom(A")

Sol—‘” — l"//

A; AT | (o,newtokennse) : T A;THs: T — ok

B DR AN T, h:ok
A,A;T.T" - (0,newtoken n;e) :: s : ok AN ok

(o,newtokenn;e) :: s,h,t : ok

We construct the following proof tree for the right-hand-side:

A,A',n:Tokent {I"",(8,n— Fresh(n))}e : T{I"",(&,n—q)}
AN n:Token;I'\I" o : T

dom(8,n — Fresh(n)) C dom(A’,n : Token)

(8,n— Fresh(n))oI” =T"

A;A n: Token; TV F (0,e) : T ATks:T — ok

R — S AN n: Token;T,T" - h: ok
A, A n:Token;I,I" - (0,e) 1 s : ok AA'.n: Token - (1,n) : ok

(o,e)::s,h,(t,n): ok

Case 3, [Red Set Local}

(o,x=vse) i s,h,t — (O[x — c(v)],e) ::s,h,t
The trunk of the left-hand-side’s proof tree has the following form:

[T (v)| = [T (x)
AN F T[T ()], 8Ye: T{T™, &}

AN F{T",8}x=v;e: T{I"", &'}
AN T, 'Fo: T

dom(3) C dom(4A')

dol" =T"

AN (0,x=vie) : T ATHs:T — ok

LT T o) o e AN T, h:ok
AAN;T, T F (0,x=v;e) i s: ok AN ok

(o,x=v;e) ::s,h,1 : ok

We construct the following proof tree for the right-hand-side:

AN F{T"[x:T"(v)],8}e: T{I",8'}
AN T Folx—o()]: T [x:T"(v)]
dom(8) C dom(A")

SoIl"x:T"()] =T"[x:T"(v)]

ANTT - (olx—o(v)],e): T ATHs:T — ok

T - AN T, = h:ok
A AT (ofx— o(v)],e) :: s: ok AA 1ok

(olx— o(v)],e) ::s,h,t : ok

32

Case 4, [Red Ger}

v#null o(v)=n
(o,x=v.fse) 2 s,h,t — (c[x — ma(h(n))(f)],e) :: 5,h,t

The trunk of the left-hand-side’s proof tree has the following form:

classC{.Vf.}

() =¢C

U =V|[g/myaccess]

U] = T()]

AN H{T"[x:U],8}e: T{I"", &'}

AN H{T" 8 x=v.fie: T{I",&'}
AN T,'Fo: T
dom(8) C dom(A)
801_‘//:1"”
AN F (o,x=v.fre): T ATHs:T — ok
= — . AN;T,T" - h:ok
AN T F (0,x=v.f5e) i1 s : 0k AN 1ok

(o,x=v.f;e) ::s,h,t: ok
We construct the following proof tree for the right-hand-side:
AN F{T"[x:U),8}e: T{I", &}
AT T ofx— h(n)(f)] : T [x: U]

dom(8) C dom(A’)
SoI"x:U]=T"[x:U]

AN DT F (o= o (h(n))(f)]e): T ATEs: T — ok
AN;T,T" = h:ok
AN T, F (ofx— mta(h(n))(f)],e) :: s : ok AA 1ok

(o[x — ma(h(n))(f)],e) :: s,h,t : ok

Case 5, [(Red Set}}

v#null o(v)=n
(o,v.f=wie) ::5,h,t — (0,e) i s,h[n— (T (h(n)), T (h(n))[f — o(w)])],t

The trunk of the left-hand-side’s proof tree has the following form:

classC{.Uf.}
I"(v)=¢qC

AN F gaWriteable

A AT Fw:Ulg/myaccess|
AN FA{T" 8}e: T{I"", &'}

AN AT 8}v.f=wie: T{I" &}

ANT,'Fo: T

dom(8) C dom(A’)

SOF//:F//

AN E (o,v.f=wie) : T ATHs:T — ok
AN;T,T"Fh:ok
/. v =1 . .) ’
AANT,I'E (o,v.f=w;e) i s: ok AN 1ok

(o,v.f=wse)::s,h,t: 0k

We construct the following proof tree for the right-hand-side:

AN A{T",8}e: T{I"", &'}
AN TTFG:T”
dom(8) C dom(A’)

dol" =T

AN F (o,e): T ATHs:T — ok
R — — AN T T = hin— (7 (h(n)), 72 (h(n))[f — o(w)])] : ok
ANT,T'F (c,€) 5 0k AN ok

(0,€) ::s,h[n— (1 (h(n)), ma(h(n))[f — o(w)])], : ok

33

We need to convince ourselves that the heap judgment in the constructed tree really
holds. To this end, we need to know that A,A";I",I" F 6(w) : U[p/myaccess]|, where
(I,I)(n) = pC.From A,A';T, I F 6 : T, we know that A A"; T, T Fn=0o(v) : T (v) =
qC. Thus, p <: g. Because A, A’ - g<Writeable we know that ¢ is a minimal qualifier,
by Lemma [l Thus p = gq. From A/A;T” F w : U[g/myaccess], it then follows that
AAN;T. T o(w) : Ulg/myaccess] = U[p/myaccess], as desired.

Case 6, [(Red Call}}

<a<aB>U m(T %){'}
(o,x=<g>m(¥)se) :: 5,h,t — (X +— ©(V),€'[g/Q]) :: (0,x=<g>m(V);e) :: 5,h,t

The trunk of the left-hand-side’s proof tree has the following form:

3q)=q _

AN FGaB

AN T 9:T(G/a)

vV =Ulg/d]

[V]=T"(x)]

AN FA{T[x:V],8}e: T{I" &}

AN T, 8 x=<gpm(P);e: T{I" &'}
ANT,TFo: T
dom(8) C dom(A’)
Sor‘// :r//
AANT T F (o,x=<g>m(P)se) : T AT Fs: T — ok
ANT T (0,x=<g>m();e) :: s : ok

AN T, h:ok
AN 1ok

(0,x=<g>m(¥);e) :: 5,h,t : ok

We construct the following proof tree for the right-hand-side, where D, and D, are
defined below and we have skipped an inner node associated with list cons ::.

Dy D, AThEs:T — ok
(AA); 030, T);() - (= o(9),€'[g/a]) : V AN - (0,x=<g>m(P)ze) :V — T AAN;T,T = h:ok
AN 1ok

(¥ o(v),€'[g/a]) = (o,x=<g>m(P)se) :: s,h,t : ok

Here is Dy :
AANTTF (5 0(0) : (2: Tlg/6]) AA F (5 Ta/a),0)¢'[3/a] : Vi)
(A,A47:(): (C.T): () = (¥ = o(9),€'[g/a]) : V
And here D»:
AN T (0,x=<g>m(P);e) : T <aUm(T ©){e'Y V=U[3/d]
AN T (o,x=<>m(D)e) 1V =T
Case 7, |(Red Return)t

(o,w) 2 (', x=<g>m(P);e) i: s,h,t — (6'[x— c(w)],e) :: 5,h,t

The trunk of the left-hand-side’s proof tree has the following form, where we skip an
inner node associated with list cons ::.

