
Verifying an implementation of SSH

Erik Poll1? and Aleksy Schubert1,2??

1 Radboud University Nijmegen, the Netherlands
2 Warsaw University, Poland

Abstract. We present a case study in the formal verification of an open
source Java implementation of SSH. We discuss the security flaws we
found and fixed by means of formal specification and verification – us-
ing the specification language JML and the program verification tool
ESC/Java2 – and by more basic manual code inspection. Of more gen-
eral interest is the methodology we propose to formalise security proto-
cols such as SSH using finite state machines. This provides a precise but
accessible formal specification, that is not only useful for formal verifi-
cation, but also for development, testing, and for clarification of official
specification in natural language.

1 Introduction

The past decade has seen great progress in the field of formal analysis of secu-
rity protocols. However, there has been little work or progress on verifying actual
implementations of security protocols. Still, this is an important issue, because
bugs can make an implementation of a secure protocol completely insecure. A
fundamental challenge here is posed by the big gaps between (i) the official spec-
ification of a security protocol, typically in natural language; (ii) any models of
(parts of) the protocol developed for formal verification of security properties,
e.g. using model checking; and (iii) actual implementations of the protocol. In an
effort to bridge these gaps, we performed a case study in the formal specification
and verification of a Java implementation of SSH. We considered an existing
implementation, MIDP-SSH3, which is an actively maintained open source im-
plementation for use on Java-enabled mobile phones. MIDP-SSH is a typical
implementation in the sense that it is not written from scratch but based on an
earlier one, re-using code from a variety of sources.

In order to express the properties to be verified for the source code, we used
the Java Modeling Language (JML) [9]. JML is a specification language designed
to describe properties of Java programs. It supports all the important features of
the Java language e.g. inheritance, subtyping, exceptions etc. JML is supported
by a range of tools for dynamic or static checking; for an overview see [2]. We used
the extended static checker ESC/Java2 [3], the successor of ESC/Java [4]. This

? Supported by the Sixth Framework Programme of the EU under the MOBIUS
project FP6-015905.

?? Supported by the Sixth Framework Programme of the EU under the SOJOURN
project MEIF-CT-2005-024306.

3 Available from http://www.xk72.com/midpssh/.



tool tries to verify automatically JML-annotated source code, using a weakest
precondition calculus and an automated theorem prover.

The structure of the paper Section 2 describes the informal code inspection
carried out as first stage of our analysis, and Section 3 describes the more formal
approach taken after that. Section 1.1 below presents an overview of the approach
taken in these two stages. We draw our conclusions and discuss possible future
work in Section 4.

1.1 Methodology

After considering the security requirements of the application, our analysis of
the implementation proceeded in several steps.

The first stage, described in Section 2, was an ad-hoc manual inspection of
the source code. We familiarised ourselves with the design of the application,
considered which parts of the code are security-sensitive, and looked for possible
weaknesses. This led to discovery of some common mistakes – or at least bad
practices which should be avoided in security-sensitive applications.

The next stage, described in Section 3, involved the use of the formal spec-
ification language JML and the program verification tool ESC/Java2. Here we
can distinguish two steps:

– The first step, discussed in Section 3.1, was the standard one when us-
ing ESC/Java2: we used the tool to verify that the implementation does
not throw any runtime exceptions. For instance, the implementation might
throw an ArrayIndexOutOfBoundsException due to incorrect handling of
some malformed data packet it receives. This step revealed some bugs in the
implementation, where sanity checks on well-formedness of the data packets
received were not properly carried out. This would only allow a DoS attack,
by making the SSH client crash on such a malformed packet. Of course,
for an implementation in a type-unsafe language such as C, as opposed to
Java, these bugs would be much more serious, as potential sources of buffer
overflow attacks.
The process of using ESC/Java2 to verify that no runtime exceptions can
occur, incl. the process of adding the JML annotations this requires, forces
one to thoroughly inspect and understand the code. As a side effect of this
we already spotted one serious security flaw in the implementation.

