
1

Design Process

Digital Security

Radboud University Nijmegen

Three levels of abstraction

2

2. Abstract Design

 - Key & certificate distribution
 - Security protocols in Alice->Bob style

1. Functional &

security requirements

Attacker/

Threat Model

3. CODE

assumption

design

decision

design

decision

assumption

assumption

security requirement engineering

& threat modelling

Your design document

Description of the first 2 levels, ie.

1) functional & security requirements

2) abstract design

clearly explaining relation between these and the motivation by the
threat model.

This involves thinking about

• Use cases

• Security requirements, incl.

• Attackers & threat model (maybe abuse cases ?)

• Trust assumptions (incl. definition of the TCB and trusted
insiders, etc.)

• Abstract protocols to provide the required functionality &
security

Ideally making all design decisions explicit.

Later on, at the code level, there will be with further design
decisions.

3

Security

requirements

Threats

Trust assumptions aka

Security Assumptions

Tip to articulate security requirements:

Remember the old-fashioned alternatives

5

and the security guarantees they make

Differences & commonalities?

1) W.r.t. functionality? 2) W.r.t. security?

6

Threats vs attacks vs risks

Often used interchangeably, but there are different concepts

• Threat

Something bad that may happen, an attacker’s goal

• Attack (or attack vector)

A particular way to realise (a step towards) a threat

• Risk

∑attacks probability * impact

To distinguish these, note that

• There may be different attacks to achieve the same threat

• Threats never really go away, no matter how good the defences,

but risk of threats can be reduced.

Some attack vectors do go away with a certain design.

• Even if we cannot prevent some attack (eg insider attack)

we may be able to detect & react to them, reducing their risk.

7

Attacker/threat modeling

Threat / attacker model can describes

1. the attacker’s capabilities

• knowledge, skills, expertise

• (physical or logical) access to places, systems, info

• insiders? malicious clients? ...

• time & money to buy equipment, expertise, or bribe people

2. the attacker’s motivation/goals

• ie. the bad things you do not want to happen

Complementary notion: trust assumptions describe which systems

or agents we trust for some property

• because we want to (eg because the risk is small, or because

it simplifies the design), or because we have to

8

The dreaded word Trust
Beware of the word ‘Trust’ !

Rule of thumb:

if something has the word ‘trust’ in the name,

then it’s a scam or people have no clue what they mean by it

• Trusted ≠ trustworthy

• Trust is a negative quality, because

trust implies that something bad can happen

• So we want as little trust as possible, and a small TCB

9

Use cases: incl. personalization, issuance,
and end-of-life?

• Cards need to be personalised

– installing software, initialising keys, PIN codes, IDs, names, ...

before issuance to the user (aka card holder)

This will typically require a separate terminal

– In addition to say point-of-sale terminal,...

– This may happen in several stages

• Cards may also need to be disabled, eg. at the end-of-life?

– Or still be able to report data for fraud investigations?

Be explicit about the life-cycle of the card, eg with a state diagram

10

Persistent life cycle state

Card always has to record some life cycle state

This state has to be recorded & maintained in persistent

memory (ie EEPROM)

Your report MUST include a state machine like this!

11

initial personalised issued blocked end-of-life

Transient protocol state? aka session state

Cards and terminals may need to maintain transient protocol

state for each ‘session’

Eg

with some actions only allowed in state 1 or 2

Such restrictions can be enforced by

1) cryptographic relations between messages

2) recording & checking session state in transient memory (ie RAM)

12

0. new session

1. terminal authenticated

2. terminal & user authenticated

Example security requirements

Eg

• authentication of the card holder

• authentication of smart card

• authentication of all communication by party A

• confidentiality of PIN code

• non-repudiation

What is wrong with these?

13

Example security requirements

OF WHAT?

BY WHOM?

TO WHOM?

14

Example security requirements

• Authentication of the card holder by the card

– Or by the terminal?

– Or by the back-end?

• Authentication of all communication coming from the
smartcard

– up to the terminal?