34

¥@) =4

AN+ G<B
A,A’;F”’/’WF v:T(g/0]
V] =" (x)]
AT o AN F{T"[x:V],8} e : T{.,-}
I (w) -<?V AN F{T" 8 x=<g>m (D ;e: T{.,-}
: AN T, Fo: T
AN AT 8wV} dom(&') C dom(&’)
A,A,A”;F.’ r‘/ﬁr‘/l }7 o: r‘”l 8/ Ol"l/” — F””
dom(3) C dom(aA”) V=Ul[g/§
"o _ P R T
Sol” =T <a<aB>U m(T {2} ATFs:T — ok
(AN); A" (T,)T - (o,w) 1 V AN (6, x=<g>m(P);e) : V — T AN AT T T - hok

AN A"+t ok

(x—0(9),e[q/a)]) :: (0,x=<g>m(P);e) :: 5,h,t : ok

We construct the following proof tree for the right-hand-side:

AN A= {T"[x: V], 8} e: T{., .}

AN AT T F o [x— o(w)] s T [x: V)

dom(8') C dom(A',A”)

§ ol [x:V]=T"[x:V] ATFs:T — ok

A (A, AT (T, T") F (6'[x — o(w)]e) : T AN AT T - h: ok
AN A 1ok

(o'[x—o(w)],e) ::5,h,t : ok

Case 8, [Red New};

classC{T f} n¢dom(h)
(0,x=newq C;e) :: 5,h,t — (6[x— n],e) s, (h,n— q{f=nulll}),¢

The trunk of the left-hand-side’s proof tree has the following form:

AN FqC:ok

3(q)=¢q

C=I"(x)

AN F{T"[x:qC],8}e: T{I" &}
AN HA{T",8}x=newq Cie: T{I" &'}
ANT)T'Fo: T
dom(8) C dom(a’)

601_‘// :l"//
AN F (0,x=newq Cie) : T AT Fs: T — ok
AN;T,TFh:ok
/. v = . . .] Ly
AN T, I"F (0,x=newq C;e) :: s : ok AA 1ok
(0,x=newqCse) ::s,h,t : ok
We construct the following proof tree for the right-hand-side:
AN FA{T[x: g C),8)e: T{T", 8}
AN T n:qCHolx—n]:T"[x:qC)
dom(8) C dom(A’)
§oI"x:qCl=T"[x:qC]
AN n:qCH(olx—n)e): T ATEs: T — ok ~
AN;T,T n:qCk (h,n— g{f=null}): ok
AN T, ,n:qCk (ofx+ n],e) :s:ok AN 1ok q (alf)

(o[x+>n),e) s, (h,n— g{f=null}),s: ok

35

Case 9,|(Red If True);

6(v) =null
(o,(ifvee);e”) i s,ht — (C,e;€") i s, h,t

The trunk of the left-hand-side’s proof tree has the following form:

AANVET:

AN HA{T",8}e: void{I"",&}
AN H{T",8}e :void{I", &'}
AN {8} void{.,_}

AN H{T" 8} (ifvee);e” : T{_,}

AANT T Fo: T

dom(8) C dom(A’)

aor‘//:r‘/l

AN F (o, (ifvee)se”): T ATHs: T — ok
ANT,T'F (o, (ifvee);e”) s ok

AN;T,TFh:ok
AN 1ok

(0,(ifvee');e”) i s,h,t ok

Using the derived typing rule for sequential composition e; e, we construct the follow-
ing proof tree for the right-hand-side:

AN LT, 8}ese” - T{-,-}
AN:T, T FG:T"
dom(3) C dom(&’)
Sol” =T"
AN - (0,e5¢"): T ATEs: T — ok
AN;TTF (0,e5€”) s : ok

AN;T, T+ h:ok
AN 1ok

(o,e5€¢") 2 5,h,t : ok
Case 10, [(Red If False)| [(Red If True)| ((Red If False)} These cases are very similar
to
Case 11, [Red Commr}

8=(nq)

(0,commit Fresh(n) as g;e) :: s,h,t — (G,e) i s,(d0h),t
The trunk of the left-hand-side’s proof tree has the following form:

& (n) =Fresh(n)

AFg:ok

¥(g)=q

AN F{8oT" 808 }e: T{_,_}

A A H{I",8}commit Fresh(n) as q;e: T{_,-}
AANT\T"Fo: T
dom(§') C dom(A')
S/ Ol—‘// — l—‘/,
A AT - (0,commit Fresh(n) as gye) : T ATks:T — ok
AA;T,T" F (0, commit Fresh(n) as g;e) ::s: ok

AN;T,T" +h:ok
AA 1ok

(0,commit Fresh(n) as g;e) :: s,h,t : ok

We construct the following proof tree for the right-hand-side:

36

AN {80 808 }e: T{_,_}
AN;T, 80" Fo: 80T
dom(808') C dom(a’)
808 0ol =doI”
AN T - (o,e): T ATEs: T — ok
AN, F (o,¢) i s: ok

ANT, 50T F 8ok : ok
AN 1ok

(o,€) ::5,(80h),t: ok

(A,A;T,80I" - §oh : ok) follows from (A,A";T',T" I h : ok) by substitutivity and (I, 8o
I") = 80 (T,I”). The latter holds because n does not occur in the range of I, since (A -
I': ok), dom(A)Ndom(A’) =0 and n € dom(&') C dom(A'). Similarly, (A,A";T, 801" -
6 : 3oI") follows from (A,A’;T,T" - o : ') by substitutivity.

dom(808') C dom(A’) follows from dom(8') C dom(A’), because dom(d0d') =
dom(¥').

808 080" = doI" holds by the following calculation: §08' 0doT” =808 oI =
doI"”. The first of these equalities holds by Lemma [3| below, the second one holds
because &' oI =T, by premise of the left-hand-side’s proof trunk. O

Lemma 3.

(@) (n— q)(q) =qforalln, q.
(b) If d(n) = Fresh(n) and 8(q) = g, then (n+— q)odo(n+— q) = (n+ g)od.

Proof. For part[(a)] one distinguishes cases whether or not g = Fresh (n). It is obvious
that in both cases the equation holds. For part[(b)] let’s abbreviate (n — g¢) as &'. Pick p.
We need to show &' 0808/ (p) =& 0 8(p). If p # Fresh(n) this holds because &' (p) =
p. In the remaining case, we have & 080 & (Fresh(n)) =& 09(q) = &(q) = ¢ and
& 03(Fresh(n)) = & (Fresh(n)) =gq. O

B Inference

B.1 Some Definitions
Free names.
fn(Fresh(n)) = {n} fn(g) =0, otherwise fn(gC) =fn(g) fn(void) =0
fn(I) = U{fn(C(1)) | 1 € dom(I)} fn(8) = U{fn(8(n)) | n € dom(8)}
The support of commit-environments.
supp : CommitEnv — SetOf(Name) supp(8) = {n € dom(3) | §(n) # Fresh(n)}

Idempotent commit-environments. In this text, we say that 8 is idempotent whenever
dom(8) Nfn(8) = 0 (which implies that 0 3 = J).
Well-scoped commit-environments.

ts-8:0k = fn(8) C |rs| and (Vn,n')(8(n) = Fresh(n') = scope(ts,n) > scope(ts,n’))
The complement of 8 in &'.

c(8,8') 2 §| (dom(8') \ dom(8))

37

B.2 Commits

The inference algorithm inserts commits into unannotated expressions. The following
lemma enables us to do this in a well-typed way.

