
1

Java Card

Erik Poll

Digital Security

Radboud University Nijmegen

Contents

• Smartcard Operating Systems

• Java Card architecture

• Java vs Java Card

• APDUs

• transient and persistent data

• transactions

• crypto

• Fun with transactions

2

OS

smartcard OS

Smartcard OS
No management of multiple processes, user accounts, loads of

device drivers, etc. etc. as in normal modern OSs

Tasks:

• Life-cycle management of card

• Application management

• Memory management

• Some libraries for I/O & crypto

• just one simple device driver for I/O using ISO7816 APDUs

• Hardware error handling

4

Smartcard OS evolution
1. No OS: one application, burnt into ROM

2. Standard libraries in ROM, applications in EEPROM

3. Proprietary operating systems

– programmed in machine code with proprietary instruction set

– often providing ISO7816-4 file system

4. Modern multi-application smartcards

– MULTOS

– JavaCard

– Windows for smartcards †

5

Smartcard life cycle (ISO 10202-1 - cancelled)

1. Production of chip & card

• testing & removing test functionality

2. Card preparation

• putting it in plastic card & ‘completing’ the OS

3. Application preparation incl. personalisation

• initialising applications

• personalisation - both electrically & optically

4. Card utilisation

• (de)activation of applications

5. End of card utilisation

• de-activating applications and/or card

OS completion

1. Initially, card contains ROM mask

2. Simple loader in ROM executed to load EEPROM

3. Checksum computed

4. Switch to mode where code in ROM and EEPROM can be

executed

7

Typical application life cycle

1. Installation of application (aka applet)

• uploading & installing code

2. Personalisation

• uploading application data

• afterwards, application starts in normal active life

3. End-of-life

• disabling all functionality

• possibly leaving logging functionality enabled

• switch to end-of-life state by external command

or when card notices something suspicious

8

Traditional smartcard vs JavaCard (or MULTOS)

• One program

• Written in machine-code for

a specific chip

• Burnt into ROM or uploaded

once to EEPROM

• Programs (applets) written in

high-level

• Compiled into bytecode

• Stored in EEPROM

• Interpreted on card

• Multi-application: several

applets on one card

• Post-issuance: adding or

deleting applets on cards “in

the field”

9

Java Card architecture

10

Java Card platform

smartcard hardware
a

p
p

le
t

a
p

p
le

t

a
p

p
le

t

Java Card

Virtual Machine

Java Card API

(‘mini OS’)
JCRE
(Java Card
runtime
environment)

Java Card vs Java architecture

Java Card applets are executed in a sandbox,

like Java applets on a Java VM

But important differences with the Java sandbox model :

• No bytecode verifier on most cards (due to memory required)

• Downloading applets is controlled by digital signatures using the

Global Platform API (formerly Visa Open Platform)

• Sandbox more restrictive, and includes runtime firewall to provide

protection between applets and between applets and the OS

• in particular: applets cannot share references

11

Java Card Runtime Environment

JCRE = VM + API

smartcard hardware

a
p

p
le

t 3

a
p

p
le

t 2

a
p

p
le

t 1

Java Card firewall

12

RUNTIME checks to
prevent access to
• fields & methods of
 other applets
• objects owned by
 other applets

even if these are public!

Exceptions:
• applets can access
 some JCRE-owned
 objects, eg APDU buffer

There is a way for applets
to expose functionality to
each other, using
Shareable interfaces but

you won’t be needing that

Advantages of JavaCard?

• Vendor-independence

• Easy to program

– higher-level language => smaller programs with fewer bugs

– standard functionality (eg for PINs) provided once by the API

• esp security-sensitive functionality, so people don't mess things

up by implementing this themselves

• Open standard

– no reliance on security-by-obscurity

• specs can be studied and criticised

– BUT: all implementations tightly closed, and bug-fixes in the specs

happen secretly

Disadvantages of JavaCard?

• Overhead of VM

makes cards slow and requires lots of memory => expensive

• Trust?

how secure is the whole JavaCard infrastructure?

complicated platform, and complexity <≠> security

• Ease of programming?

may be deceptive, and invite non-experts to program cards and make

silly mistakes

• Easy for attackers to experiment with cards?

esp. if they can get blank JavaCard of the some brand to look for bugs

or weaknesses. NB security by obscurity has its merits!

