
Security Protocol Project

Generic Feedback

1

Cristian Daniele & Erik Poll

Digital Security

Radboud University Nijmegen

Lifecycle changes

Lifecycle changes can happen by

1. an explicit action,

eg. setting some boolean field to false or a byte field to ISSUED

2. something that happens implicitly,

eg. a certificate expiring

• Mention any actions to change the lifecycle as explicit steps in your

protocols

• If some lifecycle state (eg. end-of-life) or transition (e.g. unblocking) is not

mentioned in any protocol, that is suspicious

2

Explicit lifecycle state transitions

Eg. in

good to add explicit state change

3

state := ISSUED

Good to also make other actions explicit

4

POS displays “paid”

balance =

balance – T

Spot the security flaw

Message 4 includes a nonce nc exchanged in mutual authentication phase.

This ensures ‘freshness’ of the message / ties it to the current session.

But.... it can be replayed within the same session!

Solutions?

1. Card could set a Boolean flag and refuse a second CHANGE_BALANCE

OPERATION or

2. Card could change (e.g. increment) the value of nc

Good to include such actions as explicit steps

5

Spot the potential security flaw with step 6

A MitM attacker could replay message 2 as message 6.

Including more information in the signature to distinguish message 2

and 6 would prevent this. Ideally, all signed messages have unambiguous

meanings and can never be reused in the wrong place.

Also, what happens if we do a card tear before step 6?

Card tears messing with things are unavoidable,

but check their security impact!

6

Instead of just signing

 balance_change, nc

the protocol becomes more robust if we include signature over

 BALANCE_CHANGE, current_balance, nc

where BALANCE_CHANGE is some constant byte for this specific

message/operation

Generic improvement: sign everything

7

WHAT vs HOW

Clearly separate

• the security requirement (WHAT)

• the way in which that requirement is ensures (HOW)

If you don’t, it is easy for two to get mixed and for design decisions to

become implicit.

Eg why not use a counter instead of random number?

Or maybe the terminal sends more data, including a nonce, that is signed

(rather than encrypted)?

8

Use case: lost or stolen cards

What happens if cards get stolen or lost?

Reporting a card as stolen or lost would be a separate use case

Decision not to have procedure for this deserves to be explicitly

stated & motivated.

9

Blocking cards

‘Blocking a card’ can be an overloaded term, as it may mean

a) blocking a card itself

e.g. setting a EEPROM state flag on the card to BLOCKED

b) blocking a card in the back-end

e.g. setting some flag in the back-end database

You may have either or both forms of blocking.

10

Spotting protocol flaws

• Authentication MUST use some form of challenge-response

– Just exchanging & certificates is not enough!

– The challenge has to be a nonce,

which can be a random number OR a counter

• Double-check that message that triggers the actual transaction

cannot be replayed within a transaction

• Beware of unauthenticated responses
eg a card or terminal saying OK

11

Spotting protocol flaws/improvements

• If you have a session key, it is dangerous to let only one party

decide the session key

Better - or necessary – to let both parties contribute randomness

• MACing or signing data with long-term (private) key

provides a stronger guarantee than MACing with a session key

• If you use encryption in your protocol, double-check if there is a

corresponding security requirement about confidentiality

Unless it is encryption of a nonce for authentication, of course

12

Certificates

A certificate is not a just a signed public key,

it is a signed blob of information that includes a public key

A typical certificate will be

(id || PubKeyid || expiry-date || type-info || ...)

signed by a public master key

Or, more formally,

Certid = SignedPubKeyM(id || PbKid || expiry-date || ...)

where

SignedPK (m) = m || EncPK(hash(m))

13

Potential improvement?

Presumably expiry is the same as endoflife

Is there a way to distinguish the certificate of a smartcard and the certificate
of terminal?

Could an attacker steal a certificate and private key from a terminal and use
that info make a fake card, or vice versa?

You could use different ranges of IDs for cards & terminals, but clearer to

include an explicit byte field in the certificate to indicate a type

14

IDs

• If a card (or terminal) has its own keypair,

then you can use public keys to identify that card.

• But it is much cleaner to give cards and terminals unique

identifier cid and tid as well as own keypairs

– You might want to have customer-id’s and card-id’s

15

Defense in Depth

What if...? one of your security assumptions is broken

Would you be able to detect it if

• a malicious insider issues loads of cards?

• a malicious POS operator gives away free points or
redeems non-existent points?

• a malicious shop owner claims too much money, eg by
duplicating transactions?

• a card is cloned?

• key material from a terminal leaks?

• a terminal is hacked to compromise its behaviour?

• ...

Logging & procedures to inspect logs can help

16

Stylistic advice

17

Avoid duplication

Duplication is bad in code, but also in text,

so avoid it in your report

when describing protocols, giving definitions, discussing

attacker models, listing security requirements, ...

• It is better to have fewer SRs than many SRs

– so avoid duplicating or overlapping security requirements

18

Notation

• Be aware of the difference between

• constants, e.g. BLOCKED , OK OR, CHANGE_BALANCE

• program variables, e.g. state

• meta-variables for values used in protocols

e.g. amount , card_id , terminal_id , or PIN_guess

Different fonts & capitalisation can help to distinguish them

• Be aware of different meanings of = which include

– mathematical definitions

EncSign K1,K2 (m) =def EncK1(m) || EncK2(hash(m))

– assignments in code

state := PERSONALISED

19

Notation

• Introduce convenient mathematical functions & notation

Eg

m = EncryptK (amount || card_id || nonce)

(amount, cid, time) = DecryptK (payload)

m2 = DecryptAndCheckSignatureK1,K2 (m1) ; abort if signature incorrect

• Numbering steps in protocols can be useful

– also when you start coding

20

	Slide 1: Security Protocol Project Generic Feedback
	Slide 2: Lifecycle changes
	Slide 3: Explicit lifecycle state transitions
	Slide 4: Good to also make other actions explicit
	Slide 5: Spot the security flaw
	Slide 6: Spot the potential security flaw with step 6
	Slide 7: Generic improvement: sign everything
	Slide 8: WHAT vs HOW
	Slide 9: Use case: lost or stolen cards
	Slide 10: Blocking cards
	Slide 11: Spotting protocol flaws
	Slide 12: Spotting protocol flaws/improvements
	Slide 13: Certificates
	Slide 14: Potential improvement?
	Slide 15: IDs
	Slide 16: Defense in Depth
	Slide 17: Stylistic advice
	Slide 18: Avoid duplication
	Slide 19: Notation
	Slide 20: Notation