Lemma 4 (Commit Typing). Ifd is idempotent, dom(8) C dom(8'), supp(8) Nsupp(d') =
0and AFT,8,8: ok, then A {T,8}commit(d) : void{doI,§08'}.

The most complicated part in proving soundness of inference is caused by the
fact that we cannot always insert commits right at the point when we discover that
the commit is necessary. Instead, we sometimes have to insert commits further up in
the abstract syntax tree, namely in front of an enclosing while-loop. In the soundness
proof, this complication gives rise to the need for a substitutivity lemma for commit-
environments, i.e., we need that A - {[",8}A{I",8'} and A+ 8" : ok implies A - {§" o
[,8"08}8"(h){8" oI",8" 0 &'}. It is not hard to see that this implication is generally
false, because the substitution 8” may render axioms of the form A - g<Writeable in-
valid. Furthermore, the substitution may destroy the applicability of the rule[(Commit)|
intuitively because initialization tokens may only be committed once.

Let commits(e) be the set of all names that occur freely in the left argument of a
commit-statement in e. More precisely:

commits(v) =0 commits(C x;e) = commits(e)
commits(newtoken n;e) = commits(e) \ {n} commits(h;e) = commits(h) U commits(e)
commits(if ve¢') = commits(e) Ucommits(e’) commits(while v e) = commits(e)
commits(commit Fresh(n) as e) = {n}
Let 7 range over the forms {I",8}e : T{I",d8'} and {I",8}h{I",&'}.
commits({T',8}e : T{I",8'}) = commits(e) commits({I’,8}A{I",&}) = commits(h)

Let D range over proof trees for judgments A - 7. We say that n is a critical name of D
whenever n € dom(A) and D has a leaf of the form A - Fresh(n) <Writeable. Let
critical(D) be the set of all critical names of 9. We define:

wAF 9 2 (3 proof tree D of A+ 9)(critical(D) C 1)

Lemma 5 (Commit Substitutivity). If . A 7, A+ 3: ok, supp(d) Ncommits(J) =0
and A= 3(n) <Writeable for all nint Ndom(3), then gs(rresni)))-AF 8(J),

B.3 Mixed Substitutions
¥ € MixedSubst = (Name U ExVar) — (Qual UExVar)

Note that commit-environments (as defined on page[I8)) are mixed substitutions whose
domains are fully contained in Name. Note that substitutions (as defined on page [24)
are mixed substitutions whose domains are fully contained in ExVar and whose ranges
are fully contained in PQual \ ExVar.

! Notationally, we use the lifting of functions to the powerset of their domains, as defined on
page Furthermore, we interpret the syntactic constructor Fresh as a function from Name
to Qual. Thus, fn(8(Fresh(1))) = {n| (In' €1)(n € fn(8(Fresh(n))))}.

38

We extend mixed substitutions to functions of type Qual — Qual as follows: (?a) =
v(?a) if 200 € dom(Y); ¥(Fresh(n)) = y(n) if n € dom(Y); Y(g) = g otherwise. We
further extend mixed substitutions to functions of type Ty — Ty: (¢ C) = Y(q) C,
A(void) = void. As usual, we omit the hat when no ambiguities can arise. We compose
mixed substitutions with disjoint domains as follows:

TY = (Yoy)UY if dom(y)Ndom(y) =0
Lemma 6. [f dom(y)Ndom(Y) =0, theny oY= (y;Y)-

Lemma 7. (MixedSubst, ;, 0) is a partiam monoid. That is:

@ v0=0,y=v
®) (vi:72):73 = Y15 (Y23 73)

Proof. Part[(a)|follows directly from the definition of sequencing. For part[(b)}
(Y572):%3 = Y30 (201 UY2) U3
=mo(nov)Urnonurs
=Moh)onuUpon Uy
Y13 (2:73) = (V23v3) oV UY3 02 Uy

These two expressions are equal by Lemmal 6] U
We define a preorder on mixed substitutions:
y<:y £ (38 € CommitEnv)(Y =1v;8)
Lemma 8. <: is a preorder on mixed substitutions.
Proof. This follows from the monoid laws. (|
The following technical lemmas are useful:
Lemma 9. p;(pod) = §;p.

Proof. p;(pod) =(pod)opUpod=pUpod=_35;p. The second equality holds because
the domain of is fully contained in Name (as 8 € CommitEnv), whereas the range of
p is fully contained in PQual and thus does not contain names (as p € Subst). t

Lemma 10. 3;p <: &;p iff &';p = 8;¢(5,d');p

Proof. Let &';p = 8;¢(8,8);p. Then &;p = 8;p; (poc(3,8')), by Lemma[9] By defini-
tion of <:, this means that 8;p <: &';p.

Let &;p <: &';p. Then &';p = §; p; 8" for some §”. By expanding the two sides of the
equation, we get po &' Up = 38" o (pod) UpUJ". By subtracting p from both sides of
the equation, we get pod = 8" o (pod)Ud”. Then ¢c(3,p0d’) = &”, by definition of c.
So we have &';p = 8;p; 8" = 8;p;¢c(8,p08) = 8;p; (poc(d,8)) = 8;c(3,8);p. O

Lemma 11. Ifn & dom(8) and 8;p <: &';p, then (8,n+— 8(p));p <: (§',n— &' (p));p.

12 partial, because ;Y is undefined if dom(y) Ndom(Y) # 0.

39

Proof. Let 8;p <: &';p. Then &';p = 8;p;8” for some &".

(&,n— 5’(17));9 =po(&,n—d8(p)up
podU{np(&(p))}up
908UMU&W»M8@D}

B.4 Common Properties of the Inference Functions

Lemma 12. The judgments in Figures[I0}[I1jand[i2|all have form ---+ 7 . (--- .8,).

The following statements hold for derivable judgments:

(a) & is a partial function.

(b) If the union of all commit-environments occurring in J is idempotent, then 8 is
idempotent.

Lemma 13. The judgments in Figures andall have formis; 1 = 9 U (-, 8,15, -

(where J; is empty in Figure [I0). The following statements hold for derivable judg-
ments:

(a) ts and ts' have the same number of stack frames.
(b) For every k, the k-th frame of ts is a subset of the k-th frame of ts'.
() Iffn(J1,%) €

B.5 Properties of the Helper Functions
Lemma 14.