Does simpler application code using a standard API outweigh having to
trust a bigger platform ?
It is hard to compare the TCBs for JavaCard vs proprietary OS

The Java Card language

• A dialect of Java tailored to smartcard

– superset of a subset of Java

• Subset of Java (due to hardware constraints)

– no threads, doubles, Strings, multi-dimensional arrays, and a

very restricted API

– support for int optional

– garbage collection optional

• But… with some extras (due to hardware peculiarities)

– communication via APDUs

– persistent & transient data in EEPROM &RAM

– transaction mechanism

15

Don’t create garbage !

JavaCards usually have no garbage collector, and very limited memory!

Hence no calls of

new ...

anywhere in your code except in the installation phase

(e.g. the applet's constructor)

More generally, JavaCard programs should not look like normal Java
programs, but more like C code written in Java syntax

In particular, go easy on the OO: most objects should be byte arrays.

16

The Java Card language

• JavaCard uses an optimized form of class files, called cap-files

1. compiler translates .java to .class

2. converter translates .class to .cap

compressing code, eg replacing method & field names by

offsets

• JavaCard uses 16 bit arithmetic, not 32 bit

17

16 bit arithmetic

JavaCard code contains many(short)casts:

all intermediate results (which are of type int) must be cast to short

so that results are the same on a 16 bits JavaCard VM

as on a normal 32 or 64 bits Java VM

short s; byte b;

s = b+s+1;

// not ok, compiler complains; there is an

// implicit cast from 32 to 16 bit

s = (short)(b+s+1);

// not ok, converter complains; a 16 bit CPU will

// implicitly cast intermediate result to 16 bit

s = (short)(b+(short)(s+1)) // ok

Moral of the story: your JavaCard code should look really ugly,
with(short)casts all over the place.

18

(un)signed bytes

• Bytes in Java and Java Card are signed

ie. for any byte b

b Є {-128, ..., 127}

• To interpret byte as unsigned , write

b & 0x00FF Є {0, ..., 255 }

Moral of the story: your JavaCard code should look REALLY ugly,
with(short)casts and & 0x00FF all over the place.

19

the Java Card API

• A subset of Java’s API

– no need for most standard I/O classes

– no Strings

– no clone() in Object

– ...

• plus some extras for

– smartcard I/O with APDUs using ISO7816

– persistent and transient data

– transactions

20

Java Card API packages

• java.lang

Object, Exception, ...

• javacard.framework

ISO7816, APDU, Applet, OwnerPIN, JCSystem

• javacard.security

KeyBuilder, RSAPrivateKey, CryptoException

• javacardx.crypto

Cipher

21

Card-terminal communication

Communication via APDUs, as defined in ISO7816,

using API class javacard.framework.APDU

1. JavaCard OS sends a command APDU to an applet, by invoking the

process (APDU the_apdu)

method of an applet.

This APDU object the_apdu contains a byte array buffer

the_apdu.getBuffer()

2. Card sends a response APDU back,

by invoking API methods on this APDU object, eg

the_apdu.sendBytes(offset,length)

See the process methods of the *Applet.java examples linked from

Brightspace on how APDUs are used.

22

Java Card I/O with APDUs

23
a

p
p

le
t

a
p

p
le

t

Java Card platform

a
p

p
le

t

a
p

p
le

t

terminal

smartcard hardware

1. terminal sends

 command APDU

incl. applet ID

2. OS selects applet

and invokes its
 process method

4. applet sends

 response APDU

3. applet executes

RMI

• Dealing with APDUs cumbersome

• JavaCard 2.2 introduced RMI (Remote Method Invocation)

– Terminal invokes methods on applet on the smartcard, eg

int doPayment(short amount,

boolean PIN_required,

byte[] description)

– Platform translates this method invocation into APDUs

by (un)marshalling the parameters & return value

BUT: only works if method parameters fit in the APDU buffer

• So there is limit on total size on all method arguments combined.

Nobody in industry is using RMI; easier if you don't.

24

Contents

• Smart Card Operating Systems

• Java Card architecture

• Java vs Java Card

• APDUs

• transient and persistent data

• transactions

• crypto

• fun with transactions

25

Recall the smartcard hardware

• ROM

– program code of VM, API, and pre-installed applets

– though most of that will be in EEPROM

• EEPROM

– program code of applets

– persistent storage of the data

• RAM

– transient storage of data

JavaCard programmer only has to worry about RAM and EEPROM

Data stored in EEPROM is persistent, and is kept when power is lost

data stored in RAM is transient, and is lost as soon as power is lost

26

Persistent (EEPROM) vs transient (RAM)

• Heap in EEPROM, stack in RAM

• objects (incl. their fields) are stored in EEPROM

• local variables and method arguments are in RAM

Only exception:

• API methods allow allocation of arrays in RAM instead of EEPROM

NB only the content of these arrays in RAM;

the array header, incl. its length, are in EEPROM

27

Persistent (EEPROM) vs transient (RAM)

public class MyApplet extends javacard.framework.Applet{

byte[] p;

short balance;

SomeObject o;

p = new byte[128];

o = new SomeObject();

balance = 500;

public short someMethod(byte b) {

short s;

Object oo = new Someobject();

...