– The next step, discussed in Section 3.2, was to verify that the Java code
correctly implements the SSH protocol as officially specified in RFCs 4250-
4254 [16, 14, 17, 15]. This required some formal specification of SSH. For this
we developed our own formal specification of SSH, in the form of a finite
state machine (FSM) which describes how the state of the protocol changes
in response to the different messages it can receive. This is of course only
a partial specification, as it specifies the order of messages but not their
precise format. Still, it turned out to be interesting enough, as we hope to
demonstrate in this paper.

2



This last step of the verification is probably the most interesting. Firstly, we
found that obtaining the finite state machine from the natural language de-
scription in the RFCs was far from trivial, and it revealed some ambiguities
and unclarities. It is not always clear what the response to an unexpected,
unsupported or simply malformed message should be: some of these may or
should be ignored but others must lead to disconnection. Secondly, verify-
ing that the implementation meets this partial specification as given by the
FSM revealed some serious security flaws in the implementation. In particu-
lar, the implementation is vulnerable to a man-in-the-middle attack, where
an attacker can request the username and password of the user before any
authentication has taken place and before a session key has been established.
A secure implementation should of course never handle such a request.

2 Stage 1: Informal, ad-hoc analysis

Prior to any systematic analysis of the application as discussed in the next
section, we read the security analysis of the SSH protocol provided in the RFCs
[16]. Then we extended the analysis to cover the issues closely related to the
Java programming language and to the Java MIDP platform. We located the
part of the source code which directly implements the protocol and tried to
relate the results of the security analysis to the source code, but without trying
to understand the logic of the implementation. In the course of these steps, we
already spotted some (potential) security problems. Here is a description of the
most important ones:

Weak/no authentication The SSH client does not store public key information
for subsequent sessions: it will connect to any site and simply ask that site
for its public keys, without checking this against earlier runs and asking the
user to accept a new or changed public key. In other words, there is no real
authentication before starting an SSH session. This is especially strange as the
application stores certain session related information (i.e. host name, user name,
and even password) in the MIDP permanent storage – record stores.

There is a countermeasure that allows the user to authenticate the server
she or he is connecting to: the SSH client displays an MD5 hash of the server’s
public key as ‘fingerprint’ of the server it connects to. The user can check to see
if this MD5 hash has the right value. Of course, the typical user will not check
this.

Note that unauthenticated key exchange is a well-known and common secu-
rity mistake; it is for instance listed in [6]. This highlights the importance that
programmers are aware of such common mistakes!

Poor use of Java access restrictions The implementation does not make optimal
use of the possibilities that Java offers to restrict access to data, with the visibility
modifiers, such as public and private, and the modifier final to make fields
immutable.

3



For instance, the implementation creates an instance of the standard library
class java.lang.Random for random number generation. The reference to this
object is stored in a public static field rnd. Untrusted code could simply modify
this field, so that it for instance points to an instance of java.lang.Random
with a known seed, or to an instance of some completely bogus subclass of
java.lang.Random which does not produce random numbers at all. The field
rnd should be private or final – or, better still, both – to rule out such
tampering.

In all fairness, we should point out that for the current version of the MIDP
platform the threat of some hostile application attacking the SSH client by chang-
ing its public fields is not realistic. A restriction of the MIDP platform is that
at most one application – or midlet, as applications for the MIDP platform are
called – is running at the same time, so a hostile application cannot be execut-
ing concurrently with the SSH midlet. Moreover, each time the SSH client is
started it will initialise its fields from scratch. Still, such restrictions are likely
to be loosened in the future, and the code of MIDP-SSH might be re-used in
applications for other Java platforms where these restrictions do not apply.

