
Model Learning and Model Checking of SSH Implementations
Paul Fiterău-Broştean

∗

Radboud University Nijmegen

p.�terau-brostean@science.ru.nl

Toon Lenaerts

Radboud University Nijmegen

toon.lenaerts@student.ru.nl

Erik Poll

Radboud University Nijmegen

erikpoll@cs.ru.nl

Joeri de Ruiter

Radboud University Nijmegen

joeri@cs.ru.nl

Frits Vaandrager

Radboud University Nijmegen

F.Vaandrager@cs.ru.nl

Patrick Verleg

Radboud University Nijmegen

patrickverleg@gmail.com

ABSTRACT
We apply model learning on three SSH implementations to infer

state machine models, and then use model checking to verify that

these models satisfy basic security properties and conform to the

RFCs. Our analysis showed that all tested SSH server models satisfy

the stated security properties, but uncovered several violations of

the standard.

CCS CONCEPTS
•Networks →Protocol correctness; •�eory of computation
→Active learning; •So�ware and its engineering →Model
checking; •Security and privacy →Logic and veri�cation; Net-
work security;

KEYWORDS
Model learning, model checking, SSH protocol

ACM Reference format:
Paul Fiterău-Broştean, Toon Lenaerts, Erik Poll, Joeri de Ruiter, Frits Vaan-

drager, and Patrick Verleg. 2017. Model Learning and Model Checking of

SSH Implementations. In Proceedings of International SPIN Symposium on
Model Checking of So�ware , Santa Barbara, CA, USA, July 2017 (SPIN’17),
10 pages.

DOI: 10.1145/3092282.3092289

1 INTRODUCTION
SSH is a security protocol that is widely used to interact securely

with remote machines. �e Transport layer of SSH has been sub-

jected to security analysis [31], incl. analyses that revealed crypto-

graphic shortcomings [5, 7, 20].

Whereas these analyses consider the abstract cryptographic pro-

tocol, this paper looks at actual implementations of SSH, and in-

vestigates �aws in the program logic of these implementations,

rather than cryptographic �aws. Such logical �aws have occurred

in implementations of other security protocols, notably TLS, with

Apple’s ’goto fail’ bug and the FREAK a�ack [8]. For this we use

∗
Supported by NWO project 612.001.216, Active Learning of Security Protocols

(ALSEP).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

SPIN’17, Santa Barbara, CA, USA
© 2017 ACM. 978-1-4503-5077-8/17/07. . . $15.00

DOI: 10.1145/3092282.3092289

model learning (a.k.a. active automata learning) [6, 21, 28] to infer

state machines of three SSH implementations, which we then an-

alyze by model checking for conformance to both functional and

security properties.

�e properties we verify for the inferred state machines are

based on the RFCs that specify SSH [32–35]. �ese properties

are formalized in LTL and veri�ed using NuSMV [13]. We use

a model checker since the models are too complex for manual

inspection (they are trivial for NuSMV). Moreover, by formalizing

the properties we can be�er assess and overcome vagueness or

under-speci�cation in the RFC standards.

�is paper is born out of two recent theses [19, 29], and is to

our knowledge the �rst combined application of model learning

and model checking in verifying SSH implementations, or more

generally, implementations of any network security protocol.

Related work. Chen et al.[12] use the MOPS so�ware model

checking tool to detect security vulnerabilities in the OpenSSH C

implementation due to violation of folk rules for the construction

of secure programs such as “Do not open a �le in writing mode

to stdout or stderr”. Udrea et al.[27] also investigated SSH imple-

mentations for logical �aws. �ey used a static analysis tool to

check two C implementations of SSH against an extensive set of

rules. �ese rules not only express properties of the SSH protocol

logic, but also of message formats and support for earlier versions

and various options. Our analysis only considers the protocol logic.

However, their rules were tied to routines in the code, so had to be

slightly adapted to �t the di�erent implementations. In contrast,

our properties are de�ned at an abstract level so do not need such

tailoring. Moreover, our black box approach means we can analyze

any implementation of SSH, not just open source C implementa-

tions.

Formal models of SSH in the form of state machines have been

used before, namely for a manual code review of OpenSSH [23],

formal program veri�cation of a Java implementation of SSH [22],

and for model based testing of SSH implementations [9]. All this

research only considered the SSH Transport layer, and not the other

SSH protocol layers.

Model learning has previously been used to infer state machines

of EMV bank cards [3], electronic passports [4], hand-held readers

for online banking [11], and implementations of TCP [14] and

TLS [25]. Some of these studies relied on manual analysis of learned

models [3, 4, 25], but some also used model checkers [11, 14].

Instead of using active learning as we do, it is also possible to

use passive learning to obtain protocol state machines [30]. Here

network tra�c is observed, and not actively generated. �is can

then provide a probabilistic characterization of normal network

tra�c, but it cannot uncover implementation �aws that occur in

strange message �ows, which is our goal.

2 MODEL LEARNING
2.1 Mealy machines
A Mealy machine is a tupleM = (I ,O,Q,q0,δ , λ), where I is a �nite

set of inputs, O is a �nite set of outputs, Q is a �nite set of states,

q0 ∈ Q is the initial state, δ : Q × I → Q is a transition function,

and λ : Q × I → O is an output function. Output function λ is

extended to sequences of inputs by de�ning, for all q ∈ Q , i ∈ I and

σ ∈ I∗, λ(q, ϵ) = ϵ and λ(q, iσ) = λ(q, i)λ(δ (q, i),σ). �e behavior

of Mealy machineM is de�ned by function AM : I∗ → O∗ with

AM (σ) = λ(q0,σ), for σ ∈ I∗. Mealy machines M and N are

equivalent, denoted M ≈ N , i� AM = AN . Sequence σ ∈ I∗

distinguishesM and N if and only if AM (σ) , AN (σ).

2.2 MAT Framework
�e most e�cient algorithms for model learning (see [17] for a

recent overview) all follow the pa�ern of a minimally adequate
teacher (MAT) as proposed by Angluin [6]. Here learning is viewed

as a game in which a learner has to infer an unknown automaton

by asking queries to a teacher. �e teacher knows the automaton,

which in our se�ing is a Mealy machineM, also called the System

Under Learning (sul). Initially, the learner only knows the input

alphabet I and output alphabet O ofM. �e task of the learner is

to learnM via two types of queries:

• With a membership query, the learner asks what the re-

sponse is to an input sequence σ ∈ I∗. �e teacher answers

with the output sequence in AM (σ).
• With an equivalence query, the learner asks whether a

hypothesized Mealy machineH is correct, that is, whether

H ≈ M. �e teacher answers yes if this is the case. Other-

wise it answers no and supplies a counterexample, which is

a sequence σ ∈ I∗ that triggers a di�erent output sequence

for both Mealy machines, that is, AH (σ) , AM (σ).

�e MAT framework can be used to learn black box models of

so�ware. If the behavior of a so�ware system, or System Under

Learning (sul), can be described by some unknown Mealy machine

M, then a membership query can be implemented by sending

inputs to the sul and observing resulting outputs. An equivalence

query can be approximated using a conformance testing tool [18]

via a �nite number of test queries. A test query consists of asking

the sul for the response to an input sequence σ ∈ I∗, similar to

a membership query. Note that this cannot rule out that there is

more behavior that has not been discovered.