}

28

Persistent (EEPROM) vs transient (RAM)

public class MyApplet extends javacard.framework.Applet{

byte[] p; // persistent, ie in EEPROM

short balance;

SomeObject o;

p = new byte[128];

o = new SomeObject();

balance = 500;

public short someMethod(byte b) {

short s; // transient, ie in RAM

Object oo = new Someobject();

...

}

29

Persistent (EEPROM) vs transient (RAM)

public class MyApplet extends javacard.framework.Applet{

byte[] p; // persistent, ie in EEPROM

short balance;

SomeObject o;

p = new byte[128];

o = new SomeObject();

balance = 500;

public short someMethod(byte b) {

short s; // transient, ie in RAM

Object oo = new Someobject();

...

}

30

Spot the
potential
problem!

Persistent (EEPROM) vs transient (RAM)

public class MyApplet extends javacard.framework.Applet{

byte[] p; // persistent, ie in EEPROM

short balance;

SomeObject o;

p = new byte[128];

o = new SomeObject();

balance = 500;

public short someMethod(byte b) {

short s; // transient, ie in RAM

Object oo = new Someobject();// potential garbage ??

...

}

31

Allocating arrays in RAM

public class MyApplet extends javacard.framework.Applet{

byte[] t, p;

short balance;

SomeObject o;

// persistent array p and persistent object o

p = new byte[128];

o = new SomeObject();

// transient array t

t = JCSystem.makeTransientByteArray((short)128,

JCSystem.CLEAR_ON_RESET);

32

Allocating arrays in RAM

public class MyApplet extends javacard.framework.Applet{

byte[] t, p;

short balance;

SomeObject o;

// persistent array p and persistent object o

p = new byte[128];

o = new SomeObject();

// transient array t

t = JCSystem.makeTransientByteArray((short)128,

JCSystem.CLEAR_ON_RESET);

33

NB t is persistent,

 t.length is persistent, and

 only the contents t[..] is transient

Why use transient arrays ?

For efficiency, functionality or security:

• “scratchpad” memory

– RAM is faster & consumes less power than EEPROM

– EEPROM has limited lifetime

• Automatic clearing of transient array

– on power-down, and

– on card reset or applet selection

can be useful for functionality and/or security

NB there’s only a very limited amount of RAM! (in the order of 1 KByte)

Use one or two global transient arrays, allocated once, as
scratchpad.

Don't allocate different scratchpad arrays for different purposes.

34

Programming trick:

transient arrays for session state

public class MyApplet {

boolean keysLoaded, blocked; // persistent state

private RSAprivateKey priv;

byte[] protocolState; // transient session state

...

protocolState = JCSystem.makeTransientByteArray((short)1,

JCSystem.CLEAR_ON_RESET);

// protocolState[0] will automatically reset to 0

// when card powers down & starts up

....

35

Remember: Don’t create garbage !

JavaCards have no garbage collector, and very limited memory!

Hence NO CALLS OF

new ...

makeTransientByteArray(..)

in your code anywhere except in the installation

phase (e.g. the applet's constructor)

36

Contents

• Smart Card Operating Systems

• Java Card architecture

• Java vs Java Card

• APDUs

• transient and persistent data

• transactions

• crypto

• fun with transactions

37

Transaction example

private short balance;

private short[24] log;

private short n;

// log[n-23..n %24] record previous balances

...

// Update log

n++;

log[n % 24] = balance;

// Update balance

balance = balance – amount;

38

what if a card
tear occurs

here ?

Transaction example

private short balance;

private short[24] log;

private short n;

// log[n-23..n %24] record previous balances

...

JCSystem.beginTransaction();

// Update log

n++;

log[n % 24] = balance;

// Update balance

balance = balance – amount;

JCSystem.commitTransaction();

39

Transactions

• Power supply can be interrupted at any moment, by so-called card

tear

• JavaCard VM guarantees atomiticy of bytecode instructions

(like a normal VM does, except for operations on doubles)

• API methods can be used to join several instructions into one atomic

action, ie. atomic update of the EEPROM, called a transaction.

– If power supply stops halfway during a transaction,

all assignments of that transaction are rolled back.

This happens the next time the card powers up.