A similar problem occurs with the storage of the contents of P- and S-boxes
in the implementation. The class Blowfish in the implementation uses an array

final static int[] blowfish_sbox = { 0xd1310ba6, ... };

This integer array is final, so cannot be modified. However, the content of the
array is still modifiable. The field has default package visibility, which gives
rather weak restrictions about who can modify is, as explained in [10], so hostile
code could modify the S-boxes used by the SSH client, and at least create a DoS
attack. The field should really be private and there is no reason why it cannot be.
Again, for the MIDP platform this is not really a threat, due to its restrictions
discussed above.

Checking if access modifiers can be tightened need not be done manually, but
can be automated, for instance using JAMIT4. The problems in the application
suggest that systematic use of such a tool would be worthwhile.

Control characters One of the security threats mentioned in the security analy-
sis is the scenario when a malicious party sends a stream of control characters
which erases certain messages to lure the user into performing an insecure ac-
tion. Although the SSH client does interpret some control characters, there is
no operation to ensure that only safe control sequences appear on the user’s
terminal.

Downloading of the session information The application implements function-
ality to download a description of an SSH session to execute. Such a description
can contain the information about the user and a host name. The transfer of
such information over the network in cleartext is an obvious compromise of the
security as third parties can associate the login with the machine. Moreover,

4 See http://grothoff.org/christian/xtc/jamit/

4



data downloaded in this way is not displayed to the user who demanded it. In
this way it is easy to realize a spoofing attack which forwards the user to a fake
SSH server which steals the password.

3 Formal, systematic analysis using JML and ESC/Java2

The analysis using more formal methods consisted of two stages. The first stage
was to verify that the implementation does not throw any runtime exceptions,
e.g. due to null pointers, bad type casts, or accesses outside array bounds. The
second one was to (partially) specify SSH, by means of a finite state machine,
and verify that the implementation correctly implements this behaviour.

3.1 Stage 2: Exception Freeness

The standard first step in using ESC/Java2 is to check that the program does
not produce any runtime exceptions. Indeed, often this is the only property one
checks for the code. Although it is a relatively weak property, verifying it can
reveal quite a number of bugs and can expose many implicit assumptions in
the code. Just establishing exception freeness requires the formalisation of many
properties about the code, as JML preconditions, invariants, and sometimes
postconditions. For instance, invariants that certain reference fields cannot be
null are needed to rule out NullPointerExceptions, and invariants that certain
integer fields are not negative or have some maximum value are needed to rule
out ArrayIndexOutOfBoundsExceptions.

Like any verification with ESC/Java2, checking the absence of exceptions
relies on the axiomatisation of Java semantics built into the tool and on spec-
ifications of any APIs used, e.g. for library calls such as System.arraycopy,
which are given in a standard set of files with JML specifications for core API
classes. Correctness of the results of ESC/Java2 relies on the correctness of this
axiomatisation and these API specifications.

Trying to check that no runtime exceptions occur with ESC/Java2 revealed
some bugs in the implementation, namely missing sanity checks on the well-
formedness of the data packets before these packets are processed. This means
that the SSH client could crash with an ArrayIndexOutOfBoundsException
when receiving certain malformed packets. Such Denial-of-Service attacks are
discussed in the RCFs.

The process of using ESC/Java2 to check that no runtime exceptions can
occur – incl. the adding of all the JML annotations this requires – forces one to
thoroughly inspect and understand the code. As a side effect of this we spotted a
serious security weakness in the implementation, namely that it does not check
the MAC of the incoming messages, so it is vulnerable to certain replay attacks.

The whole process of proving exception freeness, including fixing the code
where required, took about two weeks.

5



3.2 Stage 3: Protocol specification and verification

In addition to just proving that the implementation does not throw runtime
exceptions, we also wanted to verify that it is a correct implementation of the
client side of the SSH protocol, as specified in the RFCs. This requires some
formal specification of SSH, of course.