– up to the backend?

• Confidentiality of data Z so that only parties A and B can
read it

15

Authentication (of entities or of data)

Beware of the subtle differences, eg between

1. authentication of smart card by the terminal

2. authentication of an individual message sent by the smartcard

3. authentication of the entire communication session from
smartcard

2 does not prevent replay of an individual message, but 3 does.

Authenticity and freshness needed to prevent replays.

16

Extra tricky: (non-)repudiation

• In Dutch: (on)weerlegbaarheid

• Tricky to express & potentially confusing!

Non-repudiation of some action X by some party B
to another party A

is more clearly be expressed as

B can prove to A that action X took place

or B can prove to A that C agreed to action X

or B and C cannot deny to A action X took place

17

Non-repudiation to reduce trust

Non-repudiation can be crucial to reduce the TCB

for some specific security property

Eg

• Bank may not want to trust POS terminals in shops

• for which properties?

• for which properties is this unavoidable?

• Government may not want to trust equipment at petrol stations

• for which properties?

• for which properties is this unavoidable?

18

Don’t forget detection & response
It’s natural to focus on preventing security problems,

and forget about detecting or reacting to problems

• Logging can be useful - or crucial - here !

• Note that logs can serve different aims, eg

• detecting that things go wrong

• doing forensics or rolling back transactions in case things

went wrong

The ability to detect problems or to determine where things went

wrong can be important security requirements!

• Eg. even if you cannot prevent some forms of insider attack, you

want to be able find out who or what was responsible if & when

these come to light

19

Example design decisions

It should be crystal clear that your implementation is ‘secure’

• ie. that all security requirements are ensured in the design and in
the code, by some design decisions

Eg

• authentication of the card holder by party B using a PIN code

• authentication of party A by party B using private/public keys &
certificate that have been distributed as follows and the following
challenge-response protocol: ...

• non-repudiation of action X by having MAC or digital signature
over data Z using key K

20

Pitfall: HOW vs WHAT

It is easy to mix up

• WHAT security requirement you want to meet

eg

– authentication of party A by B

– authentication of message M

– ...

• HOW you meet that security requirement

eg

– some challenge-response protocol between A & B

– some digital signature or MAC on message M

– …

Keep these separate, so that difference between security

requirements (WHAT) and design decisions (HOW) is clear

21

Include overview of key & certificate distribution!

Who has which keys & certificates for what purpose?

For example

• The smart card has keys SKC, PKC, PKmaster and certificate CcardID

The terminal has keys K1, K2 and certificate CtermID

• Key AKC is used to authenticate messages sent by the card

• Certificate CID signed by X proves that ...

• Key EK is used to ensure confidentiality (by encrypting …)

NB it is bad practice to use the same key for different
security goals (eg integrity and confidentiality)

22

Logical chain of motivation

Ideally assets & attacker model

lead to

security requirements

lead to

design decisions - use of keys, protocols, PINs, ...

In practice, and chronologically, things often happen in the

opposite order!

eg you decide ‘let’s encrypt this’, then consider why, and only

then discover some security requirement about confidentiality

that was implicit so far

That’s fine, as long as in the end the motivations and

rationale are clear and explicit!

23

Design process

Typically a combination of

• structured & methodological approach

using standard lists of security objectives, attacks, etc.

• creative chaos

brainstorming about attacks, solutions, etc

• Brainstorming may work best if everyone first tries it on their

own, to avoid tunnel vision

• As usual, thinking like an attacker is the only way to see if a

design is secure

Either is fine, as long as the end result is clearly documented,

and rationale are clear

24

Pitfalls

• Implicit assumptions

• Could be invalid, or become invalid over time due to changing

circumstances or new functionality (function creep)

• Better an unrealistic assumption than an implicit one!

• Implicit or unmotivated design decisions

• These may hide implicit security requirements or implicit

threats, or be totally pointless

• It is fine to ignore some threats because you think the risk

is negligible, or because they are to hard to defend

against, but say so explicitly

25

Design choice: symmetric vs asymmetric crypto?