2.3 Abstraction
Most current learning algorithms are only applicable to Mealy

machines with small alphabets comprising abstract messages. Prac-

tical systems typically have parameterized input/output alphabets,

whose application triggers updates on the system’s state variables.

To learn these systems we place a mapper between the learner

and the sul. �e mapper is a transducer which translates concrete

Figure 1: SSH protocol layers

inputs to abstract inputs and concrete outputs to abstract outputs.

For a thorough discussion of mappers, we refer to [2].

3 THE SECURE SHELL PROTOCOL
�e Secure Shell Protocol (or SSH) is a protocol used for secure

remote login and other secure network services over an insecure

network. It runs as an application layer protocol on top of TCP,

which provides reliable data transfer, but does not provide any form

of connection security. �e initial version of SSH was superseded

by a second version (SSHv2), a�er the former was found to contain

design �aws which could not be �xed without losing backwards

compatibility [15]. �is work focuses on SSHv2.

SSHv2 follows a client-server paradigm. �e protocol consists

of three layers (Figure 1):

(1) �e transport layer protocol (RFC 4253 [35]) forms the basis

for any communication between a client and a server. It

provides con�dentiality, integrity and server authentica-

tion as well as optional compression.

(2) �e user authentication protocol (RFC 4252 [32]) is used to

authenticate the client to the server.

(3) �e connection protocol (RFC 4254 [33]) allows the en-

crypted channel to be multiplexed in di�erent channels.

�ese channels enable a user to run multiple applications,

such as terminal emulation or �le transfer, over a single

SSH connection.

Each layer has its own speci�c messages. �e SSH protocol is

interesting in that outer layers do not encapsulate inner layers, and

di�erent layers can interact. For this reason, we opt to analyze SSH

as a whole, instead of analyzing its constituent layers independently.

Below we discuss each layer, outlining the relevant messages which

are later used in learning, and characterizing the so-called happy
�ow that a normal protocol run follows.

At a high level, a typical SSH protocol run uses the three con-

stituent protocols in the order given above: a�er the client estab-

lishes a TCP connection with the server, (1) the two sides use the

Transport layer protocol to negotiate key exchange and encryption

algorithms, and use these to establish session keys, which are then

used to secure further communication; (2) the client uses the user

authentication protocol to authenticate to the server; (3) the client

uses the connection protocol to access services on the server, for

example the terminal service.

3.1 Transport layer
SSH runs over TCP, and provides end-to-end con�dentiality and

integrity using session keys. Once a TCP connection has been es-

tablished with the server, these session keys are securely negotiated

using a key exchange algorithm, the �rst step of the protocol. �e

key exchange begins by the two sides exchanging their preferences

for the key exchange algorithm to be used, as well as encryption,

2

compression and hashing algorithms. Preferences are sent with

a kexinit message. Subsequently, key exchange using the nego-

tiated algorithm takes place. Following this algorithm, one-time

session keys for encryption and hashing are generated by each side,

together with an identi�er for the session. �e main key exchange

algorithm is Di�e-Hellman, which is also the only one required

by the RFC. For the Di�e-Hellman scheme, kex30 and kex31 are

exchanged to establish fresh session keys. �ese keys are used from

the moment the newkeys command has been issued by both parties.

A subsequent sr auth requests the authentication service. �e

happy �ow thus consists of the succession of the three steps com-

prising key exchange, followed up by a successful authentication

service request. �e sequence is shown in Figure 2.

pre-kex kexed

KEX30/
 KEX31 pre-authinit

KEXINIT/
 KEXINIT keyed

NEWKEYS/
 NEWKEYS

SR_AUTH/
 SR_ACCEPT

Figure 2: �e happy �ow for the Transport layer.

Key re-exchange [35, p. 23], or rekeying, is an almost identical

process, the di�erence being that instead of taking place at the

beginning, it takes place once session keys are already in place.

�e purpose is to renew session keys so as to foil potential replay

a�acks [34, p. 17]. It follows the same steps as key exchange. A

fundamental property of rekeying is that it should preserve the

state; that is, a�er the rekeying procedure is completed, the protocol

should be in the same state as it was before the rekeying started,

with as only di�erence that new keys are now in use.

3.2 Authentication layer
Once a secure tunnel has been established, the client can authen-

ticate. For this, four authentication methods are de�ned in RFC

4252 [32]: password, public-key, host-based and none. �e authen-

tication request includes a user name, service name and authentica-

tion data, which consists of both the authentication method as well

as the data needed to perform the actual authentication, such as the

password or public key. �e happy �ow for this layer, as shown in

Figure 3, is simply a single protocol step that results in a successful

authentication. �e messages ua pw ok and ua pk ok achieve this

for respectively password and public key authentication.

pre-auth auth

UA_PK_OK/UA_SUCCESS
 UA_PW_OK/UA_SUCCESS

Figure 3: �e happy �ow for the user Authentication layer.

3.3 Connection layer
Successful authentication makes services of the Connection layer

available. �e Connection layer enables the user to open and

close channels of various types, with each type providing access

to speci�c services. Of the various services available, we focus

on the remote terminal over a session channel, a classical use

of SSH. �e happy �ow consists of opening a session channel,

ch open, requesting a “pseudo terminal” ch reqest pty, option-

ally sending and managing data via the messages ch send data,

ch window adjust, ch send eof, and eventually closing the chan-

nel via ch close, as depicted in Figure 4.

auth

chanCH_OPEN/
 CH_OPEN_SUCCESS

pty

CH_REQUEST_PTY/
 CH_SUCCESS

CH_CLOSE/
 CH_CLOSE_SUCCESS

CH_SEND_DATA...

Figure 4: �e happy �ow for the Connection layer.

 Learner Mapper
 "KEX30"

 "KEX31"
 SUT

 (seq=16, len=358, payload=...)

 (seq=17, len=214, payload=...)

Figure 5: �e SSH learning setup.

4 THE LEARNING SETUP
�e learning setup consists of three components: the learner,

the mapper and the sul. �e learner generates abstract inputs,

representing SSH messages. �e mapper transforms these messages

into well-formed SSH packets and sends them to the sul. �e

sul sends response packets back to the mapper, which in turn,

translates these packets to abstract outputs. �e mapper then sends

the abstract outputs back to the learner.

�e learner uses LearnLib [24], a Java library implementing

L∗ based algorithms for learning Mealy machines. �e mapper is

based on Paramiko, an open source SSH implementation wri�en in

Python
1
. We opted for Paramiko because its code is relatively well

structured and documented. �e sul can be any existing implemen-

tation of an SSH server. �e three components communicate over

sockets, as shown in Figure 5.

SSH is a complex client-server protocol. In our work so far

we concentrated on learning models of the implementation of the

server, and not of the client. We further restrict learning to only ex-

ploring the terminal service of the Connection layer, as we consider

it to be the most interesting from a security perspective. Algorithms

for encryption, compression and hashing are le� to default se�ings

and are not purposefully explored. Also, the starting state of the sul

is one where a TCP connection has already been established and

where SSH versions have been exchanged, which are prerequisites

for starting the Transport layer protocol.

4.1 �e learning alphabet
�e alphabet we use consists of inputs, which correspond to mes-

sages sent to the server, and outputs, which correspond to messages

received from the server. We split the input alphabet into three parts,

one for each of the protocol layers.