Formal specification of SSH as FSM Unfortunately we could not find any
formal description of SSH in the literature; the only formal description we could
find [12] only deals with a part of the whole SSH protocol. Therefore we developed
our own formal specification of SSH, in the form of a finite state machine (FSM)
which describes how the state of the protocol changes in response to the different
messages it can receive. This is of course only a partial specification, as it only
specifies the order of messages but not their precise format. Still, this partial
spec was interesting enough, as we hope to demonstrate in this paper.

����� � ���
	��
� ���

���
	���� ��� 	�������� �����

����� � ������� ��� �

������� ��� � �
�����

������� ��� � 	��
����� �����

����� � ��������� 	��
��� �

����� � �����!�����"�

�����!�"�#�"� 	�������� �����

���%$�$'&���� �
�
��� ���

��� �����������
�
���
�

(*)�+',.- / 0./2143

5�)4687�/:9�0�3

5�)4687�/:9�0<;

(*)�+=/ 0./21.;

(*)�+=/>0./2143

0*)'?@(')'A�74;

0*)'?@(')'A�7�3

(*)�+=/>0./21.;

B 9�0.0*) B 143

(*)�+',.- 6.)4C4D�A%;

Fig. 1. A simplified view of the FSM specifying the behaviour of the SSH client, without
optional features described in the RFCs that are not supported, and ignoring the
aspects described in Fig. 3. The names of the transitions are the same names used in
the RFCs. Labels ending with ! are outputs of the client to the server, labels ending
with ? denote inputs to the client.

6



It turns out that the SSH protocol involves about 15 kinds of messages and
its session key negotiation phase has about 20 different states. One complication
in defining an FSM describing the client side behaviour of the protocol is that
the SSH specifications present the protocol as a set of features which are partly
obligatory and partly optional. A FSM that includes all these optional parts is
given in Fig. 2. For simplicity, we focused our attention on those parts of the pro-
tocol that this particular implementation actually supports. This simplifies the
overall behaviour, namely to that shown in Fig. 1. This behaviour corresponds
to the left-most branch in the full specification of SSH given in Fig. 2.

Fig. 1 not only ignores options not implemented, but also includes an ap-
parently common choice made in the implementation that is left open by the
official specification. Section 4.2 of [17] states: “When the connection has been
established, both sides MUST send an identification string”. This specifies that
both client and server must send an identification string, but does not specify
the order in which they do this. In principle, it is possible for both sides to
wait for the other to send the identification string first, leading to deadlock. The
MIDP-SSH implementation chooses to let the client wait for an identification
string from the server (the transition VERSION? in Fig. 1) before replying with
an identification string (the subsequent transition VERSION! ). This appears to
be the standard way of implementing this: OpenSSH makes the same choice. In
fact, an earlier specification of SSH 1.5 [13, Overview of the Protocol] does pre-
scribe this order; it is not clear to us why the newer specification [17] does not.
Moreover, it is not clear if this is a deliberate underspecification or a mistake. Of
course, one of the benefits of formalising specifications is that such issues come
to light.

Fig. 1 does not tell the whole story, though. It only specifies the standard,
correct sequence of messages, but does not specify how the client should react to
unexpected, unsupported, or simply malformed messages. This is where much
of the complication lies: some of these messages may or should be ignored, but
others must lead to disconnection. Adding all the transitions for this to Fig. 1,
(or, worse still to Fig. 2) would lead to a very complicated FSM that is hard to
draw or understand, and very easy to get wrong. We therefore chose to specify
these aspects in a separate FSM, given in Fig. 3.

The SSH specification states that after the protocol version is negotiated,
i.e. from the state WAIT KEXINIT onwards, the client should always be able
to handle a few messages in a generic way. Some of these messages should be
completely ignored; some should lead to an UNIMPLEMENTED! reply, meaning
the client does not support this message; some should lead to disconnection. This
aspect is specified in a separate FSM: in the state WAIT KEXINIT and any later
state, the client should implement the additional transitions given in Fig. 3.