(a) Iftstcommit(p,q) || (8,ts"), then 8(p) = 8(q).

(b) Iftsk-p<:ql (S,ts’, C) and p e-solves C, then (3;p)(p)

(c) Ifts-T <:U | (8,15, C) and p €-solves C, then (p)(T) <

d) Ifisk-p=ql (3,15 C) and p e-solves C, then (8;p)(p) = .

(e IftsFT <:T" | (8 ts C) andps -solves C, then (8;p) ol <: (&;p)oT".
J;

p(r).

() IftsETUU U (V,8,15,C) and p e-solves C, then (8;p)(T) <:p(V) and (8;p)(U) <
p(V).

(h) Ifts-TUT | (I7,8,15, C) and p e-solves C, then (8;p) o’ <:poI” and (8;p)o
I <:pol”.

) IfsE 3L | (8",15,C), (dom(8) Udom(d')) N (fn(8) Ufn(d')) =0 and p &-
solves C, then 8;p <:8";p and &';p <: 8";p.

Proof. We detail the proofs of two of the more interesting parts.
Part[(e}
tsET<:U|(3,t5,C) t5' 8ol <:80l" | (&,15",C)
tstCx:T)<: (T, x:U) | (8;8 15", cu)

40

By induction hypothesis, we obtain:
= (85p)o(8eT) <: (8;p)o (801
We manipulate the left-hand-side of the latter inequality, applying Lemmal6|three times:
(8:p)o(8oT) =po(§o(8ol)) =po((8:8)oT) = ((8:8):p)ol’
We can do the same manipulations on the right-hand-side and obtain:
- ((3:8):p)oT <: ((8:8):p) ol
To handle the types T and U of x, we apply part[(c)]of this lemma to obtain:

= (&:p)(T) <: (8;p)(U)
By substitutivity, we get:

= (pod)((&:p)(T)) <: (po&)((8:p)(V))

We now manipulate the left-hand-side, using Lemmas [6]and [9]

(pod)((8:p)(T)) = (8:p; (pod))(T) = (8:8:p)(T)
We can manipulate the left-hand-side in the same way to obtain:
= ((8:8):p)(T) <: ((8:8):p)(V)
Part (1)} base case:

dom(8)Ndom(&') =0
1sE8US | (5UY,1s,0)

S;p <:8;p;(pod)
=8:8:p (by Lemmal[9)
= (§'o8Ud);p
= (8Ud);p (because dom (&) Nfn(3) = 0)
Part[(1)] induction step:

s 8US | (8",15',C) 15’ 8"(p) = §"(q) I (8".15".C")
s (B.n - p)U(E.n 1 q) b (8.0 8"(p):8" 15", CUC)

By induction hypothesis, we know that &;p <: 8”;p.

(d,n— p);p = (8,n—d(p));p (because fn(p) Ndom(d) = 0)
< (8",n—8"(p));p (by Lemmal|TT)
<t (81— 8(p)):p: (po8")
= (8",n—8"(p));8";p (by Lemma[J)

B.6 Properties of the Helper Function for Method Calls
Lemma 15. Ifts;TFv: AT |} (G,8,t5',t,C), thent C rest(ts').

Lemma 16. Ifts;T=v: AT | (g,8,15',t,C), then 8(q) = .

41

B.7 Properties of the Function for Expressions
Lemma 17. Ifts;TFE: T |} (I",8,15,1,C) " @l €) then |e| = E.

In the following three lemmas, let 7 range over E : T and H.
Lemma 18. If1s;TF 9 | (I",8,15',1, C) ™ @), then commits(e) Nrest(zs') = 0.

Lemma 19. If ts;T - 9 | (I, 8,151, C) " @) and n € fn (), then n € fn(T) or n
was freshly generated during inference (i.e., the proof tree for this judgment has a leaf

“n fresh” PE]
Lemma 20. Ifts;TF 9| (I,8,15',1,C) ™ e then t C rest(1s').

B.8 Soundness of Inference

We assume some arbitrary, but fixed, total order on Name. For a set of names ¢, let
(¢ : Token) = (n; : Token,...,n; : Token) where (ny,...,n;) is the list of all elements
of ¢ in the order on Name.

Theorem 4 (Soundness of Inference). Suppose ran(A) C
does not contain existential variables, A, |ts| : Token - T,
fn(") = 0.
@ IftssTHE:T | (I,8,15,1,C)forBree),

p A-solves CU{(g,RdWr) | ¢ € 8(¢r) NPQual},

dom(8ye) = [ts], 8),,, = Spre UM([25|\ [15]) and &, = 3| rest(ts'), then

tUtop(ts/)DAa |tsl‘ : Token I {<8r; p) ol (Sr’p) o S;Jre}p(e) : T{p Orlv (6’ p) Oa;ne}'
(b) Ifts;THH | (7,8,15',1, C) forBprete),

p A-solves CU{(g,RdWr) | g € 8(¢) NPQual},

dom(8pe) = [ts], 8, = Spre UM([25'|\ [t5]) and &, = 3 |rest(ts'), then

trop(isp A, [15'] - Token = {(8,;p) o', (8,:p) 08, }p(e) : void{pol”,(8:p) 05 }-

QualBound, AFT :0k, T
Spre 1 ok and supp(dpr) N

The specialized soundness theorem from page|25|is a straightforward corollary:

Proof of Theorem[3|(Specialized Soundness of Inference). Suppose ran(A) C QualBound,
(AFT,T :0k), T, T do not contain existential variables, ;T E : T |} (T, _,z,_, C) for(@)
and p A-solves C. Then (A+ {I',0}newtokens(t);p(e);commit(8) : T{(8;p) o I",0})
for 8= {(n,Any) | n € 1,8(n) = Fresh(n)}.

Proof. Suppose that ran(A) C QualBound, (AFT,T : ok), I"and T do not contain ex-
istential variables, 0:T'F E : T || (I”,8,z,¢/, C)©r(®¢) and p A-solves C. By Lemma
t' C rest(0) = 0. Thus, {(¢,RdWr) | g € 8(#') "PQual} = 0. Then, by Theorem [4] we
have A,r : Token - {[',n(t)}p(e) : T{poI",(8;p) on(t)}. Let & = {(n,Any) | n €
¢\ supp(8)}. Using Lemma {4} we obtain A,z : Token - {I",n(¢)}p(e);commit(d) :
T{(%;p)ol",(8;8;p)om(r)}. We then get A+ {I",0}newtokens(z);p(e);commit(d’) :
7{(8':p) oI".0}. by[New Token) 0

13 We are informal, because we want to avoid an explicit treatment of the generation of fresh
names.

42

B.9 Soundness Proof

In this section, we prove Theorem E} In order to deal with method calls, we first need
the following lemma:

Lemma 21. Suppose a.<B+ T : ok, ran(A) C QualBound and A, |ts| : Token I-I": ok.