Learning does not scale with a growing input alphabet, and since

we are only learning models of servers, we remove those inputs that

are not intended to ever be sent to the server
2
. Furthermore, from

the Connection layer we only use messages for channel manage-

ment and the terminal functionality. Finally, because we will only

explore protocol behavior a�er SSH versions have been exchanged,

we exclude the messages for exchanging version numbers.

�e resulting lists of inputs for the three protocol layers are

given in Tables 1-3. In some experiments, we used only a subset

of the most essential inputs, to further speed up experiments. �is

1
Paramiko is available at h�p://www.paramiko.org/

2
�is means we exclude the messages service accept, ua accept, ua failure,

ua banner, ua pk ok, ua pw changereq, ch success and ch failure from our

alphabet.

3

http://www.paramiko.org/

restricted alphabet signi�cantly decreases the number of queries

needed for learning models while only marginally limiting explored

behavior. We discuss this again in Section 5. Inputs included in the

restricted alphabet are marked by ’*’ in the tables below.

Table 1 lists the Transport layer inputs. We include a version

of the kexinit message with first kex packet follows disabled.

�is means no guess [35, p. 17] is a�empted on the sul’s parameter

preferences. Consequently, the sul will have to send its own kex-

init in order to convey its own parameter preferences before key

exchange can proceed. Also included are inputs for establishing

new keys (kex30, newkeys), disconnecting (disconnect), as well

as the special inputs ignore, unimpl and debug. �e la�er are

not interesting, as they are normally ignored by implementations.

Hence they are excluded from our restricted alphabet. disconnect

proved costly time wise, so was also excluded.

Table 1: Transport layer inputs

Message Description
disconnect Terminates the current connection [35, p. 23]

ignore Has no intended e�ect [35, p. 24]

unimpl Intended response to unrecognized messages [35, p. 25]

debug Provides other party with debug information [35, p. 25]

kexinit* Sends parameter preferences [35, p. 17]

kex30* Initializes the Di�e-Hellman key exchange [35, p. 21]

newkeys* Requests to take new keys into use [35, p. 21]

sr auth* Requests the authentication protocol [35, p. 23]

sr conn* Requests the connection protocol [35, p. 23]

�e Authentication layer de�nes a single client message type for

the authentication requests [32, p. 4]. Its parameters contain all in-

formation needed for authentication. Four authentication methods

exist: none, password, public key and host-based. Our mapper sup-

ports all methods except host-based authentication because some

SUTs don’t support this feature. Both the public key and password

methods have ok and nok variants, which provide respectively

correct and incorrect credentials. Our restricted alphabet supports

only public key authentication, as the implementations processed

this faster than the other authentication methods.

Table 2: Authentication layer inputs

Message Description
ua none Authenticates with the “none” method [32, p. 7]

ua pk ok* Provides a valid name/key pair [32, p. 8]

ua pk nok* Provides an invalid name/key pair [32, p. 8]

ua pw ok Provides a valid name/password pair [32, p. 10]

ua pw nok Provides an invalid name/password pair [32, p. 10]

�e Connection layer allows clients to manage channels and

request services over them. In accordance with our learning goal,

our mapper only supports inputs for requesting terminal emula-

tion, plus inputs for channel management as shown in Table 3.

�e restricted alphabet only supports the most general channel

management inputs, and excludes those not expected to produce

state change.

�e output alphabet includes all messages an SSH server gen-

erates, which may include, with identical meaning, any of the

messages de�ned as inputs. �is also includes responses to var-

ious requests: kex31 [35, p. 21] as reply to kex30, sr succes in

Table 3: Connection layer inputs

Message Description
ch open* Opens a new channel [33, p. 5]

ch close* Closes a channel [33, p. 9]

ch eof* Indicates that no more data will be sent [33, p. 9]

ch data* Sends data over the channel [33, p. 7]

ch edata Sends typed data over the channel [33, p. 8]

ch window adjust Adjusts the window size [33, p. 7]

ch reqest pty* Requests terminal emulation [33, p. 11]

response to service requests (sr auth and sr conn), ua success

and ua failure [32, p. 5,6] in response to authentication requests,

and ch open success [33, p. 6] and ch success [33, p. 10] , in

positive response to ch open and ch reqest pty respectively.

To these outputs, we add no resp for when the sul generates no

output, and the special outputs ch none, ch max and no conn,

and buffered, which we discuss in the next subsections.

4.2 �e mapper
�e mapper must provide a translation between abstract messages

and well-formed SSH messages: it has to translate abstract inputs

listed in Tables 1-3 to actual SSH packets, and translate the SSH

packets received in answer to our abstract outputs. If no answer it

received on an input, the mapper must return an output indicating

timeout, which in our case is the no resp message.

�e sheer complexity of the mapper meant that it was easier

to adapt an existing SSH implementation, rather than construct

the mapper from scratch. A�er all, in many ways the mapper acts

similar to an SSH client. Paramiko already provides mechanisms

for encryption/decryption, as well as routines for constructing and

sending the di�erent types of packets, and for receiving them. �ese

routines are called by control logic dictated by Paramiko’s own state

machine. �e mapper was constructed by replacing this control

logic with one dictated by messages received from the learner.

�e mapper maintains a set of state variables to record param-

eters of the ongoing session, including the server’s preferences

for key exchange and encryption algorithm, parameters of these

protocols, and, once it has been established, the session key. �ese

parameters are updated when receiving messages from the server

and used to concretize inputs to actual SSH messages to the server.

For example, upon receiving a kexinit from the sul, the mapper

saves the sul’s preferences for key exchange, hashing and encryp-

tion algorithms. Initially these parameters are all set to the defaults

that any server should support, as required by the RFC. On receiv-

ing kex31 in response to the kex30 input, the mapper saves the

hash, as well as the new keys. Finally, a newkeys response prompts

the mapper to use the new keys negotiated earlier in place of the

older ones, if such existed.

�e mapper also contains a bu�er for storing opened channels,

which is initially empty. On a ch open from the learner, the mapper

adds a channel to the bu�er with a randomly generated channel

identi�er; on a ch close, it removes the channel (if there was any).

�e bu�er size, or the maximum number of opened channels, is

limited to one. Initially the bu�er is empty. �e mapper also stores

the sequence number of the last received message from the sul.

�is number is then used when constructing unimpl inputs.

4

In the following cases, inputs are answered by the mapper di-

rectly instead of being sent to the sul to �nd out its response: (1)

on receiving a ch open input if the bu�er has reached the size

limit, the mapper directly responds with ch max; (2) on receiv-

ing any input operating on a channel (all Connection layer inputs

other than ch open) when the bu�er is empty, the mapper directly

responds with ch none; (3) if connection with the sul was termi-

nated, the mapper responds with a no conn message, as sending

further messages to the sul is pointless in that case.

4.3 Practical complications
SSH implementations even behind the mapper abstraction may not

behave like deterministic Mealy Machines, a prerequisite for the

learning algorithm to succeed. Sources of non-determinism are:

(1) Underspeci�cation in the SSH speci�cation (for example,

by not specifying the order of certain messages) allows

some non-deterministic behavior. Even if client and server

do implement a �xed order for messages they sent, the

asynchronous nature of communication means that the

interleaving of sent and received messages may vary. More-

over, client and server are free to intersperse debug and

ignore messages at any given time
3

(2) Timing is another source of non-deterministic behavior.