In Fig. 3 we use a few additional ad-hoc conventions to keep the diagram read-
able. FOREIGN MSGS? stands for any message that is not explicitly known
by the application. As noted above, all such messages should trigger the sending
of the UNIMPLEMENTED message. Similarly, OTHER KNOWN MSGS?
stands for any message that is known, but arrived in a wrong state – these

7



K
E
X
D

H
K

E
X
IN

IT
S
E
N

T
N

O
T

R

W
A
IT

V
E
R
S
IO

N

V
E
R
S
IO

N
R
E
C
E
IV

E
D

W
A
IT

K
E
X
IN

IT

K
E
X
IN

IT
S
E
N

T

K
E
X
IN

IT
R
E
C
E
IV

E
D

W
A
IT

K
E
X
D

H
R
E
P
LY

W
A
IT

N
E
W

K
E
Y
S

N
E
W

K
E
Y
S

R
E
C
E
IV

E
D

C
O

M
M

U
N

IC
A
T

IO
N

D
IS

C
O

N
N

E
C
T

E
D

V
E
R
S
IO

N
S
E
N

T

N
E
W

K
E
Y
S

S
E
N

T

K
E
X
IN

IT
S
E
N

T
N

O
T

R

K
E
X
IN

IT
K

E
X
D

H
IN

IT
S
E
N

T

V
E
R

S
IO

N
!

V
E
R

S
IO

N
!

K
E
X

IN
IT

!

K
E
X

IN
IT

?

N
E
W

K
E
Y

S
!

K
E
X

D
H

R
E
P
L
Y

?

K
E
X

D
H

R
E
P
L
Y

?

K
E
X

D
H

IN
IT

!

K
E
X

IN
IT

!

V
E
R

S
IO

N
?

V
E
R

S
IO

N
?

K
E
X

IN
IT

? K
E
X

IN
IT

?
K

E
X

D
H

IN
IT

!

N
E
W

K
E
Y

S
?

K
E
X

IN
IT

?

C
O

N
N

E
C

T
!

N
E
W

K
E
Y

S
?

N
E
W

K
E
Y

S
!

K
E
X

IN
IT

!

Fig. 2. Specification of the full client side behaviour of SSH, including all optional
features. This diagram must still be extended with the additional aspects as given by
the diagrams in Fig. 3. [NB the diagram above have been corrected and simplified from
the original WITS’07 publication.]

8



�

�������	��

�������������

��� �������������������

���� "!	#%$�&�!�&'�)(*&,+.-

+/&%01��2.3
 42,�65,7�&83

9�:�;=<�> ?)@A9)BC@ DFEHGJI
K 9L>M<HN*GO@ DFEHGPI

Q�RTSUQWVXRYRYZ\[^] &'_U` Vba*cdZ\[4] 3

 ^5,&,_e` Vba*cdZ\[4] 3

+/ Q�f 5,����& f (g3

�W�� Y!�#,$�&�!	&,��(W&'+h3

Fig. 3. Additional possible transitions from WAIT KEXINIT onwards. X stands for any
state from WAIT KEXINIT onwards.

messages lead to disconnection. This diagram is still a simplification because
in some states certain known messages should be ignored rather than lead to
disconnection, but we do not have space to discuss these details here.

Another ad-hoc convention are the labels SshException? and IOException?.
These transitions represent two exceptional situations that can occur. Firstly,
there is the possibility of an IO error (e.g. because the network or the server
goes down), which is modelled by the IOException? transition. Secondly, there
is the possibility that the incoming packet is of a known type but fails to meet the
format specified in the RFCs (e.g. the value of the length field exceeds the size
of the packet, or the MAC is incorrect), which is modelled by the SshException?
transition. As you may have guessed, the names of these transitions are inspired
the Java exceptions used in the implementation.

Discussion The finite state machines specifying SSH are implicit in the natural
language specifications given in the RFCs, but were not so easy to extract, and
highlighted some unclarities. We already mentioned the issue that description of
the order of certain messages from client to server and back can be interpreted
in several ways.