Ifts;T=v:a<B.T | (q,8,t5,t,C)
and p A-solves CU{(¢,RdWr) | g € 8(1) NPQual},

then op(is')sAs 1’| - Token = p(g) <B
and A, |ts'| : Token; (8;p) oL v : (8;p)(T[g/@]).

Proof. By induction on the derivation of ¢s; " v : &< B.T |} (¢,8,t5',t, C). O

Proof of Theorem [} Suppose ran(A) C QualBound, A+ T : ok, T does not contain
existential variables, A, |ts| : Token - T',8,,, : ok and supp(8y,.) Nfn(I") = 0.

(@) Ifts;THE T | (I",8,15' 1, C) forGprete),

p A-solves CU{(g,RdVWr) | g € 8(¢) NPQual},

dom(8ye) = [ts, 8, = Spre UM([25|\ [15]) and &, = 3| rest(ts'), then

1Wtop(is' oA [15'] - Token - {(8:;p) o T, (85 p) 0 8. }p(e) : T{p oI, (8:p) 0 8}, }.
(b) Ifts;THH | (T7,8,15,1, C) forBprete),

p A-solves CU{(q,RdWr) | g € 8(t) NPQual},

dom(8pe) = |ts, 8, = Spre UM([t5'|\ [15]) and &, = 3|rest(ts'), then

1Utop(1s > |ts'| : Token = {(§,5p) o', (8,3p) 0 ;re}p(@ :void{poI”,(8;p) OS;re}'
Proof. The two statements are proven simultaneously by induction on the structure

of E and H. Suppose ran(A) C QualBound, AF T : ok, T does not contain existential
variables, and A, |ts| : Token - I', 8. : ok. and supp(8,.) Nfn(I") = 0.

Case 1, null:

ts;TFnull: T | (T,0,1s,0,0) for (8enull)

By|(Null)l we obtain g, A, |ts] : Token - {poI,pod,. null: T{pol,pod,.}.

Case 2, 1.
tsET) <: T (8,t5',C) &=3|top(rs)

ts;TH1:T | (BOF,S,tS/,@, 0) for (8,re-commit(§;);1)

Because p solves C, we know that (8;p)(I'(1)) <: T. By[(Id)|and [(Sub)| we obtain:

= oA, |1s'| : Token b {(8:p) o T', (8:p) 0 Bpre f1: T{(8:p) o ', (8:p) 0 8y }
Let 8, = 8| rest(zs). Note that supp(p o d;) Nsupp((8+;p) 0Opre) C supp(d;) N (supp(d,)U
supp(Spre)) supp(d;) Nsupp(8yre) € dom(8) Nsupp(Spre) C fn(I) Nsupp(dpre) = 0.
Furthermore, note that p o §, is idempotent, by Lemma Therefore, we can apply
Lemmal]to obtain:

— oA, |ts| : Tokent {(8,;p) oI, (8,;p) 08y fcommit(po§,) : void{(pod;)o((§,;p)o

T),(pod)o((8r;:p)08pre)}

Using Lemmas [6] and [9] we obtain (pod;)o (8,;p) = (8,:p:(pod)) = (8,:8:;p) =
((8;08,U8&,);p) = (by idempotence of 8) (3, Ud;;p) = (8;p)" Thus:

43

— oA, |ts] : Tokent {(3,;p) oI, (8,;p) 08pye fcommit(pod;) : void{(d;p)ol, (d;p)o
Spre}
By Lemma[J(e)l we can compose the judgments for commit(p o ;) and t to obtain:
- oA, |ts] : Token = {(8,5p) o, (8,3 p) 0 8pre fecommit(p o §;);1: T{(8;p) o T, (3;p) 0
Spre }
Case 3,C x;E:
nfresh s’ =add(zs,{n},0) I, =(I,x:Fresh(n) C) Iy =(",x:U)
ts'sTy - E T | (T,,8,15" 1, C)for (Bpele)
ts;THCxE:T I (0,8,15" ¢, C)fw(sl””kc xie)

By induction hypothesis:
= iUtop(is” oA, [t5”| - Token = {(8,5p) o T, (8,3p) 08, }p(e) : T{p oIy, (8:p) 08y, }
Then by
- tUtop(ts")DAa |l‘S”| : Tokent- {(81’; p) of, (87’; p) pre}C x5 p() T{p OF,’ (87 p) OSIIWE}
Case 4, H;E:

6,,,6—8p,kun(\zs/\\|m\) 8 =8 |rest(is) ts;TFH | (7,815 1, C) o Bpreten)

ts;T'-E: T (FN,SIJSN,I‘/, C/)for(ﬁoapn,)—e) § = (8,8/)
ts;THHLE T | (I7,8" 15"t Ufn (8 (1)) U, CU C') for Borel-8yen)se)

ﬁ;;(i;le:sf\ rest(ts), 8, = &,, UN(|ts”|\ |ts']) and & = &" |rest(zs”). By induction
— Utop(ts')o A\, [17| - Token = {(8,;p) o, (8,5 p) oBer}p(eh) :void{poI”,(8;p) 05;,,5}
= urop(is”) A, [15”| : Token = {(8):p) oI, (8;:p) 0008, }p(e) : T{poIl™, (&';p) 000
//
pre
Applying weakening to the former judgment, we obtain:
= tUtop(is o [18"| : Token = {(8,;p) oT', (8,5 p) 08 }p(en) : void{pol”, (8;p) o, }
By LemmasP 18] and [3] l we can apply p o). to this judgment. Furthermore, using Lem-
mas [6] and [} we have (pod))o (5,;p) = (6:/ pyand (pod)o(8;p)=(8;8;p) =
(8.:p)odand (pod.)op=po(pod.)=pod.. We thus obtain:
~ 1Um(3,(0)top(is)> A, 18" | - Token = {(83p) o, (873 p) 08, } (8. (en)) : void{(§)sp) o
I",(8:p) 0508, }
Now, we compose the judgments for p(8.(e;)) and p(e) to obtain:
~ 1Uin(3}(0))Ur'Utop(1s")2, 15" | : Token = {(85p) o T, (8p) 0 8 (8 (en)se) - T{po
I, (85p) 0808,)
Finally, observe that (8';p) 08 = ((8;8);p)' = (8";p). So we are done.
Case 5, x=v:
L] =T
ts;TF x=v || (Cx: T(v)],0,15,0,0) for (Gprex=v:)
By 04, |ts| : Token = {poT,podyetx=v{(pol)[x: pol(v)],p oy}
Clearly, (pol)[x:poT(v)] =po (Llx:T(v)]).