For example, the mapper might time-out before the sul

had sent its response. Some suls also behave unexpectedly

when a new input is received too shortly a�er the previ-

ous one. Hence in our experiments we adjusted time-out

periods accordingly so that neither of these events occur,

and the sul behaves deterministically all the time.

To detect non-determinism, the mapper caches all observations in

an SQLite database and veri�es if new observations are consistent

with previous ones. If not, it raises a warning, which then needs

to be manually investigated. We analyzed each warning until we

found a se�ing under which behavior was deterministic.

�e cache also acts as a cheap source of responses for already

answered queries. Finally, by re-loading the cache from a previous

experiment, we were able to start from where this experiment le�

o�. �is proved useful, as experiments could take several days.

Another practical problem besides non-determinism is that an

SSH server may produce a sequence of outputs in response to a

single input. �is means it is not behaving as a Mealy machines,

which allows for only one output. To deal with this, the mapper

concatenates all outputs into one, and it produces this sequence as

the single output to the learner.

A �nal challenge is presented by forms of ‘bu�ering’, which

we encountered in two situations. Firstly, some implementations

bu�er incoming requests during rekey; only once rekeying is com-

plete are all these messages processed. �is leads to a newkeys

response (indicating rekeying has completed), directly followed

by all the responses to the bu�ered requests. �is would lead to

non-termination of the learning algorithm, as for every sequence

of bu�ered messages the response di�ers. To prevent this, we treat

the sequence of queued responses as the single output buffered.

A di�erent form of bu�ering occurs when opening and closing

channels, since a sul can close only as many channels as have

3
�e ignore messages are aimed to thwart tra�c analysis.

previously been opened. Learning this behavior would lead to

an in�nite state machine, as we would need a state ‘there are n
channels open’ for every number n. For this reason, we restrict

the number of simultaneously open channels to one. �e mapper

returns a custom response ch max to a ch open message whenever

this limit is reached.

5 LEARNING RESULTS
We use the setup described in Section 4 to learn models for OpenSSH,

Bitvise and DropBear SSH server implementations. OpenSSH rep-

resents the focal point, as it is the most popular implementation

of SSH (with over 80 percent of market share in 2008 [5]) and the

default server for many UNIX-based systems. DropBear is an alter-

native to OpenSSH designed for low resource systems. Bitvise is a

well-known proprietary Windows-only SSH implementation.

In our experimental setup, learner and mapper ran inside a

Linux Virtual Machine. OpenSSH and DropBear were learned over

a localhost connection, whereas Bitvise was learned over a virtual

connection with the Windows host machine. We have adapted the

se�ing of timing parameters to each implementation.

OpenSSH was learned using a full alphabet, whereas DropBear

and Bitvise were learned using a restricted alphabet (as de�ned in

Subsection 4.1). �e reason for using a restricted alphabet was to re-

duce learning times. Based on the model learned for OpenSSH (the

�rst implementation analyzed) and the speci�cation, we excluded

inputs that seemed unlikely to produce state change (such as debug

or unimpl). We also excluded inputs that proved costly time-wise

(such as disconnect) but were not were not needed to visit all

states in the happy �ow. We excluded, for example, the user/pass-

word based authentication inputs (ua pw ok and ua pw nok) as

they would take the system 2-3 seconds to respond to. By contrast,

public key authentication resulted in quick responses.

For the test queries we used random and exhaustive variants of

the testing algorithm described in [26], which generate e�cient

test suites. Tests generated comprise an access sequence, a middle

section of length k and a distinguishing sequence. �e exhaustive

variant generates tests for all possible middle sections of length

k and all states. Passing all tests then provides some notion of

con�dence, namely, that the learned model is correct unless the

(unknown) model of the implementation has at least k more states

than the learned hypothesis. �e random variant produces tests

with randomly generated middle sections. No formal con�dence

is provided, but past experience shows this to be more e�ective at

�nding counterexamples since k can be set to higher values. We

executed a random test suite with k of 4 comprising 40000 tests for

OpenSSH, and 20000 tests for Bitvise and DropBear. We then ran

an exhaustive test suite with k of 2 for all implementations.

Table 4 describes the exact versions of the systems analyzed

together with statistics on learning and testing: (1) the number

of states in the learned model, (2) the number of hypotheses built

during the learning process and (3) the total number of learning

and test queries run. For test queries, we only consider those

run on the last hypothesis. All learned models and the prop-

erties checked are at h�ps://gitlab.science.ru.nl/p�teraubrostean/

Learning-SSH-Paper/tree/master/models. �e statistics give a glimpse

into the issue of scalability. Assuming each input took 0.5 seconds

5

https://gitlab.science.ru.nl/pfiteraubrostean/Learning-SSH-Paper/tree/master/models
https://gitlab.science.ru.nl/pfiteraubrostean/Learning-SSH-Paper/tree/master/models

Authentication layer

Transport layer

Connection layer

conn_lost

/ DISCONNECT

init

UA_*, CH_* /
 KEXINIT+DISCONNECT

keyed

KEXINIT, SR_*, UNIMPL,
 DEBUG, IGNORE, KEX30

/ KEXINIT

pre-kex

KEX30 / KEX31+NEWKEYS

kexed

pre-auth

SR_AUTH / SR_ACCEPT

NEWKEYS / NO_RESP

*\{DEBUG, UNIMPL}

CH_*, KEXINIT, KEX30 / UNIMPL

none_fail

UA_NONE / UA_FAILURE

pk_fail

UA_PK_NOK / UA_FAILURE

pw_fail

UA_PW_NOK / UA_FAILURE

auth

UA_{PK_OK, PW_OK} / UA_SUCCESS

SR_CONN / DISCONNECT
 DISCONNECT, NEWKEYS / NO_CONN

UA_{*\NONE}

UA_NONE / UA_FAILURE

UA_{*\PK_NOK}

UA_PK_NOK / UA_FAILURE

UA_{NONE, PK_*}

UA_PW_NOK / UA_FAILURE

UA_PW_OK / UA_SUCCESS

chan

CH_OPEN / CH_OPEN_SUCCESS

rauth

REKEY SEQUENCE

DISCONNECT, NEWKEYS
 / NO_CONN

CH_CLOSE / CH_CLOSE

SR_*, UA_*, KEX30
 / UNIMPL

pty

CH_REQUEST_PTY / CH_SUCCESS

rchan

CH_CLOSE / CH_CLOSE

rpty

SR_*, KEX30 / NO_RESP
 UA_* / UNIMPL

CH_REQUEST_PTY / NO_CONN

Figure 6: Model of the OpenSSH server. States are collected in 3 clusters, indicated by the rectangles, where each cluster corresponds to

one of the protocol layers. We eliminate redundant states and information induced by the mapper, as well as states present in successful

rekeying sequences. Wherever rekeying was permi�ed, we replaced the rekeying states and transitions by a single REKEY SEQUENCE
transition. We also factor out edges common to states within a cluster. We replace common disconnecting edges, by one edge from the

cluster to the disconnect state. Common self loop edges are colored, and the actual i/o information only appears on one edge. Transitions

with similar start and end states are joined together on the same edge. Transition labels are kept short by regular expressions(UA * stands for

inputs starting with UA) or by factoring out common start strings. Green edges highlight the happy �ow. ’+’ concatenates multiple outputs.

to process, and an average query length of 10, to perform 40000

queries would have taken roughly 55 hours. �is is consistent with

the time experiments took, which span several days. �e long du-

ration compelled us to resort to restricted alphabets, which lead to

reduction in the number of queries needed. Our work could have

bene�ted from parallel execution.