Whereas the names of various types of messages are well-standardised, and
we use these in our diagrams, there is no explicit notion of state in the SSH
specifications. So the names of the states in the diagrams are our invention. This
lack of an explicit notion of state is a source of unclarity in the specification. In
particular, [16, Sect. 9.3.5] asserts:

If transmission errors or message manipulation occur, the connection is
closed. The connection SHOULD be re-established if this occurs.

but it is hard to figure out which messages should be regarded as message manip-
ulation at a given stage. The RFCs specify forbidden messages in several places,
e.g. in [17, Sect. 7.1], e.g.

Once a party has sent a SSH MSG KEXINIT message [. . . ], until it has
sent a SSH MSG NEWKEYS message (Section 7.3), it MUST NOT send
any messages other than: [. . . ]

9



but it is not obvious that messages other than those listed should be considered
as ‘manipulations’ at this stage.

It would be better if the information about which messages are allowed, can
be ignored, or must lead to disconnection in a given state is available in a more
structured way. Now this information is spread out over several places in the
RFCs. An alternative to using FSMs might simply be a table of states and
messages.

Another source of unclarity is the way the standard keywords are used in
the specifications. There is an IETF standard which precisely defines the pre-
cise meaning of terms such as ‘MUST’, ‘MAY’, ‘RECOMMENDED’, and ‘OP-
TIONAL’ [1], but the SSH specification is not consistent in using these keywords.
For example, [17, Section 4] says

Key exchange will begin immediately after sending this identifier.

which presumably means that it ‘MUST’ (and that any other behaviour ‘MUST’
be considered as manipulation and lead to disconnection?).

Finally, in [17, Section 6] we noted that it is not clear if a well-formed packet
may have a zero-length payload section or if such a packet should always be
treated as malformed, because it is impossible to determine its type, which is
crucial for any handling of the packet. (The specification does not forbid such
packets, but for instance OpenSSH treats them as an error and quits the client).

3.3 Verification of MIDP-SSH

Before we even attempted a formal verification that the MIDP-SSH correctly
implements the specification as given by the FSMs, it was easy to see that the
implementation was not correct: it did not correctly record the protocol state,
and it accepted and processed many messages which following the FSMs should
lead to disconnection. The prime example of this was that a request for username
and password would be processed by the SSH client in any state.

Therefore we improved the implementation before attempting formal verifi-
cation: we re-factored the code so the handling of each message was done by a
separate method, we improved the recording of the protocol state, and we added
case distinctions based on the protocol state to obtain the right behaviour in
each state.

To verify that the software correctly implemented the finite state machine,
we then used AutoJML5 [7], a tool that generates JML specifications (or Java
code) from finite state machines. This tool had to be adapted to cope with our
use of several state diagrams to express various aspects of the behaviour, i.e. with
Fig 3 expressing aspects of the behaviour that should be added to the overall
behaviour in Fig. 1. (The alternative would have been to draw the very large
finite state machine that would result from adding these aspects to the overall
behaviour in Fig. 1.)

5 Available from http://autojml.sourceforge.net

10



We added the specifications generated by AutoJML to the source code and
verified them using ESC/Java2. This revealed there were still errors in the (al-
ready improved) implementation, where certain methods handled incoming mes-
sages in a different way than prescribed by the FSM. Even though we were aware
that the handling of exceptions is a delicate matter and paid particular atten-
tion to this, we still missed updates to the internal state variable in certain cases
when the exceptions were thrown.

4 Conclusions

Now that there are various mature tools available to verify security properties
of abstract security protocols, we believe it is time to tackle the next challenge,
namely trying to verify the security of real implementations of such protocols.

