Twenty years of secure software development

Two decades of secure software development.
Shifting left, right and down in the gquest for security by design

What have we learned? -

Digital Security group, Radboud University

What’s changed? -

In the earty 2(0ds security began to receive serious attention in the IT community. This
led to hirth of several methodologies for serare software development (with Alicresoft SDL
as the hest-known example) and many other forms of seeurity advice, incloding Top N list
af common Haws, guidelines about what to do — or about what not to do — and standards
with security requiremsents.

Twenty vears later the cry for more secure software has readhed policy documents swch
as the US National Cylersecurity Strategy and the EU Cyber Resilience Act. This paper
reflerts on developments and trends in the feld of software security over these past two
decades, especially for the henefit of people who are sewer to the feld, incloding people f6-
milinr with saftware engineering but less so with security and people familior with (sscurity)

in our quest for security-by-design e ST

1 Introduction

o o [

In the sarly 200i0s thers was o growin i.t'lm.ﬂ:.l.t.m:m'ih'm hecoming & big concern
by Sh’ft’ng Ieft’ r’ght and down in IT and that the 'm.m:m'ilr_l.'n?rm&‘:lepln}td a key role here, ln.]n.nuu-_l.-'sﬂmbgill Clatess
wrote his by mow famous email to all Microsaft employes announecing that seourity — together
with trustworthiness and priviey — were to be key priorities for Microsoft for the years to come
[27]. A year earlier, im 2000, OWASP had started as open initintive to improve security of the
weh, A few LT later Eﬁ.FEuJ-ﬁE'nuumd as o collaboration between several i.ndu.l‘tr_'r pl.n.}!r:

to improve software security (also called application security, or AppSec for
Fast forward 3 years and the security of software has become an important focus of US
and EU legislation. The U5 National Cybersecurity Strategy m relemsed in 2023 explicitly
mentions secure software development. It even announces plans to introdece legislation for
software liability, with a ‘safe harbour’ exemption for companies that adhere to some baseline
stanclard for secure software development. Also in 2023, the EU introdueed the Cylber Resilience
Act [F] that sets cybersecurity rubes for software and hardware products (or, in EU jargon,

‘products with digital elﬂnﬂis'ﬂ

WP?2 - Erik Poll I NTE RSCT.

Caveat

This talk is about software engineering

not about systems engineering

But: hardware is simply software that you cannot update

or: hardware is software that you do not need to update?

WP2 - Erik Pol INTERSCT.

THE SECURITY
DEVELOPMENT

LIFECYCLE

I I I I I I
2000 2005 2010 2015 2020 2025

WP2 - Erik Pol INTERSCT.