Table 4: Statistics for learning experiments

SUT States Hypotheses Mem. Q. Test Q.
OpenSSH 6.9p1-2 31 4 19836 76418

Bitvise 7.23 65 15 24996 58423

DropBear v2014.65 29 8 8357 64478

�e large number of states is down to several reasons. First

of all, some systems exhibited bu�ering behavior. In particular,

Bitvise would queue responses for higher layer inputs sent during

key re-exchange, and would deliver them all at once a�er rekeying

was done. Rekeying was also a major contributor to the number

of states. For each state where rekeying is possible, the sequence

of transitions constituting the complete rekeying process should

lead back to that state. �is leads to two additional rekeying states

for every state allowing rekey. Many states were also added due to

the mapper generated outputs ch none or ch max, outputs which

signal that no channel is open or that the maximum number of

channels have been opened.

Figure 6 shows the model learned for OpenSSH, with some edits

to improve readability. �e happy �ow, in green, is fully explored

in the model and mostly matches our earlier description of it
4
. Also

explored is what happens when a rekeying sequence is a�empted.

We notice that rekeying is only allowed in states of the Connection

layer. Strangely, for these states, rekeying is not state preserving,

as the generated output on receiving a sr auth, sr conn or kex30

changes from unimpl to no resp. �is leads to two sub-clusters of

states, one before the �rst rekey, the other a�erward. In all other

4
�e only exception is in the Transport layer, where unlike in our happy �ow de�nition,

the server is the �rst to send the newkeys message. �is is also accepted behavior, as

the protocol does not specify which side should send newkeys �rst.

6

states, the �rst step of a rekeying (kexinit) yields (unimpl), while

the last step (newkeys) causes the system to disconnect.

We also note the intricate authentication behavior: a�er an un-

successful authentication a�empt the only authentication method

still allowed is password authentication. Finally, only Bitvise al-

lowed multiple terminals to be requested over the same channel. As

depicted in the model, OpenSSH abruptly terminates on requesting

a second terminal. DropBear exhibits a similar behavior.

6 SECURITY SPECIFICATIONS
A NuSMV model is speci�ed by a set of �nite variables together

with a transition-function that describes changes on these vari-

ables. Speci�cations in temporal logic, such as CTL and LTL, can

be checked for truth on speci�ed models. NuSMV provides a coun-

terexample if a given speci�cation is not true. We generate NuSMV

models automatically from the learned models. Generation pro-

ceeds by �rst de�ning a NuSMV �le with three variables, corre-

sponding to inputs, outputs and states. �e transition-function is

then extracted from the learned model and appended to this �le.

�is function updates the output and state variables for a given

valuation of the input variable and the current state. Figure 7 gives

an example of a Mealy machine and its associated NuSMV model.

q0start

q1

BEGIN/OK

MSG/NOK

BEGIN/OK

MSG/ACK

MODULE main

VAR s t a t e : { q0 , q1 } ;

inp : {BEGIN , MSG } ;

out : {OK, NOK, ACK } ;

ASSIGN

i n i t (s t a t e) : = q0 ;

nex t (s t a t e) : = c a s e

s t a t e = q0 & inp = BEGIN : q1 ;

s t a t e = q0 & inp = MSG : q0 ;

s t a t e = q1 & inp = BEGIN : q1 ;

s t a t e = q1 & inp = MSG : q1 ;

e s a c ;

out : = c a s e

s t a t e = q0 & inp = BEGIN : OK ;

s t a t e = q0 & inp = MSG : NOK;

s t a t e = q1 & inp = BEGIN : OK ;

s t a t e = q1 & inp = MSG : ACK ;

e s a c ;

Figure 7: Mealy machine + associated NuSMV code

�e remainder of this section de�nes the properties we formal-

ized and veri�ed. We group these properties into four categories:

(1) basic characterizing properties, properties which character-

ize the mapper and sul assembly at a basic level. �ese

hold for all implementations.

(2) security properties, these are properties fundamental to

achieving the main security goal of the respective layer.

(3) key re-exchange properties, or properties regarding the rekey

operation (a�er the initial key exchange was done).

(4) functional properties, which are extracted from the SHOULD’s

and the MUST’s of the RFC speci�cations. �ey may have

a security impact.

A key point to note is that properties are checked not on the ac-

tual concrete model of the sul, but on an abstraction of the sul that

is induced by the mapper. �is is unlike in [14], where properties

where checked on a concretization of the learned model obtained

by application of a reverse mapping. Building a reverse mapper is

far from trivial given the mapper’s complexity. �us we need to be

careful when we interpret model checking results for the learned

model. Also, we must be aware that when some property does not

hold for the abstract model, and the model checker provides a coun-

terexample, we still need to check whether this counterexample is

an actual run of the abstraction of the sul induced by the mapper.

If this is not the case then the counterexample demonstrates that

the learned model is incorrect.

Before introducing the properties, we mention some basic predi-

cates and conventions we use in their de�nition. �e happy �ow in

SSH consists in a series of steps: the user (1) exchanges keys, (2)

requests for the authentication service, (3) supplies valid creden-

tials to authenticate and �nally (4) opens a channel. Whereas step

(1) is complex, the subsequent steps can be captured by the sim-

ple predicates hasReqAuth, validAuthReq and hasOpenedChannel
respectively. �e predicates are de�ned in terms of the output

generated at a given moment, with certain values of this output

indicating that the step was performed successfully. For example,

ch open success indicates that a channel has been opened suc-

cessfully. Sometimes we also need the input that generated the

output, so as to distinguish this step from other steps. In particular,

requesting the authentication service is distinguished from request-

ing the connection service by sr auth. To these predicates, we

add predicates for valid, invalid and all authentication methods, a

predicate for the receipt of newkeys from the server, and receipt of

kexinit, which can also be seen as initiation of key (re-) exchange.

�ese last predicates have to be tweaked in accordance with the

input alphabet used and with the output the sul generated (kexinit

could be sent in di�erent packaging, either alone, or joined by a

di�erent message). �eir formulations below are for the OpenSSH

server. Finally, connLost indicates that connection was lost, and

endCondition is the condition a�er which higher layer properties

no longer have to hold.

hasReqAuth : = inp =SR AUTH & out =SR ACCEPT ;

validAuthReq : = out =UA PK OK | out =UA PW OK ;

hasOpenedChannel : = out =CH OPEN SUCCESS ;

validAuthReq : = inp =UA PK OK | inp =UA PW OK ;

invAuthReq : = inp =UA PK NOK | inp =UA PW NOK | inp =UA NONE ;

authReq : = va l idAuthReq | i n v a l i d A u t h R e q ;

r eceivedNewKeys : = out =NEWKEYS | out =KEX31 NEWKEYS ;

kexStar ted : = out =KEXINIT ;

connLost : = out =NO CONN | out =DISCONNECT ;

endCondit ion : = k e x S t a r t e d | connLos t ;

Our formulation uses NuSMV syntax. We also use the weak until

operator W, which is not supported by NuSMV, but can be easily

de�ned in terms of the until operator U and globally operator G

that are supported: pW q = pU q |G p. Many of the higher layer

properties we formulate should hold only until a disconnect or a key

(re-)exchange happens, hence the de�nition of the endCondition
predicate. �is is because the RFCs don’t specify what should hap-

pen when no connection exists. Moreover, higher layer properties

in the RFCs only apply outside of rekey sequences, as inside a rekey

sequence the RFCs advise implementations to reject all higher layer

inputs, regardless of the state before the rekey.