Pros symmetric

• Cost & Speed?

– Old cheap smartcards could only do symmetric crypto

– But modern cheap cards can do asymm. crypto, and fast

enough, so not really an issue?

• Quantum resistance

Pros asymmetric

• Symmetric crypto cannot achieve proper non-repudiation, as

verifying MAC requires access to the same key that created it.

• Key management is much more flexible with asymm. crypto, as

you can use PKI & certificates.

• Security benefit: some parties only need to know a public key

instead of a shared symmetric key

– eg some master public key to verify certificates

26

Key diversification for symmetric crypto

If each card has its own symmetric key, the back-end (and

terminals?) has to record all of them

• If we use asymm. crypto, the use of certificates avoids this.

A standard trick to reduce this key management hassle:

• Give terminals and/or central back-end some master key M

• Give card with card number ID a diversified key derived from the

master key M and ID, eg.

MID = AESM(ID)

This avoids the need of a database recording the key for every

card. Still, the master key ending up in lots of places remains a

security weakness.

27

Pitfalls

Encrypting data does not ensure integrity!!

• Attacker can flip bits in encryptK(M) with unpredictable –

and undetectable – result

• The only robust way to ensure the authenticity of a

message M is to append a Message Authentication Code

(MAC) or a digital signature, ie. an encrypted hash of the

message M

28

Practical considerations

• Model & implement as little of the back-office system as
possible

• Don't forget about personalisation & issuing of smartcards

– This will require another terminal application

• Steal as many standard solutions as possible

– eg. crypto protocols, key management, key diversification

• It is OK to have security flaws, or cut corners because you
accept certain risks, as long as these are documented!

– esp. in the rush to meet the final deadline, you may have to
cut corners

29

DEADLINE

• Feb 25: high-level design document

• But sooner is better

• You can read back what I told you in the document linked

in Brightspace

30

Checklist before handing it in

Your report MUST include

• List of security requirements

• Description of the life-cycle stages

• A clear overview of the keys & certificates used, incl.

description of who has which keys & what the purpose of a key is

• Security protocols as messages sequence charts or in

Alice->Bob style

– Explain notations for signing and encrypting data used here!

• Think about non-repudiation requirements, if you haven’t

mentioned any

• Check that you use consistent notation for the keys and

parties throughout the document, that is explained

• Number sections & pages. Numbering or labelling other

things can be useful too: eg. use cases, the steps in a protocol,

security requirements, ...

31

	Slide 1: Design Process
	Slide 2: Three levels of abstraction
	Slide 3: Your design document
	Slide 4:
	Slide 5: Tip to articulate security requirements: Remember the old-fashioned alternatives
	Slide 6: Differences & commonalities?
	Slide 7: Threats vs attacks vs risks
	Slide 8: Attacker/threat modeling
	Slide 9: The dreaded word Trust
	Slide 10: Use cases: incl. personalization, issuance, and end-of-life?
	Slide 11: Persistent life cycle state
	Slide 12: Transient protocol state? aka session state
	Slide 13: Example security requirements
	Slide 14: Example security requirements
	Slide 15: Example security requirements
	Slide 16: Authentication (of entities or of data)
	Slide 17: Extra tricky: (non-)repudiation
	Slide 18: Non-repudiation to reduce trust
	Slide 19: Don’t forget detection & response
	Slide 20: Example design decisions
	Slide 21: Pitfall: HOW vs WHAT
	Slide 22: Include overview of key & certificate distribution!
	Slide 23: Logical chain of motivation
	Slide 24: Design process
	Slide 25: Pitfalls
	Slide 26: Design choice: symmetric vs asymmetric crypto?
	Slide 27: Key diversification for symmetric crypto
	Slide 28: Pitfalls
	Slide 29: Practical considerations
	Slide 30: DEADLINE
	Slide 31: Checklist before handing it in