This paper reports on an experiment to see if and how formal methods –
in particular formal specification using finite state machines, the specification
language JML, and the program checker ESC/Java2 – can be used for to verify
an existing Java implementation of SSH. In the end, we managed to verify the
implementation in the sense that it never throws an exception (which is maybe
more a safety property than a security property) and that it correctly implements
the SSH protocol as specified by finite state machines that we developed as
formalisation of the official SSH specifications. Along the way we found and
fixed several security flaws in the code. Some of these were found as a direct
consequence of the verification, some were found more as a side-effect of having
to thoroughly inspect and annotate the code to get it to verify. Using of an
extended static checker such as ESC/Java2 is a way to force a very thorough
code inspection.

A general conclusion about our case study is that a formal specification of a
security protocol that captures all or at least most of the complexities in some
format that is readable to implementors is very useful. Given the complexity
of real-life protocols, it is easy to get something wrong, as witnessed by the
implementation we looked at. The specification of SSH as a finite state machine
is formal, but still easy to understand by non-experts. (We are investigating
other notations to use instead of finite state machines – more on that below.)
We believe that providing such a description as part of official specification would
be valuable, as it clarifies the specification and is also useful for development.
Indeed, note that anyone who implements SSH will, as part of the work, have to
implement a finite state machine that is described in the prose of the SSH RFCs
and hence will have to re-do much of the work that we have done in coming up
with the description of SSH as finite state machine.

The size of the SSH code we verified (just the code for the protocol, excluding
the code for the GUI etc.) is around 4.5 kloc. The whole verification effort took
about 6 weeks, including the time it took to understand and formalise the SSH
specs, which was about 2 weeks. For widely used implementations of security
protocols, say the implementation of SSL in the Java API, such an effort might
be considered acceptable.

11



The second stage in our approach, ensuring the absence of runtime excep-
tions, can catch programming errors in the handling of individual messages,
especially malformed ones. The third stage, verification of conformance to the
FSM, can catch programming errors in the handling of sequences of messages,
especially incorrect ones. Note that this complements conventional testing: test-
ing – or, indeed, normal use of the application – is likely to reveal bugs in the
handling of correctly formatted messages and correct sequences of such mes-
sages, but is less likely to reveal bugs in the handling of incorrectly formatted
messages or incorrect sequences of messages, simply due to the limitless number
of possibilities for this. So our approach may detect errors that are hard to find
using testing.

A more practical issue is what the most convenient formalism or format for
such finite state machines is, and which tools can be used to develop them. We
developed our diagrams on paper and whiteboards, but with large number of
arrows this becomes very cumbersome without some ad-hoc conventions and
abbreviations. Maybe a purely graphical language is not the most convenient in
the long run. Given the complexity of a real-life protocols, some way of separating
different aspects in different finite state machines (as we have done with Fig. 1
describing the ‘normal’ scenario and Fig. 3 describing ‘other’ scenarios) seems
important.

Related work An earlier paper [7] already investigated how a provably correct
implementation could be obtained from an abstract security protocol for a very
simple protocol. The AutoJML tool we used to produce JML specifications from
the finite state machines can also produce a skeleton Java implementation. When
developing an implementation for SSH from scratch, rather than examining an
existing one as we did, this approach might be preferable. There are already
efforts to generate code from abstract protocol descriptions, e.g. to generate
Java code from security protocols described in the Spi calculus [11], or to refine
abstract state machine (ASM) specifications to Java code [5].

Jürjens in [8] showed how to verify the security of UML models of security
related protocols. These UML models are on the level of abstraction similar to
the one employed by us in FSMs.

Future work It would be interesting to repeat the experiment we have done
for other implementations and for other protocols, i.e. trying to formalise other
protocols using FSMs or other formalisms, and using these to check implemen-
tations. Of course, for an implementation that is not in Java, but say in C or
C++, we might not have program checkers like ESC/Java2. Still, a formalisation
of a security protocol is not only useful for program verification, but also as aid
to the implementor, as aid for a human code inspection and for testing. Indeed,
model-based testing could be used to test if an implementation of SSH conforms
to our formal specification of the protocol.