6.1 Basic characterizing properties
In our se�ing, a single TCP connection is made and once this

connection is lost (e.g. because the system disconnects) it cannot

7

be re-established. �e moment a connection is lost is marked by

generation of the no conn output. From this moment onwards,

the only outputs encountered are the no conn output (the mapper

tried but failed to communicate with the sul), or outputs generated

by the mapper directly, without querying the system. �e la�er

are ch max (channel bu�er is full) and ch none (channel bu�er is

empty). With these outputs we de�ne Property 1 which describes

the “one connection” property of our setup.

Property 1. G (ou t =NO CONN −>
G (ou t =NO CONN | ou t =CH MAX | ou t =CH NONE))

Outputs ch max and ch none are still generated because of a

characteristic we touched on in Subsection 4.2. �e mapper main-

tains a bu�er of open channels and limits its size to 1. From the

perspective of the mapper, a channel is open, and thus added to the

bu�er, whenever ch open is received from the learner, regardless

if a channel was actually opened on the sul. In particular, if a�er

opening a channel via ch open an additional a�empt to open a

channel is made, the mapper itself responds by ch max without

querying the sul. �is continues until the learner closes the chan-

nel by ch close, prompting removal of the channel and the sending

of an actual CLOSE message to the sul (hence out!=ch none). A

converse property can be formulated in a similar way for when

the bu�er is empty a�er a ch close, in which case subsequent

ch close messages prompt the mapper generated ch none, until a

channel is opened via ch open and an actual OPEN message is sent

to the sul. Conjunction of these two behaviors forms Property 2.

Property 2. (G (i np =CH OPEN) −>
X ((i np =CH OPEN −> ou t =CH MAX)

W (inp =CH CLOSE & ou t ! =CH NONE))) &
(G (inp =CH CLOSE) −>

X ((i np =CH CLOSE −> ou t =CH NONE)
W (inp =CH OPEN & ou t ! =CH MAX)))

6.2 Security properties
In SSH, upper layer services rely on security guarantees ensured by

lower layers. So these services should not be available before the

lower layers have completed. For example, the authentication ser-

vice should only become available a�er a successful key exchange

and the seting up of a secure tunnel by the Transport layer, other-

wise the service would be running over an unencrypted channel.

Requests for this service should therefore not succeed unless key

exchange was performed successfully.

Key exchange involves three steps that have to be performed in

order but may be interleaved by other actions. Successful authenti-

cation necessarily implies successful execution of the key exchange

steps. We can tell each key exchange step was successful from the

values of the input and output variables. Successful authentication

request is indicated by the predicate de�ned earlier, hasReqAuth.

Following these principles, we de�ne the LTL speci�cation in Prop-

erty 3, where O is the once operator. Formula Op is true at time t if

p held in at least one of the previous time steps t ′ ≤ t .

Property 3. G (hasReqAuth −>
O ((i np =NEWKEYS & ou t =NO RESP) &

O ((i np =KEX30 & ou t =KEX31 NEWKEYS) &
O (ou t =KEXINIT))))

Apart from a secure connection, Connection layer services also

assume that the client behind the connection was authenticated.

�is is ensured by the Authentication layer by means of an authen-

tication mechanism, which only succeeds, and thus authenticates

the client, if valid credentials are provided. For the implementation

to be secure, there should be no path from an unauthenticated to an

authenticated state without the provision of valid credentials. We

consider an authenticated state as a state where a channel has been

opened successfully, described by the predicate hasOpenedChannel .
Provision of valid/invalid credentials is indicated by the outputs

ua success and ua failure respectively. Along these lines, we

formulate this speci�cation by Property 4, where S stands for the

since operator. Formula pSq is true at time t if q held at some time

t ′ ≤ t and p held in all times t ′′ such that t ′ < t ′′ ≤ t .

Property 4. G (hasOpenedChanne l −>
ou t ! = UA FAILURE S ou t =UA SUCCESS)

6.3 Key re-exchange properties
According to the RFC [33, p. 24], re-exchanging keys (or rekeying)

(1) is preferably allowed in all states of the protocol, and (2) its

successful execution does not a�ect operation of the higher layers.

We consider two general protocol states, pre-authenticated (a�er a

successful authentication request, before authentication) and au-

thenticated. �ese may map to multiple states in the learned models.

We formalized requirement (1) by two properties, one for each gen-

eral state. In the case of the pre-authenticated state, we know we

have reached this state following a successful authentication ser-

vice request, indicated by the predicate hasReqAuth. Once here,

performing the inputs for rekey in succession should imply success

until one of two things happen, the connection is lost(connLost) or

we have authenticated. �is is asserted in Property 5. A similar

property is de�ned for the authenticated state.

Property 5. G (hasReqAuth −>
X (inp =KEXINIT −> ou t =KEXINIT &

X (inp =KEX30 −> ou t =KEX31 NEWKEYS &
X (inp =NEWKEYS −> ou t =NO RESP))) W
(c o nnL o s t | hasAuth))

Requirement (2) cannot be expressed in LTL, since in LTL we

cannot specify that two states are equivalent. We therefore checked

this requirement directly, by writing a simple script which, for each

state q that allows rekeying, checks if the state q′ reached a�er a

successful rekey is equivalent to q in the subautomaton that only

contains the higher layer inputs.

6.4 Functional properties
We formalized and checked several other properties drawn from

the RFCs. We found parts of the speci�cation unclear, which some-

times meant that we had to give our own interpretation. A �rst

general property can be de�ned for the disconnect output. �e

RFC speci�es that a�er sending this message, a party MUST not

send or receive any data [35, p. 24]. While we cannot tell what

the server actually receives, we can check that the server does not

generate any output a�er sending disconnect. A�er a disconnect

message, subsequent outputs should be solely derived by the map-

per. Knowing the mapper induced outputs are no conn, ch max

8

and ch none, we formulate by Property 6 to describe expected

outputs a�er a disconnect.

Property 6. G (ou t =DISCONNECT −>
X G (ou t =CH NONE | ou t =CH MAX | ou t =NO CONN))

�e RFC states in [33, p. 24] that a�er sending a kexinitmessage,

a party MUST not send another kexinit, or a sr accept message,

until it has sent a newkeys message(receivedNewKeys). �is is

translated to Property 7.

Property 7. G (ou t =KEXINIT −>
X ((ou t ! = SR ACCEPT & ou t ! = KEXINIT) W r e c e i v e dNewKey s))

�e RFC also states [33, p. 24] that if the server rejects the service

request, “it SHOULD send an appropriate SSH MSG DISCONNECT

message and MUST disconnect”. Moreover, in case it supports the

service request, it MUST send a sr accept message. Unfortunately,

it is not evident from the speci�cation if rejection and support are

the only allowed outcomes. We assume that is the case, and formal-

ize an LTL formula accordingly by Property 8. For a service request

(sr auth), in case we are not in the initial state, the response will be

either an accept (sr accept), disconnect (disconnect), or no conn,

output generated by the mapper a�er the connection is lost. We

adjusted the property for the initial state since all implementations

responded with kexinit which would easily break the property.

We cannot yet explain this behavior.