44

Case 6, x=v.f:

classC{..Tf.} T'(v)=qC U=T|g/myaccess] |U|=|T(x)|
ts;TEx=v.f | (Ox: U],@,ts,@,@)fm(swﬂ:v'f;)

Similar to previous proof case.
Case 7,v.f=w:
&=commit(3|top(1s)) classC{..Tf.} T(v)=qC tskT(w)<:T[g/myaccess]| (8,1',C)
t={nerest(ts) | 8(q) =Fresh(n)} (' ={(8(¢),Writeable)|d(q) € PQual}
ts;TEv.f=wl (80T,8,ts,t,CUC) for (8pret-8;3v.f =w1)

Because p A-solves CU (', we know that:

= pod(I'(w)) <: T[(3;p)(¢) /myaccess]
— A,|ts'| : Token - (8;p)(q) <Writeable

By and if follows that:
— tUtop(ts')>As 17| - Token = {(8;p) o T, (8;p) 0 8pe Jv.f=w;: void{(8;p) o T, (8;p) 0
Bpre}
Let §, = 8| rest(zs). Like in the proof case for return value 1 on page 43| we obtain:
- oA, |ts'| : Token - {(8,;p) oI, (8,;p) 08y fcommit(pod;) : void{(S;p) oI, (3;p)o
Bpre}
By Lemma)] we can compose these two judgments to obtain:
— Utop(1s/)o A\, [157| : Token = { (8,5 p) o, (8, p) 08 fcommit(pod;); v.f=w;: void{(d;p)o
[, (8;p) 0 pre}
Case 8, x=<g>m () :
8 =commit(8|top(ts')) <G<1B>U m(T £){E}
ts:CH: (0aB).T I (¢,8,15',1,C) V=U[g/a] [V|=T(x)|
ts;:TFx=m (%) || ((8oT)[x:V],8,15,1, C)for Bprel-commit(8,)x=<g>m(v):)
By Lemma[21] we have:
= tUtop(ss')p A [#5'| : Token - p(')_dB
— A|ts'] : Token; (8;p) o T v: T[(8;p)(q)/a).
By Lemma|[16] we know that 8(§) = . Therefore:
— A, |ts| : Token; (8;p) o Fv:Tp (7)/0..
Let &), = 8y UN(|ts’| \ [15]). By [(Call)} we obtain:
~ tUtop(ts/)DAa |ZS/| : Token - {(5’ p) ol, (57 p) 0§ re}x <p()>m (n;: VOid{(&p) °
Clx: V], (8:p) 08, }
Let 8, = 8|rest(zs). Like in the proof case for variable t on page[d3] we obtain:
— oA, |ts'] : Token ' {(8,;p) oL, (8,;p) ©8),,, }commit(pod,) : void{(8;p)oT’, (8;p)o
St
By Lemma [)e)] we can compose these two judgments to obtain:

~ op(i)o A 18| Token - {(8,:p) o T, (8,3 p) 03, }commit(p o8,):x=<p(q)>m (7)::
void{(3:p)oTlx: V], (8:p)08),}

45

Case9,if vE| E:

e} =8(c(8:,8,) (e;);commit(c(8;,8,)));commit(§]) for ic{1,2} §=38|top(ts’) §,=8|rest(ts’) & =8 |top(ss”)
& =8| rest(ts”) F(v) =T ts;I'FE;:voidl (F,-,S,-,ts,»,t,», Ci)for(ﬁ,,,ke,') forie {1,2}
i1 Utsa 81 U8, | (8,15,C) 15/ F 80Ty UdoTs I (I,8,15",C') 1! = (c(8:,8):8) (1) for i € {1,2}

ts;THifvE) Ep | (I, 88, 15", 1y Ufn(t]) U, Ufn(t}), LU G U CU C')for Bprtit vey &)

Let &, = Sy UN(|ts”|\ [t5]), i € {1,2}, 8;; = &;[top(ts”) and &; , = &; | rest(ts”). By

induction hypothesis, we have:
- t,-Utop(ts”)bAa |tsl/| : Token - {(Si,r; p) ol, (8”; p) 0 ;are}p(ei) : VOid{(Si; p) oly, (81'; p) ©
e }
We want to apply p oc(8;,8,) to this judgment, using Lemma([5] To this end, we need to
convince ourselves that the premises of Lemma [5]are satisfied, in particular the premise
A, |ts"| : Tokent poc(§;,8,)(n)<Writeable for all nint; Ndom(c(;,8,)). Soletn €
tiNdom(c(9;,d,)) such that c(§;,8,)(n) € PQua Then (8;8')(n) = & (c(8;,8,)(n)) =
c(d;,8,)(n), because commit-environments & map persistent qualifiers to themselves.
Then p(c(8;,8,)(n)) <: RdWr, because p solves {((8;8")(n),RdWr)} by assumption. So
the premises of Lemmaare satisfied, and we can apply p oc(§;,9,) to the judgment:
= fn(c(5:5,)(Fresny))Utop(is” oA, |15 | : Token = {(poc(8;,8,)) o (8;3p) o', (poc(8;, 8,)) o
(8ir;p) o8, Hpoc(S;,8,))(p(ei)) s void{(poc(8;,8,)) o (8;:p) o, (poc(8;, 8y)) o
(Si;p) o ;re}
Applying the usual simplifications, we obtain:
— fn(c(8;,8,) (Fresh (1)))Utop(ts” oA, |18 : Token
F{(8ir:c(8,8,):p) o, (8r:¢(8,8):p) 08}, }p(c(8i, &) (1)) : void{(di;c(8;, 8,):p)
Fia (Si; C(Sia 87‘); p) o S;Jre}
Because 8;,:p <: 8,;p (Lemma [I4[D), we have §,;p = &;,:¢(8;,8,):p (Lemma [I0).
Moreover, 8;;¢(8;,8,);p = 8i;0; ,¢(8:,0,);p = 8is;8,;p = 8,5 (8, 08;,); p. With these
equations, we can simplify the judgment:
= fn(c(8,8,) (Fresn () Utop(is”)p A, [15”| : Tokent {(8,5p) 0T, (8,:p) 08}, }p(c(8:,8,) (e:)) :
void{(8,;(8,08;;);p) oL, (8,;(8,08;);p) 0 5;7,6}
On the other hand, by Lemma[z_f] we have:
— oo, |ts"] : Token = {(8,;(8,08;);p) oL, (8,5 (8,08:1);p) 08, fcommit(poc(d;, &) :
void{(8,;(8,00;/);c(8:,8);p) 0T, (8,5(8,08;,);¢(8:,8:);p) 08,
We have (3,09;,);¢(8;,8;) = (by idempotence of 3;) (c(8;,8,)08;,);c(8;,8;) =c(8;,8;)0
(c(8:,6,)08; ;) Uc(;,8;) = (by idempotence of §) (c(8;,8;) Uc(d;,8,))0d;,Uc(d;,) =
c(8;,0) 08;; Uc(d;,6;) = & and §,;5; = 8. Using these equations, we can simplify the
judgment:
— oo, |ts"] : Token = {(8,;(8,08;);p) oL, (8,5 (8,08:);p) 08, fcommit(poc(d;, &) :
VOid{(S; p) © Fiv (6’ p) © 6;)re}
Composing the judgments for p(c(8;,5,)(e;)) and commit(p oc(§;,9,)), we get:

14 The case where c(§;,8,)(n) & PQual is obvious.

46

— fn(c(8:,8,) (Fresh (1)) Utop(ts” oA, |18 - Token
{(80:9) 0T (8,3p) 080 1p(c(31,5,) (): commit(c(3:,5,)) : voia{(8:p) T, (3:p) o
e }
Now we apply p o &, to this judgment, obtaining:
= fn((c(8:,5,):3)) (Fresh ()))Utop(1s”)>As £ | : Token
F{(8::8}:p) o, (8,:8:p)0d), ,e}p(S’((8:,8,)(e;); commit(c(8;,6;)))) : void{(8;d,;p)o
I, (696/” p) o Séare}
On the other hand, by Lemma[z_f] we have:
— oo, |ts"] : Token - {(8;8;;p) oT', (88, p) 8,) fcommit(po &) : void{(8;&";p)o
I, (8;8;p) 08, }
Because (8';p) o (80T;) <: poI” (Lemma[14{h)), we have:
- @DA |ts”| : Token - {(8;8,;p) 0T, (8;8);p) 08}, }commit(pod;) : void{pol”,(8;8;p)o
re}
Composing the judgments for p(8/.(c(§;,8,)(e;); commit(c(§;,6,)))) and commit(p o
/), we obtain:
~ fn((c(8:,8,):8)) (Fresh (1)) Utop(ss”)>As 1" | : Token
F{(8:8:p) o', (8::8:p) 08, }p(ef) : void{pol”,(8;8:p) 05, }
Now, we apply [(Tf)] to obtain:
= fn((c(81.8,):8.) (Fresh(1;)))Ufn((c(81.8,):8.) (Fresh (12)))Utop(1s”)2 [£5 | : Token
F{(8::8:p) o, (8::8,:p) 08, }p(if v} €3) : void{pol”,(8:8":p) o &), }
It is the case that fn((c(§;,8,);9))(Fresh(#))) C ; Ufn((c(8;,8);8')(t;)) = #; Ufn(r]).
Thus, by weakening, we finally obtain:
- tlUfn(ti)Ulzufn(lé)Utop(ls”)DAa |tsl/| : Token
F{(8r:8,:p) o, (8::8,:p) 0 8], }p(if v €|) : void{pol”,(8;8";p) 0. }
Case 10, vhile v E:
8/=8"||ts""| §'=8"|t' e'=newtokens(1');d!(e);commit(d]) §"=8"|top(s")
I'V)=T tsETUT | (I",8,t5,C)
0: 15T FE :void || (I",& 15" 1, C)forGoele) 4" T < § o7 |} (8",¢ 215", C")
& = (8:8,8") ||1s"| " =1UM@"(1)) C" = {(q,RdWz) | g € 8" (tNtop(ts”")) N PQual}
ts;TFwhilevE | ((5';5”) ol”, 8" 15" ¢t \top(zs”/), cucuc'uy C///)for(8,,,1,Fcommit(5[//');while V)

Let &), = Opre UM([ts™]\ |25
pothesis, we have:
— st : Token, |ts"'| : Token = {(8);p) oI, (8);p) 0 (808,) }p(e) : void{po
D7, (3:p)o (308}

pre

)> 8re = 8, UN(t') and &, = &'|[£s"'|. By induction hy-

> Ypre

By Lemma we can apply p o0& to this judgment and obtain:

— fo(osreanc oAt Token, 15| Token - {(3}:8/:p) oI, (8):8/:p) 0 (308),,) p(8/(¢)) :
void{(3/:p) oI, (3:8:p) o (303}

Using Lemma[d] we further obtain:

47

- fn(S”(Fresh(t)))Ut’>A7t/ : Token, |Z‘SW‘ : Token
(575873 p)o T, (81:3/:p) (3031 p 8 (e)scommit(3]) s voia{ (87:p)o T, (8:8'5p) o
(808,)}

pre
By Lemmal[l4fe)] (8";p) oI <: (8";p) o (& oI"”). Thus, by [(Sub)}
- fn(S”(Fresh(t)))Ut’DAvt/ : Token, |lS/”‘ : Token
F{(81:8/:p) o I, (8:87:p) 0 (808,) }p(8]/(e): commit(§7')) : void{(8:8":p) o
F/, (6/;8”;[)) o (806//)}

'pre

Because ts = TUT |} (IV,8,25', C), we know that fn(I") Ufn(8) C |zs’|. Furthermore,
& and 8" do not map names in |t5'| to qualifiers that contain names in ¢/, by well-
scopedness of generated commit-environments (Lemma|13{(c)). It follows that A, |zs”| :

Token I (8;8/;p) oI, (8;8";p) 0 (808/,.),(8;8";p) o ", (&;8";p) 0 (808/,) : ok.

r>Or> pre pre
Therefore, we can apply [[New Token)|to obtain:
- fn(S”(Fresh(l)))DAﬂ |tS”l| : Token
C1(8:8:p) o, (81:8:p) 0 (808}, }p(¢!) : void{ (8:8":p) o, (§/:8:p) o (30
Sre)}
pre

Because fn(I") Ufn(808),,) C |ts| and &, maps names in |ts' to qualifiers whose names

are contained in |ts”|, it is the case that (§';8";p) oI” = (8/;8/;p) oI and (&';8";p) o
(808),,) =(8,;8/;p)0(808,,). Therefore, we have:

pre pre
— (8" (Fresh(n))oA, |5™] : Token
H{(8):87:p)oI", (8):87:p) 0 (808,.) tp(e') s void{(8}:8;p) oI”, (85875 p) 0 (80
8re) }
Applying [(While) we obtain:
- fn(S"(Fresh(l)))DAﬂ |[S”I| : Token
C{(3:30:p) oI (81:80:p) o (808, }p(vnile ve) :void{(8:8/p) oL, (3:8/:p)o
(808,,)}
Because ts - TUT |} (I, 8,15, C), it is the case that (§;p) o' <: poI” (Lemma|l14{h)).
By substitutivity of subtyping, (8;8);p)o ((8;p)ol’) <: (8,;8!;p) o (poI”). Rewriting
both sides of this inequality, we get (8;8/.;8/;p) o <: (8/;8/;p) oI". Furthermore, we
have (8,;8;;p) 0 (808,,,) = (8;5);5/;p) ©3),,. We obtain:
- fn(S’/(Fresh(I)))DAa |tS///| : Token
F{(8:8,:8:p) oI, (8;8:85p) 08 Jp(whileve') :void{(8}:85p) oI, (8:8): 85 p)
/
pre
Because elements of ¢* do not occur in I, §),,,, I, we can replace &, and &; by & and
8" (as the domain extension does not have an effect). Furthermore, 8" = §;8';8”, by
definition. We obtain:

- fn(S”(Fresh(t)))DA7 |tsm| : Token
{(87:p) o, (8":p) 08, p(while ve') : void{ (858":p) o T, (8"5) o8 }
Let 8 = 8" |rest(zs”"). Like in previous proof cases (e.g., the proof case for return
value 1 on page [43), we now use Lemma]to obtain:

- fn(S//(Fresh(l)))DAﬂ |Z‘SW| : Token .
g/{(f/r” p)oT’,(8;p) 08, }p(commit(§;”);whileve') : void{(&;8";p)oT", (8";p)o
pre

48

Because (8';8";p) = po (8;8"), we get:

n| .
— n(8"(Fresu(n)))sA, |ts”'| : Token

F{(8/;p)ol,(8);p) oﬁg,e}p(commit(ég”);while ve'):void{po((8';8")ol"),(8";p)o
/

pre

Finally, fn(8” (Fresh(s))) CtUfn(8"(r)) =" ="\ top(ts”") Utop(ts”). Thus:

"y .
- t”\top(ts’”)Utop(ts”’)DA7 |l‘S | : Token

F{(&;p)oT,(8;p) 08, }p(commit(§”);whileve') :void{po((8';8")oT"),(8";p)o
/

8pre }
U

References

1.