40

API methods for transactions

• The class javacard.framework.JCSYstem provides

static void beginTransaction()

static void endTransaction()

static void abortTransaction()

• Transactions affects all persistent data in EEPROM (ie. the heap)

– except some very specific EEPROM fields:

eg. the try-counter fields of PIN-objects

• Transactions do not roll back changes to transient data in RAM

(ie. the stack)

41

The (weird!) JavaCard 3 Connected Edition

The next-generation smart card OS

• not just arrays, but arbitrary objects can be in RAM

• garbage collection

• multi-threading

security worries !

• communication with https://

the smartcard is a web-server!

But who will use it??

intended market: telco

not all card manufacturers are producing JC 3.0 cards

42

Java(Card) Crypto

Crypto keys in your project code

Do not ‘hard code’ key material in source code

OR

Document that you have done this in your final report,

and then document where

44

Crypto in Java vs JavaCard

• Beware of confusion between the different APIs for crypto in Java and

Java Card

• Java Crypto Entension (JCE) provides classes

• SecureRandom

• MessageDigest

• Signature and Mac

• SecretKey, PublicKey and PrivateKey

• Cipher – this is the object that does the crypto work

• Certificate

• Crypto in JavaCard works the same

except algorithms specified with a short instead of a String

45

SecureRandom

SecureRandom random =

SecureRandom.getInstance("SHA1PRNG");

random.setSeed(0x3141592653589793L);

...

byte[] output = new byte[8];

random.nextBytes(output);

Calling the method getInstance may use up memory, so only call this method

once, e.g. in the constructor for your applet class, to avoid memory leaks

46

MessageDigest (ie. a hash)

byte[] input1 = ...;

byte[] input2 = ...;

MessageDigest digest = MessageDigest.getInstance("SHA-1");

digest.update(input1);

digest.update(input2);

...

byte[] output = digest.digest(); // returns 20 byte digest

Calling the method getInstance may use up memory, so only call this method

once, e.g. in the constructor of you applet class, to avoid memory leaks

47

Signed Message Digest (ie. a MAC)

byte[] input = ...;

PrivateKey privkey = ...;

Signature signature = Signature.getInstance("SHA1withRSA");

signature.initSign(privkey);

signature.update(input);

...

byte[] output = signature.sign(); // returns 20 byte MAC

Such a signed message digest or Message Authentication Code
(MAC) ensures integrity of the message.

Calling the method getInstance may use up memory, so only call this method

once, e.g. in the constructor of your applet class, to avoid memory leaks

48

Encryption

byte[] input = ...;

PublicKey pubkey = ...;

Cipher cipher = Cipher.getInstance("RSA");

cipher.init(Cipher.ENCRYPT_MODE,pubkey);

cipher.update(input);

...

byte[] output = cipher.doFinal();

49

• You can generate keys on card and/or in the terminal

• The card can only generate RSA keys in CRT format

• To pass keys from terminal to card or vv,

you need to extract the raw byte arrays from the Key-objects

• Beware that the maximum size of an APDU is limited!

• If you create RSA keys in the terminal, beware that the JCE may

provide a 1024 bit (= 128 byte) key as a byte array of length 129,

because it uses a signed representation, with a leading 0x00.

• remove the leading 0x00 to use such values on the card

• Read the JavaDocs specs of the APIs!

which eg. say that ALG_RSA_PCKS1 is only suitable for limited length

message

Miscellaneous issues

50

Checklist for writing code!!!

• Double-check that there are no calls to

new ...

makeTransientByteArray(...)

...getInstance (...)

after personalisation is finished, to prevent memory leaks & running

out of memory

• Do not implement your own PIN codes!
Use the (Owner)PIN API class instead

• Are transactions needed to prevent against card tears?

• Can/do you need to store some fields in transient memory to ensure

reset upon power-down?

More fun with transactions

Fun with transactions

• The JavaCard transaction mechanism fundamentally affects the

semantics of the language!

Presenting the transaction feature in a few apparently simple API calls

is a bit misleading...

• The complexity it introduces can cause major security headaches

Fun with transactions

Class C

{ private short i = 5;

void m(){

JCSystem.beginTransaction();

i++;

JCSystem.abortTransaction();

// What should the value of i be?

// 5, as assignment to i is rolled back

}

54

Fun with transactions

Class C

{ private short i = 5;

void m(){

short j = 5;

JCSystem.beginTransaction();

i++; j++;

JCSystem.abortTransaction();

// What should the value of i be here?

// 5, as assignment to i is rolled back

// What should the value of j be here?