Property 8. G ((i np =SR AUTH & s t a t e ! = s 0) −>
(ou t =SR ACCEPT | ou t =DISCONNECT | ou t =NO CONN)))

�e RFC for the Authentication layer states in [32, p. 6] that

if the server rejects the authentication request, it MUST respond

with a ua failure message. Rejected requests are suggested by the

predicate invAuthReq. In case of requests with valid credentials

(validAuthReq), a ua success MUST be sent only once. While not

explicitly stated, we assume this to be in a context where the au-

thentication service had been successfully requested, hence we use

the hasReqAuth predicate. We de�ne two properties, Property 9

for behavior before an ua success, Property 10 for behavior af-

terward. For the �rst property, note that (hasReqAuth) may hold

even a�er successful authentication, but we are only interested in

behavior between the �rst time (hasReqAuth) holds and the �rst

time authentication is successful (out=ua success), hence the use

of the O operator. As is the case with most higher layer properties,

the �rst property only has to hold until the end condition holds

(endCondition), that is the connection is lost (connLost) or rekey

was started by the sul (kexStarted).

Property 9. G ((hasReqAuth & !O ou t =UA SUCCESS) −>
(i n v a l i dAu t hR e q −> ou t =UA FAILURE)
W (ou t =UA SUCCESS | e n dCond i t i o n))

Property 10. G (ou t =UA SUCCESS −> X G ou t ! = UA SUCCESS)

In the same paragraph, it is stated that authentication requests

received a�er a ua success SHOULD be ignored. �is is a weaker

statement, and it requires that all authentication messages (sug-

gested by authReq) a�er a ua success output should prompt no

response from the system(no resp) until the end condition is true.

�e formulation of this statement shown in Property 11.

Property 11. G (ou t =UA SUCCESS −>
X ((authReq−> ou t =NO RESP) W endCond i t i o n))

�e Connection layer RFC states in [33, p. 9] that on receiving

a ch close message, a party MUST send back a ch close, unless

it had already sent this message for the channel. �e channel

must have been opened beforehand (hasOpenedChannel) and the

property only has to hold until the end condition holds or the

channel was closed (out=CH CLOSE). We formulate Property 12

accordingly.

Property 12. G (hasOpenedChanne l −>
((i np =CH CLOSE) −> (ou t =CH CLOSE))
W (e n dCond i t i o n | ou t =CH CLOSE))

6.5 Model checking results
Table 5 presents model checking results. Crucially, the security

properties hold for all three implementations. We had to slightly

adapt our properties for Bitvise as it bu�ered all responses during

rekey (incl. UA SUCCESS). In particular, we used validAuthReq
instead of out=UA SUCCESS as sign of successful authentication.

Table 5: Model checking results

Property Key word OpenSSH Bitvise DropBear

Security Trans. X X X
Auth. X X X

Rekey Pre-auth. X X X
Auth. X X X

Funct. Prop. 6 MUST X X X
Prop. 7 MUST X X X
Prop. 8 MUST X* X X
Prop. 9 MUST X X X
Prop. 10 MUST X X X
Prop. 11 SHOULD X* X* X
Prop. 12 MUST X X X

Properties marked with ’*’ did not hold because implementa-

tions chose to send unimpl, instead of the output suggested by the

RFC. As an example, a�er successful authentication, both Bitvise

and OpenSSH respond with unimpl to further authentication re-

quests, instead of being silent, violating Property 11. Whether the

alternative behavior adapted is acceptable is up for debate. Cer-

tainly the RFC does not suggest it, though it does leave room for

interpretation.

DropBear is the only implementation that allows rekeying in

both general states of the protocol. DropBear also satis�es all

Transport and Authentication layer speci�cations, however, prob-

lematically, it violates the property of the Connection layer. Upon

receiving ch close, it responds by ch eof instead of ch close, not

respecting Property 12.

7 CONCLUSIONS
We have combined model learning with abstraction techniques to

infer models of the OpenSSH, Bitvise and DropBear SSH server

implementations. We have also formalized several security and

functional properties drawn from the SSH RFC speci�cations. We

have veri�ed these properties on the learned models using model

9

checking and have uncovered several minor standard violations.

�e security-critical properties were met by all implementations.

Abstraction was provided by a mapper component placed be-

tween the learner and the sul. �e mapper was constructed from

an existing SSH implementation. �e input alphabet of the mapper

explored key exchange, se�ing up a secure connection, several

authentication methods, and opening and closing channels over

which the terminal service could be requested. We used two input

alphabets, a full version for OpenSSH, and a restricted version for

Bitvise and DropBear. �e restricted alphabet was still su�cient to

explore most aforementioned behavior.

We encountered several challenges. Firstly, building a map-

per presented a considerable technical challenge, as it required

re-structuring of an actual SSH implementation. Secondly, because

we used classical learning algorithms, we had to ensure that the

abstracted implementation behaved like a (deterministic) Mealy

Machine. Here time-induced non-determinism was di�cult to elim-

inate. Bu�ering also presented problems, leading to a considerable

increase in the number of states. Moreover, the systems analyzed

were relatively slow, which meant learning took several days. �is

was compounded by the size of the learning alphabet, and it forced

us into using a reduced alphabet for two of the implementations.

Limitations of the work, hence possibilities for future work, are

several. First of all, the mapper was not formalized, unlike in [14],

thus we did not produce a concretization of the abstract models.

Consequently, model checking results cannot be fully transferred

to the actual implementations. Formal de�nition of the mapper

and concretization of the learned models (as de�ned in [2]) would

tackle this. �e mapper also caused considerable redundancy in the

learned models; tweaking the abstractions used, in particular those

for managing channels, could alleviate this problem while also im-

proving learning times. �is in turn would facilitate learning using

expanded alphabets instead of resorting to restricted alphabets.

Furthermore, the mapper abstraction could be re�ned, to give more

insight into the implementations. In particular, parameters such

as the session identi�er could be extracted from the mapper and

potentially handled by existing Register Automata learners[1, 10].

�ese learners can infer systems with parameterized alphabets,

state variables and simple operations on data. Finally, we sup-

pressed all timing-related behavior, as it could not be handled by

the classical learners used; there is preliminary work on learning

timed automata[16] which could use timing behavior.

Despite these limitations, our work provides a compelling appli-

cation of learning and model checking in a security se�ing, on a

widely used protocol. We hope this lays some more groundwork

for further case studies, as well as advances in learning techniques.

REFERENCES
[1] F. Aarts, P. Fiterău-Broştean, H. Kuppens, and F.W. Vaandrager. 2015. Learning

Register Automata with Fresh Value Generation. In ICTAC 2015 (LNCS), Vol. 9399.

Springer, 165–183.

[2] F. Aarts, B. Jonsson, J. Uijen, and F.W. Vaandrager. 2015. Generating Models of

In�nite-State Communication Protocols using Regular Inference with Abstrac-

tion. FMSD 46, 1 (2015), 1–41.

[3] F. Aarts, J. de Ruiter, and E. Poll. 2013. Formal Models of Bank Cards for Free. In

So�ware Testing, Veri�cation and Validation Workshops (ICSTW). IEEE, 461–468.

[4] F. Aarts, J. Schmaltz, and F. Vaandrager. 2010. Inference and Abstraction of the

Biometric Passport. In Leveraging Applications of Formal Methods, Veri�cation,
and Validation. LNCS, Vol. 6415. Springer, 673–686.