WP?2 - Erik Poll

) . 2 " :
. ! o) - “
+, a v o 5 n . - '] Py l@
A P . -] i > h &) 5 b s
; L - 2 4 'S‘r § M 2, ; - B <_)?“'
. X * . 9 - : ! ; , J
k, , 3 W . . » : : . ¥} =
/‘ y % ot | : ! . ‘ '.l, p .
- 5 ¢ ® g o > . .
i . -)] 4
> ﬁ" . - % - ’ ' : L 7] 5 P J ~ (" : ' 0 ¢ :
,“ S . e e g ! ® . !) :
-~ k ' O ITterent kinds ot).security’'aavice.: .-, | B
- A" B : . ' A : Sud . 5 =%
D - » o, - U -~ - iy g L » g ‘ = & § 'S o
i, ¢ 1 " e y a, - ' A 4 < . ¢’ .
X 8 ~ e | - . = : - \ ,a 4 A
o . > [: = - = o o~ \11, » e A4 .
p - o L ; 5 Sy "
o ' . w42 o o oo . | ; % '
/. Hard to see the torests for the trees - e \ A 3
£ A .) o . . 4 ' - < oy 1 o p :'
. p , Wr % — . A - - e »F B - g ¢ B
A 4 ; ;/%) s ~ -y \ \.3 i) # y . .
& R = A . i 9 : X
3 7 . { v ~ - - - \ . -
' - --_', N B ' 2 - . & - j ‘\ 9:
& \ * ’ - - M - . o A A ’ 2 = b
e B ~ K" ‘ e "
: \ 'ﬂ . . - ! o A . > ,) 'Im ¥ |
e} 1, - wollm et N NS & A
~ 2 . - 4 v - !i' R N 4 ’ ~ - =
- o = . - - . N .
4 =, - - . My . » :) 3 _ : : - . a - ‘
: - A : ¢ & 2 ¢ K - E) - b
- ¥ 4 -~ % N . "",-}‘b‘nl L ‘.-’ - A & P "4 Y .
~x if ar ' ol " 5 ' : ’ o -
¥ o . I & . - . .
" =~ . PN 1 i . - . . - s . AR a - -
o » . 4 . " > o -) ,
‘ g - ' o & > 2 o . :
ce. e \ : r . " - ORI a ~ -
P A, = 5 . -‘f i a - " . o $
- . f Wl o, . , CW
. o ™y : - - s s . - a
- - ¥ : g -
b 3 - A ¢ ; o .- v
2 ‘) o~ h " ’ . - L v L.
- 2" - o F - . A > - :
P "> - - e 1 “.l - i N X
. g L ; o - i . ¥ J] . A e
- : 5 - ' ‘ oA ' .
p - o ’ 1 ») ! . ;-1 1
" " I“, X g . =Y N . A o~ P \\. r "l : - . i)
(3 3 : 3 a3 ~. ' [} - . ;] d
ﬁl L 3% 2 " = . 22V ‘,{m.' - d - 3 pio ’ ce B : % -
- - - 8L o e | e . ! 2 B - s !
3 ,\; \ d D S -~ : - | "\f; M ' P ~ 3 - -
A » o ~ B % " pr =N : ” - A~ & 1 i 2 <«
e B P - X i : &S50 - - i o ia \h 3 - o ¥
. . 208 - v o ! . ¥ "-,; f
~ “n ~ v in " : P -
o . | A § = \;'ﬂ|\ ™ "~ o g } | . “I‘?‘\ by 2 . Q J"-': - ;/j “ < %
! - b ¢ L . - . ‘ " . %4 B om ™ 3 : e N
: £ Mo , | ; - S8 o Wt 2T A
» - _ - ‘ 2 . o L) - *~ ¥ £ i, t - -
- e A ; _ - =l ": . LS Loy 2

LOTS of (different kinds of) security advice

Hard to see the forests for the trees

= forest of vulnerabilities (CVEs) with CVSS, KEV, EPSS, CPR, SSVC, ... to navigate it

= forest of vulnerability categories (CWEs) OWASP Top 10, CWE Top 25 & Top 1000
maybe here lies the difference between systems engineering and software engineering?

= forest of secure development technologies SDL, SAMM, BSIMM, NIST SSDF, ...
focused on the process

= forest of security tools DAST (incl. fuzzing), SAST, SCA, SecretScanning, ...

= forest of security requirements OWASP ASVS, MASVS, SVCS, ...
focused on the product

= some good practices and design patterns

WP2 - Erik Pol INTERSCT.

Methodologies (for the software engineering process)

* Microsoft SDL incl. DevSecOps

= OWASP SAMM

= NIST SSDF Secure Software Development Framework, 2022

= |SO/IEC 27034 for application security

= |SO/IEC 62433 for industrial automation and control systems

= NIST CSF Cyber Security Framework

= NISTIR7628 for smart grid security

= Grip on SSD by CIP-overheid.nl

= SAFEcode Fundamental practices for Secure Software Development
= BSA Framework for Secure Software Development

Which of these do you use? Which important ones am | missing?

WP2 - Erik Pol INTERSCT.

Maturity models

Many secure development methodologies, each can get quite complex
Introducing one, and then improving by shifting left, is a lengthy process

Hence: maturity models for 1) measuring and 2) comparing

= BSIMM by Synopsis, since 2009
- lists 126 activities grouped in 12 practices across 4 domains

= OWASP SAMM

Has anyone of you ever used such a maturity model?

WP2 - Erik Pol INTERSCT.

Tools

Secure software development methodologies can be supported by tools, esp.

= DAST (incl fuzzing)

= SAST

eg Coverity, Fortify, Checkmarx, VeraCode, SonarCube, ...

Which (type of) tools do you use?

WP2 - Erik Pol INTERSCT.