// 6, as RAM-allocated j is not rolled back

}

55

Fun with transactions

Class C

{ private short[] a;

void m(){

a = null;

JCSystem.beginTransaction();

a = new short[4];

JCSystem.abortTransaction();

// What should the value of a be here?

// a should be reset to null

}

56

Fun with transactions

Class C

{ private short[] a;

void m(){

short[] b;

JCSystem.beginTransaction();

a = new short[4]; b = a;

JCSystem.abortTransaction();

// What should the value of b be?

// null, as creation of a is rolled back

// Buggy VMs have been known to mess this up...

// The JCRE specs have since been updated to allow

// cards to block completely if objects have been

// allocated in an aborted transaction

}
57

Fun with transactions

Class C

{ private short[] a;

void m(){

short[] b;

JCSystem.beginTransaction();

a = new short[4]; b = a;

JCSystem.abortTransaction();

// Assume buggy VM does not reset b to null

byte[] c = new byte[2000];

// short array b and byte array c may be aliased!

// What will b.length be?

// What happens if we read/write b[0..999]?

// What happens if we read/write b[1000..1999]?

}
58

Fun with transactions

Class SimpleObject {public short len; }

Class C

{ private short[];

void m(){

short[] b;

JCSystem.beginTransaction();

a = new short[4]; b = a;

JCSystem.abortTransaction();

// Assume buggy VM forgets to reset b to null

Object x = new SimpleObject();

x.len = (short)0x7FFF;

// What will b.length be?

// It might be 0x7FFF...

}

59

Papers on such attacks

• Logical Attacks on Secured Containers of the Java Card Platform,

Sergei Volokitin and Erik Poll, CARDIS 2016

• Malicious Code on Java Card Smartcards: Attacks and

Countermeasures, Wojciech Mostowski and Erik Poll, CARDIS 2008

NB the attacker model is a bit far-fetched:

malicious, possibly ill-typed, applets on a Java Card, that attack other

applets or the JavaCard platform via its API, are not a likely attack

scenario

	Slide 1: Java Card
	Slide 2: Contents
	Slide 3
	Slide 4: Smartcard OS
	Slide 5: Smartcard OS evolution
	Slide 6: Smartcard life cycle (ISO 10202-1 - cancelled)
	Slide 7: OS completion
	Slide 8: Typical application life cycle
	Slide 9: Traditional smartcard vs JavaCard (or MULTOS)
	Slide 10: Java Card architecture
	Slide 11: Java Card vs Java architecture
	Slide 12: Java Card firewall
	Slide 13: Advantages of JavaCard?
	Slide 14: Disadvantages of JavaCard?
	Slide 15: The Java Card language
	Slide 16: Don’t create garbage !
	Slide 17: The Java Card language
	Slide 18: 16 bit arithmetic
	Slide 19: (un)signed bytes
	Slide 20: the Java Card API
	Slide 21: Java Card API packages
	Slide 22: Card-terminal communication
	Slide 23: Java Card I/O with APDUs
	Slide 24: RMI
	Slide 25: Contents
	Slide 26: Recall the smartcard hardware
	Slide 27: Persistent (EEPROM) vs transient (RAM)
	Slide 28: Persistent (EEPROM) vs transient (RAM)
	Slide 29: Persistent (EEPROM) vs transient (RAM)
	Slide 30: Persistent (EEPROM) vs transient (RAM)
	Slide 31: Persistent (EEPROM) vs transient (RAM)
	Slide 32: Allocating arrays in RAM
	Slide 33: Allocating arrays in RAM
	Slide 34: Why use transient arrays ?
	Slide 35: Programming trick: transient arrays for session state
	Slide 36: Remember: Don’t create garbage !
	Slide 37: Contents
	Slide 38: Transaction example
	Slide 39: Transaction example
	Slide 40: Transactions
	Slide 41: API methods for transactions
	Slide 42: The (weird!) JavaCard 3 Connected Edition
	Slide 43: Java(Card) Crypto
	Slide 44: Crypto keys in your project code
	Slide 45: Crypto in Java vs JavaCard
	Slide 46: SecureRandom
	Slide 47: MessageDigest (ie. a hash)
	Slide 48: Signed Message Digest (ie. a MAC)
	Slide 49: Encryption
	Slide 50: Miscellaneous issues
	Slide 51: Checklist for writing code!!!
	Slide 52: More fun with transactions
	Slide 53: Fun with transactions
	Slide 54: Fun with transactions
	Slide 55: Fun with transactions
	Slide 56: Fun with transactions
	Slide 57: Fun with transactions
	Slide 58: Fun with transactions
	Slide 59: Fun with transactions
	Slide 60