[5] M.R. Albrecht, K.G. Paterson, and G.J. Watson. 2009. Plaintext Recovery A�acks

against SSH. In SP’09. IEEE, Washington, DC, USA, 16–26.

[6] D. Angluin. 1987. Learning regular sets from queries and counterexamples. Inf.
and Comp. 75, 2 (Nov. 1987), 87–106.

[7] M. Bellare, T. Kohno, and C. Namprempre. 2004. Breaking and Provably Repairing

the SSH Authenticated Encryption Scheme: A Case Study of the Encode-then-

Encrypt-and-MAC Paradigm. ACM Trans. Inf. Syst. Secur. 7, 2 (2004), 206–241.

[8] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, A.

Pironti, P.-Y. Strub, and J. K. Zinzindohoue. 2017. A Messy State of the Union:

Taming the Composite State Machines of TLS. CACM 60, 2 (2017), 99–107.

[9] E. Boss. 2012. Evaluating implementations of SSH by means of model-based testing.

Bachelor’s �esis. Radboud University.

[10] S. Cassel, F. Howar, and B. Jonsson. 2015. RALib: A LearnLib extension for

inferring EFSMs. In DIFTS. h�p://www.faculty.ece.vt.edu/chaowang/di�s2015/

papers/paper 5.pdf

[11] G. Chalupar, S. Peherstorfer, E. Poll, and J. de Ruiter. 2014. Automated Reverse

Engineering using LEGO. In Proc. USENIX workshop on O�ensive Technologies
(WOOT’14). 1–10.

[12] H. Chen, D. Dean, and D. Wagner. 2004. Model Checking One Million Lines of

C Code. In NDSS. �e Internet Society. h�p://www.isoc.org/isoc/conferences/

ndss/04/proceedings/Papers/Chen.pdf

[13] A. Cima�i, E.M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R.

Sebastiani, and A. Tacchella. 2002. NuSMV 2: An OpenSource Tool for Symbolic

Model Checking. In CAV (LNCS), Vol. 2404. Springer, 359–364.

[14] P. Fiterău-Broştean, R. Janssen, and F.W. Vaandrager. 2016. Combining Model

Learning and Model Checking to Analyze TCP Implementations. In CAV’16
(LNCS), Vol. 9780. Springer, 454–471.

[15] A. Futoransky and E. Kargieman. 1998. An a�ack on CRC-32 in-

tegrity checks of encrypted channels using CBC and CFB modes. On-

line. h�ps://www.coresecurity.com/system/�les/publications/2016/05/

KargiemanPace�iRicharte 1998-CRC32.pdf, (1998).

[16] O. Grinchtein, B. Jonsson, and M. Leucker. 2010. Learning of event-recording

automata. TCS 411, 47 (2010), 4029–4054.

[17] M. Isberner. 2015. Foundations of Active Automata Learning: An Algorithmic
Perspective. Ph.D. Dissertation. TU Dortmund.

[18] D. Lee and M. Yannakakis. 1996. Principles and methods of testing �nite state

machines — a survey. Proc. IEEE 84, 8 (1996), 1090–1123.

[19] T. Lenaerts. 2016. Improving Protocol State Fuzzing of SSH. Bachelor’s �esis.

Radboud University.

[20] K.G. Paterson and G.J. Watson. 2010. Plaintext-Dependent Decryption: A Formal

Security Treatment of SSH-CTR. In EUROCRYPT 2010. LNCS, Vol. 6110. Springer,

345–361.

[21] D. Peled, M.Y. Vardi, and M. Yannakakis. 2002. Black Box Checking. Journal of
Automata, Languages, and Combinatorics 7, 2 (2002), 225–246.

[22] E. Poll and A. Schubert. 2007. Verifying an implementation of SSH. In WITS’07.

164–177.

[23] E. Poll and A. Schubert. 2011. Rigorous speci�cations of the SSH Transport Layer.
Technical Report. Radboud University.

[24] H. Ra�elt, B. Ste�en, T. Berg, and T. Margaria. 2009. LearnLib: a framework for

extrapolating behavioral models. STTT 11, 5 (2009), 393–407.

[25] J. de Ruiter and E. Poll. 2015. Protocol State Fuzzing of TLS Implementations. In

USENIX Security. USENIX Association, Washington, D.C., 193–206.

[26] W. Smeenk, J. Moerman, D.N. Jansen, and F.W. Vaandrager. 2015. Applying Au-

tomata Learning to Embedded Control So�ware. In ICFEM 2015 (LNCS), Vol. 9407.

Springer, 1–17.

[27] O. Udrea, C. Lumezanu, and J.S. Foster. 2008. Rule-based static analysis of

network protocol implementations. Inf. and Comp. 206, 2-4 (2008), 130–157.

[28] F.W. Vaandrager. 2017. Model Learning. CACM 60, 2 (2017), 86–95.

[29] P. Verleg. 2016. Inferring SSH state machines using protocol state fuzzing. Master’s

thesis. Radboud University.

[30] Y. Wang, Z. Zhang, D. Yao, B. �, and L. Guo. 2011. Inferring Protocol State Ma-

chine from Network Traces: A Probabilistic Approach. In Applied Cryptography
and Network Security. LNCS, Vol. 6715. Springer, 1–18.

[31] S.C. Williams. 2011. Analysis of the SSH Key Exchange Protocol. In Cryptography
and Coding. LNCS, Vol. 7089. Springer, 356–374.

[32] T. Ylonen and C. Lonvick. 2006. �e Secure Shell (SSH) Authentication Protocol.

RFC 4252, IETF, Network Working Group. (2006).

[33] T. Ylonen and C. Lonvick. 2006. �e Secure Shell (SSH) Connection Protocol.

RFC 4254, IETF, Network Working Group. (2006).

[34] T. Ylonen and C. Lonvick. 2006. �e Secure Shell (SSH) Protocol Architecture.

RFC 4251, IETF, Network Working Group. (2006).

[35] T. Ylonen and C. Lonvick. 2006. �e Secure Shell (SSH) Transport Layer Protocol.

RFC 4253, IETF, Network Working Group. (2006).

10

http://www.faculty.ece.vt.edu/chaowang/difts2015/papers/paper_5.pdf
http://www.faculty.ece.vt.edu/chaowang/difts2015/papers/paper_5.pdf
http://www.isoc.org/isoc/conferences/ndss/04/proceedings/Papers/Chen.pdf
http://www.isoc.org/isoc/conferences/ndss/04/proceedings/Papers/Chen.pdf
https://www.coresecurity.com/system/files/publications/2016/05/KargiemanPacettiRicharte_1998-CRC32.pdf
https://www.coresecurity.com/system/files/publications/2016/05/KargiemanPacettiRicharte_1998-CRC32.pdf

	Abstract
	1 Introduction
	2 Model learning
	2.1 Mealy machines
	2.2 MAT Framework
	2.3 Abstraction

	3 The Secure Shell Protocol
	3.1 Transport layer
	3.2 Authentication layer
	3.3 Connection layer

	4 The learning setup
	4.1 The learning alphabet
	4.2 The mapper
	4.3 Practical complications

	5 Learning results
	6 Security specifications
	6.1 Basic characterizing properties
	6.2 Security properties
	6.3 Key re-exchange properties
	6.4 Functional properties
	6.5 Model checking results

	7 Conclusions
	References