Changes in software engineering over the past 20 years

1. Agile & DevOps
Some security activities trickier; more need to shift left and automate

2. Supply chain risks
Huge rise in the use of 3" party code thanks to github, sourceforge, PyPl, NPM, Maven, ...
Risks of accidental flaws and deliberate backdoors
Hence: 1) SCA tools and 2) SBOMs

3. Risks of leaking credentials
Many more credentials around: for SaaS APIs, code repos, cloud environments, ClI/CD pipelines
with Jira, Confluence, Jenkins, Azure DevOps, Slack, Teams, ...
Risks of leaking these secrets
Hence 1) Secret Scanning tools eg TruffleHog, Nosey Parker, ABN-AMRO Repository Scanner
and maybe 2) SaaSBOMs?

Which of these do you use? Which important changes am | missing?

WP2 - Erik Pol INTERSCT.

Security advice for the product (as opposed to process)

Very different kinds of security advice, some very specific to certain tech stack/application type

= Lists of common vulnerabilities, eg. OWASP Top 10, CWE Top 25, KEV Top 10, ...
- Also Mobile Top 10, APl Top 10, Top 10 for LLM applications, ...

= Coding guidelines, eg. SEI/CERT guidelines for C and for C++

= Standards with security requirements & controls, eg.
- OWASP ASVS (Application Security Verification Standard)
can be used as metric, as guidance, or in procurement
- SVCS (Software Component Verification Standard)

Some standards (eg ISO/IEC 62443) combine requirements for process & for product.

Which of these do you use? Which important ones am | missing?

WP2 - Erik Pol INTERSCT.

The forest of security vulnerability categories

There are many types of security vulnerability:
the CWE classification includes over a 1000 categories

But: the bulk of them come down to only three kinds of problems:
memory corruption
input handling, esp. injection attacks
access control (incl. authorization, authentication, monitoring, and response)

11 WP2-Erikpol INTERSCT.

A known known: memory corruption bugs at Microsoft 2006-2018

100%
90%
80%
70%
60%
50%

% of CVEs

40%
30%
20%
10%

0%
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Patch Year

B Memory safety B Not memory safety

[Source: https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code
and “Trends, challenge, and shifts in software vulnerability mitigation”, presentation by Matt Miller at BlueHat IL 2019]

INTERSCT.

https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code

Another known known: CWE Top 25

with , access control, and

1. Out-of-bounds Write 10. Unrestricted Upload of Dangerous File 18. Hardcoded Credentials
(CWE-787) Type (CWE-434) (CWE-798)
2. Cross Site Scripting (XSS) 11. Missing Authorization 19. Server-Side Request Forgery (CSRF)
(CWE-79) (CWE-862) (CWE-918)

3. SQL injection 12. NULL Pointer Deference 20. Missing Authentication
(CWE-89) (CWE-476) (CWE-306)
4. Use After Free 13. Improper Authentication 21. Race Condition
(CWE-416) (CWE-287) (CWE-362)
5. 0S Command Injection 14. Integer Overflow or Wraparound 22. Improper Privilege Management
(CWE-78) (CWE-190) (CWE-269)
6. Improper Input Validation 15. Deserialization of Untrusted Data 23. Code Injection
(CWE-20) (CWE-502) (CWE-94)
7. Out-of-bounds Read 16. Command Injection 24. Incorrect Authorization
(CWE-125) (CWE-77) (CWE-863)
8. Path Traversal 17. Improper Restriction of Operations on 25. Incorrect Default Permissions
(CWE-22) Memory Buffer Bounds (CWE-119) (CWE-276)

9. Client-Side Request Forgery (CSRF)
(CWE-352)

WP2 - Erik Pol INTERSCT.

Another known known: CWE Top 25 Unforgivable Vulnerabilities

Steve Christey
The MITRE Corporation
coley(@mitre.org
August 2, 2007

with , access control, and

1. Out-of-bounds Write 10. Unrestricted Upload of Dangerous File 18. Hardcoded Credentials
(CWE-787) Type (CWE-434) (CWE-798)
2. Cross Site Scripting (XSS) 11. Missing Authorization 19. Server-Side Request Forgery (CSRF)
(CWE-79) (CWE-862) (CWE-918)