In the end we only verified that the code correctly implements the protocol
as described by the finite state machine, not that this protocol is secure, i.e.
that it ensures authentication, integrity and confidentiality. Verifying that the

12



full SSH protocol as described in Fig. 2 meets its security goals still seems an
interesting challenge to the security protocol verification community.

As an alternative to using finite state machines, we are currently experi-
menting with a notation that is similar to the standard format used to describe
security protocols, but extended with branching and jump statements. This then
allows us not only to specify the normal protocol run, but also how any deviations
from the normal protocol run have to be handled. Such a formalism may be more
practical notation than a graphical one such as finite state machines, which can
become unwieldy, and has the advantage of being closer to conventional formal
notation for security protocols.

References

1. S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119,
The Internet Engineering Task Force, Network Working Group, March 1997.

2. L. Burdy, Y. Cheon, D.R. Cok, M.D. Ernst, J.R. Kiniry, G.T. Leavens, K.R.M.
Leino, and E. Poll. An overview of JML tools and applications. International
Journal on Software Tools for Technology Transfer (STTT), 7(3):212–232, 2005.

3. David R. Cok and Joseph R. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In
G. Barthe et.al., editor, CASSIS 2004, number 3362 in LNCS. Springer, 2004.

4. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. Extended static checking for Java. In PLDI’02, pages
234–245, New York, NY, USA, 2002. ACM Press.

5. Holger Grandy, Dominik Haneberg, Kurt Stenzel, and Wolfgang Reif. Developing
provable secure m-commerce applications. In Emerging Trends in Information and
Communication Security, volume 2995 of LNCS, pages 115–129, 2006.

6. Michael Howard, David leBlanc, and John Viega. 19 Deadly Sins of Software
Security. McGraw-Hill, 2005.

7. E.-M.G.M. Hubbers, M.D. Oostdijk, and E. Poll. Implementing a formally verifi-
able security protocol in Java Card. In Security in Pervasive Computing, SPC’03,
volume 2802 of LNCS, pages 213–226. Springer-Verlag, 2004.

8. Jan Jürjens. Sound methods and effective tools for model-based security engineer-
ing with uml. In ICSE ’05: Proceedings of the 27th international conference on
Software engineering, pages 322–331, 2005.

9. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Behavioral Specifications
of Businesses and Systems, chapter JML: A Notation for Detailed Design, pages
175–188. Kluwer, 1999.

10. Gary McGraw and Ed Felten. Securing Java. Wiley, 1999. Available online at
www.securingjava.org.

11. Benjamin Tobler and Andrew Hutchison. Generating Network Security Protocol
Implementations from Formal Specifications. In E. Nardelli et.al., editor, IFIP
World Computer Congress - Certification and Security in Inter-Organizational E-
Services (CSES), 2004.

12. David von Oheimb. Formal specification of the SSH transport layer protocol in
HLPSL, 2004. Available online at http://www.avispa-project.org/library/
ssh-transport.html.

13. T. Ylönen. The SSH (Secure Shell) Remote Login Protocol. Internet draft, The
Internet Engineering Task Force, Network Working Group, NOV 1995. Available
at http://www.snailbook.com/docs/protocol-1.5.txt.

13



14. T. Ylönen. The Secure Shell (SSH) Authentication Protocol. RFC 4252, The
Internet Engineering Task Force, Network Working Group, January 2006.

15. T. Ylönen. The Secure Shell (SSH) Connection Protocol. RFC 4254, The Internet
Engineering Task Force, Network Working Group, January 2006.

16. T. Ylönen. The Secure Shell (SSH) Protocol Architecture. RFC 4251, The Internet
Engineering Task Force, Network Working Group, January 2006.

17. T. Ylönen. The Secure Shell (SSH) Transport Layer Protocol. RFC 4253, The
Internet Engineering Task Force, Network Working Group, January 2006.

14