2.

W

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

M. Barnett, R. DeLine, M. Fiahndrich, K.R.M. Leino, and W. Schulte. Verification of object-
oriented programs with invariants. Journal of Object Technology, 3(6):27-56, 2004.

K. Bierhoff and J. Aldrich. Modular typestate verification of aliased objects. In OOPSLA,
pages 301-320, 2007.

. J. Bloch. Effective Java. Addison-Wesley, 2001.
. C. Boyapati. SafeJava: A Unified Type System for Safe Programming. PhD thesis, MIT,

2004.

. J. Boyland. Checking interference with fractional permissions. In R. Cousot, editor, Static

Analysis Symposium, volume 2694 of LNCS, pages 55-72. Springer-Verlag, 2003.

. J. Boyland, J. Noble, and W. Retert. Capabilities for sharing: A generalisation of uniqueness

and read-only. In ECOOP, pages 2-27, London, UK, 2001. Springer-Verlag.

. J. Boyland and W. Retert. Connecting effects and uniqueness with adoption. In POPL, pages

283-295, 2005.

. D. Clarke, J. Potter, and J. Noble. Ownership types for flexible alias protection. In OOPSLA,

pages 48—-64, 1998.

. D. Clarke and T. Wrigstad. External uniqueness is unique enough. In ECOOP, pages 176—

200, 2003.

K. Crary, D. Walker, and G. Morrisett. Typed memory management in a calculus of capabil-
ities. In POPL, pages 262-275, 1999.

R. DeLine and M. Fihndrich. Enforcing high-level protocols in low-level software. In PLDI,
pages 59-69, 2001.

W. Dietl, S. Drossopoulou, and P. Miiller. Generic universe types. In ECOOP, pages 28-53,
2007.

M. Fihndrich and K.R.M. Leino. Declaring and checking non-null types in an object-
oriented language. In OOPSLA, pages 302-312. ACM Press, 2003.

M. Féhndrich and S. Xia. Establishing object invariants with delayed types. In OOPSLA,
pages 337-350. ACM, 2007.

M. Felleisen and D. Friedman. A Little Java, A Few Patterns. MIT Press, 1997.

D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-based memory
management in Cyclone. In PLDI, pages 282-293, 2002.

C. Haack and E. Poll. Type-based object immutability with flexible initialization. Technical
Report ICIS-R09001, Radboud University, Nijmegen, January 2009.

C. Haack, E. Poll, J. Schéfer, and A. Schubert. Immutable objects for a Java-like language.
In ESOP, volume 4421 of LNCS, pages 347-362. Springer, 2007.

JSR 308 Expert Group. Annotations on Java types. Java specification request, Java Commu-
nity Process, December 2007.

49

20.

21.

22.

23.

24.

25.

26.

217.

28.
29.

30.

31.

32.

33.
34.

K.R.M. Leino, P. Miiller, and A. Wallenburg. Flexible immutability with frozen objects. In
VSTTE, pages 192-208, 2008.

P. Miiller and A. Poetzsch-Heffter. Universes: A type system for alias and dependency con-
trol. Technical Report 279, Fernuniversitit Hagen, 2001.

J. Ostlund, T. Wrigstad, D. Clarke, and B. Akerblom. Ownership, uniqueness, and im-
mutability. In TOOLS Europe, pages 178-197, 2008.

M. Papi, M. Ali, T. Correa, J. Perkins, and M. Ernst. Practical pluggable types for Java. In
International Symposium on Software Testing and Analysis, pages 201-212, 2008.

I. Pechtchanski and V. Sarkar. Immutability specification and applications. Concurrency and
Computation: Practice and Experience, 17:639-662, 2005.

S. Porat, M. Biberstein, L. Koved, and B. Mendelson. Automatic detection of immutable
fields in Java. In CASCON’02. IBM Press, 2000.

A. Potanin, J. Noble, D. Clarke, and R. Biddle. Featherweight generic confinement. J. Funct.
Program., 16(6):793-811, 2006.

A. Potanin, J. Noble, D. Clarke, and R. Biddle. Generic ownership for generic Java. In
OOPSLA, pages 311-324, 2006.

X. Qi and A. Myers. Masked types for sound object initialization. In POPL. ACM, 2009.

F. Smith, D. Walker, and G. Morrisett. Alias types. In ESOP, volume 1782 of LNCS, pages
366-381. Springer- Verlag, 2000.

M. Tofte and J-P. Talpin. Region-based memory management. Information and Computa-
tion, 132(2):109-176, 1997.

C. Unkel and M. Lam. Automatic inference of stationary fields: a generalization of Java’s
final fields. In POPL, pages 183-195. ACM, 2008.

J. Vitek and B. Bokowski. Confined types in Java. Softw. Pract. Exper., 31(6):507-532,
2001.

T. Wrigstad. Ownership-Based Alias Management. PhD thesis, KTH Stockholm, 2006.

Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kiezun, and M. Ernst. Object and reference im-
mutability using Java generics. In ESEC/FSE 2007, pages 75-84. ACM, 2007.

50

	Introduction
	Motivation
	Kinds of Immutability
	Specifying Immutability with Type Qualifiers
	Flexible Object Initialization With Stack-local Regions
	Object Confinement with Qualifier-polymorphic Methods
	Summary of Contributions
	Outline

	Informal Presentation
	Access Qualifier as Class Parameter
	Flexible Initialization
	Qualifier Polymorphism for Methods
	Constructors
	Class Immutability in an Open World
	Threads
	Generics
	Qualifier-polymorphism for Classes

	The Formal Model
	A Model Programming Language with Access Qualifiers
	Operational Semantics
	Type System
	Local Annotation Inference

	Related Work
	Conclusion
	Type System: Soundness
	Inference
	Some Definitions
	Commits
	Mixed Substitutions
	Common Properties of the Inference Functions
	Properties of the Helper Functions
	Properties of the Helper Function for Method Calls
	Properties of the Function for Expressions
	Soundness of Inference
	Soundness Proof