3. SQL injection 12. NULL Pointer Deference 20. Missing Authentication
(CWE-89) (CWE-476) (CWE-306)
4. Use After Free 13. Improper Authentication 21. Race Condition
(CWE-416) (CWE-287) (CWE-362)
5. 0S Command Injection 14. Integer Overflow or Wraparound 22. Improper Privilege Management
(CWE-78) (CWE-190) (CWE-269)
6. Improper Input Validation 15. Deserialization of Untrusted Data 23. Code Injection
(CWE-20) (CWE-502) (CWE-94)
7. Out-of-bounds Read 16. Command Injection 24. Incorrect Authorization
(CWE-125) (CWE-77) (CWE-863)
8. Path Traversal 17. Improper Restriction of Operations on 25. Incorrect Default Permissions
(CWE-22) Memory Buffer Bounds (CWE-119) (CWE-276)

9. Client-Side Request Forgery (CSRF)
(CWE-352)

WP2 - Erik Pol INTERSCT.

Shifting down

Best way to shift left: shift down
ie. address security lower down in technology stack, in platform or APIs

Examples

= safe(r) programming languages, notably for memory-safety

= safer APIs, that are less prone to injection attacks
- egusing ‘Safe Builder’ approach leveraging typing
= built-in security mechanisms in platforms
eg built-in session mechanism that resistant to CSRF

= LangSec, to prevent input handling problems by paying attention to (parsing of) input languages

WP2 - Erik Pol INTERSCT.

OWASP Top 25 over the past 20 years

Unvalidated L Broken Access
Input XSS Injection Injection Injection

Broken Access Iniection XSS Broken Auth. & Broken Cryptographic
Control ~ J Session Mngt Authentication Failures
Broken Auth. &) Malicious File Broken Auth. & Sensitive Data L
Injection

Execution Session Mngt Exposure

Session Mngt.

XSS XXE
Buffer CSRF Security Broken Access b- - - - OBCUT
Overflows Misconfiguration Control - Misconfiguration:
Info Leakage & . " . Vulnerable &
Injection Improper Error Miscii?iurtljtryation Selr;)s(,ltlovseu?:ta Mi Se?urlty : outdated
Handling 9 P TEEEMITEUETT components

Imoroper Error Broken Auth. & Insecure Missing function Identification &
IC|)-|;;1rr:o||in Session Mn .t Cryptographic level access XSS Authentication
9 gt Storage control Failures

Software & Data

Insecure Failure to

Insecure

Insecure . 3 -
Cryptographic restrict URL N Integrity
Storage Storage P — Deserialization Failures
Denial of Components Components Insufficient
Service with known with known Logging &
vulnerabilities vulnerabilities Monitoring

Insufficient
Logging & SSFR

Failure to Unvalidated Unvalidated

restrict URL Redirects and Redirects and
Forwards Forwards

2003 2007 2010 2013 2017 2021

WP2 - Erik Pol INTERSCT.

Monitoring

Conclusion

" The good news:

There is a lot of — different kinds of — security guidance out there!

= Bad news:

It is hard to see the forest for the trees

Which development methodology, (type of) tools, set of security requirements, ... to use?
Little hard evidence statistics to use as basis for decisions here.

Nice initiative to combat some of the confusion: OpenCRE (Open Common Requirement Enumeration,
https://www.opencre.org) to link all the standards, frameworks and guidelines

WP2 - Erik Pol INTERSCT.

https://www.opencre.org/

	Slide 1: Twenty years of secure software development What have we learned? What’s changed? in our quest for security-by-design by shifting left, right and down
	Slide 2: Caveat
	Slide 3: A brief history of software security
	Slide 4: LOTS of (different kinds of) security advice
	Slide 5: LOTS of (different kinds of) security advice
	Slide 6: Methodologies (for the software engineering process)
	Slide 7: Maturity models
	Slide 8: Tools
	Slide 9: Changes in software engineering over the past 20 years
	Slide 10: Security advice for the product (as opposed to process)
	Slide 11: The forest of security vulnerability categories
	Slide 12: A known known: memory corruption bugs at Microsoft 2006-2018
	Slide 13: Another known known: CWE Top 25 with memory corruption, access control, and input handling
	Slide 14: Another known known: CWE Top 25 with memory corruption, access control, and input handling
	Slide 15: Shifting down
	Slide 16
	Slide 17: Conclusion

