Smartcard protocols ISO 7816

Erik Poll

Digital Security

Radboud University Nijmegen

Standard for contact smartcards ISO7816

- 7816-1 Physical characteristics
- 7816-2 Dimension & size of contacts
- 7816-3 Electronic signals and transmission protocols
 - defines voltage & current requirements
- 7816-4 Inter-industry commands
 - standard set of commands
- 7816-5 Numbering system for application identifiers (AIDs)
- · 7816-6 ...
- · 7816-...
- · 7816-...
- · 7816-15

Contact cards (ISO 7816-2)

- Vcc originally 5 V, now also 3V or 1.8V
 - Vpp, higher voltage for writing to EEPROM, no longer used as it introduces security weakness
- Clock originally 3.57 MHz or 4.92MHz
- I/O speeds in order of > 100 Kbit/s
 - C4 & C8 can be used for USB2.0 up to 12 Mbit/s
- C6 can be used for Single Wire Protocol (SWP) to connect SIM card to the phone's NFC antenna

Smart card terminals

Master-Slave communication:

- terminal (aka CAD, card acceptance device) is master
- smartcard is slave

Hence: terminal takes the initiative, smartcard cannot initiate actions

For SIM cards a polling mechanism was used to overcome this limitation: the handset would regularly poll the SIM card to ask if it wants to do something

The Terminal Problem!

No I/O between user and card

- no display
- no keyboard

Why is this a problem?

Some experimental cards with displays, keyboards, or fingerprint readers.

Trusted I/O to the card holder

I/O via devices such as

means these have to trusted

Card Activation (ISO 7816-3)

1. terminal activates card

earth; voltage; clock; reset

2. card responds with ATR (Answer To Reset)

- max 33 bytes, usually a lot less (for speed)
- must be sent between 400 & 40,000 clock cycles
 - obligatory info about the protocol used
 - T=0 byte-oriented
 - T=1 block-oriented
 - supported baud rate for I/O
 - usually some manufacturer info
 - id of OS and version no. of ROM mask
 - obligatory last byte XOR checksum

APDU communication (ISO 7816-4)

All subsequent communication via APDUs

Application Protocol Data Units

which are just sequences of bytes in particular format

- 1. Terminal sends command APDU
- 2. Card replies with response APDU etc, etc

Command APDU

- CLA class byte
- INS instruction byte
- P1,P2 parameters
- Lc length of data block
- Data Lc bytes of data
- Le length of expected response

obligatory

optional

Response APDU

Data ... SW1 SW2

- Data : Le bytes of data (optional)
- SW1, SW2 : status word (obligatory)

APDU coding conventions

- Conventions for CLA, INS etc. are given in ISO 7816-4
- Conventions for status word SW1 SW2
 - normal processing 61xx, 9000
 - warning processing 62xx, 63xx
 - execution error 64xx, 65xx
 - coding error 67xx, 6Fxx

ISO 7816 standard commands

- ISO 7816 also standardises some functionality & associated commands, for
 - a file system
 - PIN codes
 - (building blocks for) authentication protocols
- You do not have to stick to using & implementing these commands, but they may provide inspiration.
 - The aim was to standardise the more basic smartcards, where applications are realised by configuring some standard functionality rather than 'real' programming.
- Other standards for more specific functionality:
 - EMV for banking cards
 - GSM 11.11 and its superset EN 726-3 for SIM cards
 - United Nations ICAO specs for e-passport

PIN verification command in ISO7816

- VERIFY command for PIN code verification
 - aka CHV = Card Holder Verification = PIN

ISO 7816-4 defines that Instruction (INS) byte for VERIFY is 20, and class (CLA) byte is 00

Example Authentication Protocols

ISO7816 defines some standard instructions for authentication using challenge-response

- For authentication of card
 - INTERNAL AUTHENTICATE
 - arguments: random, algorithm, key no
 - card returns: enc(key,random)
- For authentication of terminal
 - GET CHALLENGE
 - card returns random number
 - EXTERNAL AUTHENTICATE
 - arguments: enc(key, random), algorithm, key no

Example Authentication Protocols

For mutual authentication

- GET CHIP NUMBER
 - card returns chip number
- GET CHALLENGE
 - card returns smart card random, s rnd
- MUTUAL AUTHENTICATE
 - arguments: key, terminal random, s_rnd, chip number, algorithm,
 - card returns: enc(key, terminal random || s rnd)

Future

ISO7816 protocol stems from 1980s and it shows! Slow speed & small size of APDUs can be a bottleneck

- Faster communication speeds wanted?
 - eg. USB 2.0
- More modern protocols wanted?
 - There has been an experimental JavaCard 3.0 version that had http(s) support